Preparative-scale synthesis of nonacene
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35017480
PubMed Central
PMC8752783
DOI
10.1038/s41467-021-27809-0
PII: 10.1038/s41467-021-27809-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During the last years we have witnessed progressive evolution of preparation of acenes with length up to dodecacene by on-surface synthesis in ultra-high vacuum or generation of acenes up to decacene in solid matrices at low temperatures. While these protocols with very specific conditions produce the acenes in amount of few molecules, the strategies leading to the acenes in large quantities dawdle behind. Only recently and after 70 years of synthetic attempts, heptacene has been prepared in bulk phase. However, the preparative scale synthesis of higher homologues still remains a formidable challenge. Here we report the preparation and characterisation of nonacene and show its excellent thermal and in-time stability.
GNS Group CEMES CNRS 29 Rue J Marvig 31055 Toulouse France
Univ Bordeaux CNRS Centre de Recherche Paul Pascal UMR 5031 33600 Pessac France
Zobrazit více v PubMed
Dorel R, Echavarren AM. Strategies for the Synthesis of Higher Acenes. Eur. J. Org. Chem. 2016;2017:14–24. doi: 10.1002/ejoc.201601129. PubMed DOI PMC
Korytár R, Xenioti D, Schmitteckert P, Alouani M, Evers F. Signature of the Dirac cone in the properties of linear oligoacenes. Nat. Commun. 2014;5:5000. doi: 10.1038/ncomms6000. PubMed DOI
Schmitteckert P, Thomale R, Korytár R, Evers F. Incommensurate quantum-size oscillations in acene-based molecular wires—Effects of quantum fluctuations. J. Chem. Phys. 2017;146:092320. doi: 10.1063/1.4975319. DOI
Krüger J, et al. Electronic Resonances and Gap Stabilization of Higher Acenes on a Gold Surface. ACS Nano. 2018;12:8506–8511. doi: 10.1021/acsnano.8b04046. PubMed DOI
Plasser F, et al. The Multiradical Character of One- and Two-Dimensional Graphene Nanoribbons. Angew. Chem. Int. Ed. 2013;52:2581–2584. doi: 10.1002/anie.201207671. PubMed DOI PMC
Hachmann J, Dorando JJ, Avilés M, Chan GK-L. The radical character of the acenes: A density matrix renormalization group study. J. Chem. Phys. 2007;127:134309. doi: 10.1063/1.2768362. PubMed DOI
Jiang D, Dai S. Electronic Ground State of Higher Acenes. J. Phys. Chem. A. 2008;112:332–335. doi: 10.1021/jp0765087. PubMed DOI
Malrieu J-P, Trinquier G. Can a Topological Approach Predict Spin-Symmetry Breaking in Conjugated Hydrocarbons? J. Phys. Chem. A. 2016;120:9564–9578. doi: 10.1021/acs.jpca.6b07597. PubMed DOI
Yang Y, Davidson ER, Yang W. Nature of ground and electronic excited states of higher acenes. Proc. Natl Acad. Sci. USA. 2016;113:E5098. doi: 10.1073/pnas.1606021113. PubMed DOI PMC
Fujita M, Wakabayashi K, Nakada K, Kusakabe K. Peculiar Localized State at Zigzag Graphite Edge. J. Phys. Soc. Jpn. 1996;65:1920–1923. doi: 10.1143/JPSJ.65.1920. DOI
Ruffieux P, et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature. 2016;531:489–492. doi: 10.1038/nature17151. PubMed DOI
Herwig PT, Müllen K. A Soluble Pentacene Precursor: Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor. Adv. Mater. 1999;11:480–483. doi: 10.1002/(SICI)1521-4095(199904)11:6<480::AID-ADMA480>3.0.CO;2-U. DOI
Mondal R, Adhikari RM, Shah BK, Neckers DC. Revisiting the Stability of Hexacenes. Org. Lett. 2007;9:2505–2508. doi: 10.1021/ol0709376. PubMed DOI
Mondal R, Shah BK, Neckers DC. Photogeneration of Heptacene in a Polymer Matrix. J. Am. Chem. Soc. 2006;128:9612–9613. doi: 10.1021/ja063823i. PubMed DOI
Bettinger, H. F., Mondal, R. & Neckers, D. C. Stable photoinduced charge separation in heptacene. PubMed
Einholz R, et al. Heptacene: Characterization in Solution, in the Solid State, and in Films. J. Am. Chem. Soc. 2017;139:4435–4442. doi: 10.1021/jacs.6b13212. PubMed DOI
