Synthesis and Absorption Properties of Long Acenoacenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Nadace Experientia
ORQUID
Horizon 2020
CNRS, MITI interdisciplinary programs
JPMJER1903
JST-ERATO
JSPS-WPI
CZ.02.2.69/0.0/ 0.0/17 050/0008490
ERDF/ESF "UOCHB MSCA Mobility
QUANTERA/1/2018
National Agency NCBiR
JPMJCR2001
JST-CREST
PubMed
34101270
DOI
10.1002/chem.202101577
Knihovny.cz E-zdroje
- Klíčová slova
- acenes, angular annulation, arynes, optical gap, solid-state transformation,
- Publikační typ
- časopisecké články MeSH
Acenes, polyaromatic hydrocarbons composed of linearly fused benzene rings have received immense attention due to their performance as semiconductors in organic optoelectronic applications. Their appealing physicochemical properties, such as extended delocalization, high charge carrier mobilities, narrow HOMO-LOMO gaps and partially radical character in the ground state make them very attractive targets for many potential applications. However, the intrinsic synthetic challenges of unsubstituted members such as high reactivity and poor solubility are still limiting factors for their wider exploitation. Herein, we report a simple general synthesis of a new family of angularly fused acenoacenes with improved stability compared to their isoelectronic linear counterparts. The synthesis and comprehensive characterization of pentacenopentacene, pentacenohexacene and hexacenohexacene, with lengths between decacene and dodecacene, are disclosed.
Zobrazit více v PubMed
M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, F. Wudl, J. Am. Chem. Soc. 2004, 126, 7416-7417.
M. Watanabe, K.-Y. Chen, Y. J. Chang, T. J. Chow, Acc. Chem. Res. 2013, 46, 1606-1615.
C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208-2267.
J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452-483;
Angew. Chem. 2008, 120, 460-492.
A. Naibi Lakshminarayana, A. Ong, C. Chi, J. Mater. Chem. C 2018, 6, 3551-3563.
T. J. Carey, E. G. Miller, A. T. Gilligan, T. Sammakia, N. H. Damrauer, Org. Lett. 2018, 20, 457-460.
J. Li, Y. Zhao, J. Lu, G. Li, J. Zhang, Y. Zhao, X. Sun, Q. Zhang, J. Org. Chem. 2015, 80, 109-113.
Z. Sun, Q. Ye, C. Chi, J. Wu, Chem. Soc. Rev. 2012, 41, 7857.
E. B. Guidez, C. M. Aikens, J. Phys. Chem. C 2013, 117, 21466-21475.
L. Zhang, Y. Cao, N. S. Colella, Y. Liang, J.-L. Brédas, K. N. Houk, A. L. Briseno, Acc. Chem. Res. 2015, 48, 500-509.
L. Zhang, A. Fonari, Y. Liu, A.-L. M. Hoyt, H. Lee, D. Granger, S. Parkin, T. P. Russell, J. E. Anthony, J.-L. Brédas, V. Coropceanu, A. L. Briseno, J. Am. Chem. Soc. 2014, 136, 9248-9251.
M. Feofanov, V. Akhmetov, D. I. Sharapa, K. Amsharov, Org. Lett. 2020, 22, 1698-1702.
Z. Wang, R. Li, Y. Chen, Y.-Z. Tan, Z. Tu, X. J. Gao, H. Dong, Y. Yi, Y. Zhang, W. Hu, K. Müllen, L. Chen, J. Mater. Chem. C 2017, 5, 1308-1312.
Y. Gu, Y. G. Tullimilli, J. Feng, H. Phan, W. Zeng, J. Wu, Chem. Commun. 2019, 55, 5567-5570.
E. Clar, H. Wallenstein, R. Avenarius, Ber. dtsch. Chem. Ges. A/B 1929, 62, 950-955.
B. T. Haire, K. W. J. Heard, M. S. Little, A. V. S. Parry, J. Raftery, P. Quayle, S. G. Yeates, Chem. Eur. J. 2015, 21, 9970-9974.
M. Tang, Q. Yu, Z. Wang, C. Zhang, B. Sun, Y. Yi, F.-L. Zhang, Org. Lett. 2018, 20, 7620-7623.
M. Nathusius, B. Ejlli, F. Rominger, J. Freudenberg, U. H. F. Bunz, K. Müllen, Chem. Eur. J. 2020, 26, 15089-15093.
L. Ahrens, S. Hahn, F. Rominger, J. Freudenberg, U. H. F. Bunz, Chem. Eur. J. 2019, 25, 14522-14526.
A. Jancarik, G. Levet, A. Gourdon, Chem. Eur. J. 2019, 25, 2366-2374.
J. Holec, B. Cogliati, J. Lawrence, A. Berdonces-Layunta, P. Herrero, Y. Nagata, M. Banasiewicz, B. Kozankiewicz, M. Corso, D. G. Oteyza, A. Jancarik, A. Gourdon, Angew. Chem. Int. Ed. 2021, 60, 7752-7758;
Angew. Chem. 2021, 133, 7831-7837.
W. Chen, F. Yu, Q. Xu, G. Zhou, Q. Zhang, Adv. Sci. 2020, 7, 1903766.
W. Chen, X. Li, G. Long, Y. Li, R. Ganguly, M. Zhang, N. Aratani, H. Yamada, M. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 13555-13559;
Angew. Chem. 2018, 130, 13743-13747.
G. Levet, N. K. Hung, M. Šámal, J. Rybáček, I. Cisařová, A. Jancarik, A. Gourdon, Eur. J. Org. Chem. 2020, 11, 1658-1664.
Unpublished results.
S. Maeda, Y. Harabuchi, Y. Sumiya, M. Takagi, K. Suzu-Ki, M. Hatanaka, Y. Osada, T. Taketsugu, K. Moroku-Ma, K. Ohno, GRRM17. https://iqce.jp/GRRM/index e.shtml (Accessed 2021-03-25).
Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Rana-Singhe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Ha-Segawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
D. Rodríguez-Lojo, D. Peña, D. Pérez, E. Guitián, Synlett 2015, 26, 1633-1637.
R. Einholz, T. Fang, R. Berger, P. Grüninger, A. Früh, T. Chassé, R. F. Fink, H. F. Bettinger, J. Am. Chem. Soc. 2017, 139, 4435-4442.
T. Aotake, S. Ikeda, D. Kuzuhara, S. Mori, T. Okujima, H. Uno, H. Yamada, Eur. J. Org. Chem. 2012, 9, 1723-1729.
B. Shen, J. Tatchen, E. Sanchez-Garcia, H. F. Bettinger, Angew. Chem. Int. Ed. 2018, 57, 10506-10509;
Angew. Chem. 2018, 130, 10666-10669.
J. Krüger, F. García, F. Eisenhut, D. Skidin, J. M. Alonso, E. Guitián, D. Pérez, G. Cuniberti, F. Moresco, D. Peña, Angew. Chem. Int. Ed. 2017, 56, 11945-11948;
Angew. Chem. 2017, 129, 12107-12110.