Mondal R, Tönshoff C, Khon D, Neckers DC, Bettinger HF. Synthesis, Stability, and Photochemistry of Pentacene, Hexacene, and Heptacene: A Matrix Isolation Study. J. Am. Chem. Soc. 2009;131:14281–14289. doi: 10.1021/ja901841c. PubMed DOI
Tönshoff C, Bettinger HF. Photogeneration of Octacene and Nonacene. Angew. Chem. Int. Ed. 2010;49:4125–4128. doi: 10.1002/anie.200906355. PubMed DOI
Shen B, Tatchen J, Sanchez-Garcia E, Bettinger HF. Evolution of the Optical Gap in the Acene Series: Undecacene. Angew. Chem. Int. Ed. 2018;57:10506–10509. doi: 10.1002/anie.201802197. PubMed DOI
Yamada H, et al. Photochemical Synthesis of Pentacene and its Derivatives. Chem. - A Eur. J. 2005;11:6212–6220. doi: 10.1002/chem.200500564. PubMed DOI
Strating J, Zwanenburg B, Wagenaar A, Udding AC. Evidence for the expulsion of bis-CO from bridged α-diketones. Tetrahedron Lett. 1969;10:125–128. doi: 10.1016/S0040-4039(01)87489-X. DOI
Krüger J, et al. Imaging the electronic structure of on-surface generated hexacene. Chem. Commun. 2017;53:1583–1586. doi: 10.1039/C6CC09327B. PubMed DOI
Krüger J, et al. Decacene: On-Surface Generation. Angew. Chem. Int. Ed. 2017;56:11945–11948. doi: 10.1002/anie.201706156. PubMed DOI
Zuzak R, et al. Nonacene Generated by On-Surface Dehydrogenation. ACS Nano. 2017;11:9321–9329. doi: 10.1021/acsnano.7b04728. PubMed DOI
Zuzak R, et al. Higher Acenes by On-Surface Dehydrogenation: From Heptacene to Undecacene. Angew. Chem. Int. Ed. 2018;57:10500–10505. doi: 10.1002/anie.201802040. PubMed DOI PMC
Urgel JI, et al. On-Surface Synthesis of Heptacene Organometallic Complexes. J. Am. Chem. Soc. 2017;139:11658–11661. doi: 10.1021/jacs.7b05192. PubMed DOI
Zugermeier M, et al. On-surface synthesis of heptacene and its interaction with a metal surface. Nanoscale. 2017;9:12461–12469. doi: 10.1039/C7NR04157H. PubMed DOI
Urgel, J. I. et al. On-surface light-induced generation of higher acenes and elucidation of their open-shell character. PubMed PMC
Zade SS, Bendikov M. Heptacene and Beyond: The Longest Characterized Acenes. Angew. Chem. Int. Ed. 2010;49:4012–4015. doi: 10.1002/anie.200906002. PubMed DOI
Watanabe M, et al. The synthesis, crystal structure and charge-transport properties of hexacene. Nat. Chem. 2012;4:574–578. doi: 10.1038/nchem.1381. PubMed DOI
Jancarik A, Levet G, Gourdon A. A Practical General Method for the Preparation of Long Acenes. Chem. - A Eur. J. 2019;25:2366–2374. doi: 10.1002/chem.201805975. PubMed DOI
Miyazaki T, et al. Heptacene: Synthesis and Its Hole‐Transfer Property in Stable Thin Films. Chem. Eur. J. 2021;27:10677–10684. doi: 10.1002/chem.202100936. PubMed DOI
Clar, E & Schoental, R. Polycyclic Hydrocarbons: Volume 1. (Springer, Heidelberg, 2013).
Tönshoff C, Bettinger HF. Pushing the Limits of Acene Chemistry: The Recent Surge of Large Acenes. Chem. Eur. J. 2021;27:3193–3212. doi: 10.1002/chem.202003112. PubMed DOI PMC
Holec J, et al. A Large Starphene Comprising Pentacene Branches. Angew. Chem. Int. Ed. 2021;60:7752–7758. doi: 10.1002/anie.202016163. PubMed DOI
Jančařík, A. et al. Synthesis and Absorption Properties of Long Acenoacenes. PubMed
Watanabe M, Chen K-Y, Chang YJ, Chow TJ. Acenes Generated from Precursors and Their Semiconducting Properties. Acc. Chem. Res. 2013;46:1606–1615. doi: 10.1021/ar400002y. PubMed DOI
Yoshida S, Hosoya T. The Renaissance and Bright Future of Synthetic Aryne Chemistry. Chem. Lett. 2015;44:1450–1460. doi: 10.1246/cl.150839. DOI
Pena, D. Bottom-up Approaches to Nanographenes through Organic Synthesis. In
Rodríguez-Lojo D, Peña D, Pérez D, Guitián E. Straightforward Synthesis of Novel Acene-Based Aryne Precursors. Synlett. 2015;26:1633–1637. doi: 10.1055/s-0034-1381005. DOI
Gaussian 16, Revision C.01, M. J. Frisch, et al, Gaussian, Inc., Wallingford CT, 2016.
Pieniazek SN, Clemente FR, Houk KN. Sources of Error in DFT Computations of C-C Bond Formation Thermochemistries: π→σ Transformations and Error Cancellation by DFT Methods. Angew. Chem. Int. Ed. 2008;47:7746–7749. doi: 10.1002/anie.200801843. PubMed DOI