Preparative-scale synthesis of nonacene

. 2022 Jan 11 ; 13 (1) : 223. [epub] 20220111

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35017480
Odkazy

PubMed 35017480
PubMed Central PMC8752783
DOI 10.1038/s41467-021-27809-0
PII: 10.1038/s41467-021-27809-0
Knihovny.cz E-zdroje

During the last years we have witnessed progressive evolution of preparation of acenes with length up to dodecacene by on-surface synthesis in ultra-high vacuum or generation of acenes up to decacene in solid matrices at low temperatures. While these protocols with very specific conditions produce the acenes in amount of few molecules, the strategies leading to the acenes in large quantities dawdle behind. Only recently and after 70 years of synthetic attempts, heptacene has been prepared in bulk phase. However, the preparative scale synthesis of higher homologues still remains a formidable challenge. Here we report the preparation and characterisation of nonacene and show its excellent thermal and in-time stability.

Zobrazit více v PubMed

Dorel R, Echavarren AM. Strategies for the Synthesis of Higher Acenes. Eur. J. Org. Chem. 2016;2017:14–24. doi: 10.1002/ejoc.201601129. PubMed DOI PMC

Korytár R, Xenioti D, Schmitteckert P, Alouani M, Evers F. Signature of the Dirac cone in the properties of linear oligoacenes. Nat. Commun. 2014;5:5000. doi: 10.1038/ncomms6000. PubMed DOI

Schmitteckert P, Thomale R, Korytár R, Evers F. Incommensurate quantum-size oscillations in acene-based molecular wires—Effects of quantum fluctuations. J. Chem. Phys. 2017;146:092320. doi: 10.1063/1.4975319. DOI

Krüger J, et al. Electronic Resonances and Gap Stabilization of Higher Acenes on a Gold Surface. ACS Nano. 2018;12:8506–8511. doi: 10.1021/acsnano.8b04046. PubMed DOI

Plasser F, et al. The Multiradical Character of One- and Two-Dimensional Graphene Nanoribbons. Angew. Chem. Int. Ed. 2013;52:2581–2584. doi: 10.1002/anie.201207671. PubMed DOI PMC

Hachmann J, Dorando JJ, Avilés M, Chan GK-L. The radical character of the acenes: A density matrix renormalization group study. J. Chem. Phys. 2007;127:134309. doi: 10.1063/1.2768362. PubMed DOI

Jiang D, Dai S. Electronic Ground State of Higher Acenes. J. Phys. Chem. A. 2008;112:332–335. doi: 10.1021/jp0765087. PubMed DOI

Malrieu J-P, Trinquier G. Can a Topological Approach Predict Spin-Symmetry Breaking in Conjugated Hydrocarbons? J. Phys. Chem. A. 2016;120:9564–9578. doi: 10.1021/acs.jpca.6b07597. PubMed DOI

Yang Y, Davidson ER, Yang W. Nature of ground and electronic excited states of higher acenes. Proc. Natl Acad. Sci. USA. 2016;113:E5098. doi: 10.1073/pnas.1606021113. PubMed DOI PMC

Fujita M, Wakabayashi K, Nakada K, Kusakabe K. Peculiar Localized State at Zigzag Graphite Edge. J. Phys. Soc. Jpn. 1996;65:1920–1923. doi: 10.1143/JPSJ.65.1920. DOI

Ruffieux P, et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature. 2016;531:489–492. doi: 10.1038/nature17151. PubMed DOI

Herwig PT, Müllen K. A Soluble Pentacene Precursor: Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor. Adv. Mater. 1999;11:480–483. doi: 10.1002/(SICI)1521-4095(199904)11:6<480::AID-ADMA480>3.0.CO;2-U. DOI

Mondal R, Adhikari RM, Shah BK, Neckers DC. Revisiting the Stability of Hexacenes. Org. Lett. 2007;9:2505–2508. doi: 10.1021/ol0709376. PubMed DOI

Mondal R, Shah BK, Neckers DC. Photogeneration of Heptacene in a Polymer Matrix. J. Am. Chem. Soc. 2006;128:9612–9613. doi: 10.1021/ja063823i. PubMed DOI

Bettinger, H. F., Mondal, R. & Neckers, D. C. Stable photoinduced charge separation in heptacene. PubMed

Einholz R, et al. Heptacene: Characterization in Solution, in the Solid State, and in Films. J. Am. Chem. Soc. 2017;139:4435–4442. doi: 10.1021/jacs.6b13212. PubMed DOI

Mondal R, Tönshoff C, Khon D, Neckers DC, Bettinger HF. Synthesis, Stability, and Photochemistry of Pentacene, Hexacene, and Heptacene: A Matrix Isolation Study. J. Am. Chem. Soc. 2009;131:14281–14289. doi: 10.1021/ja901841c. PubMed DOI

Tönshoff C, Bettinger HF. Photogeneration of Octacene and Nonacene. Angew. Chem. Int. Ed. 2010;49:4125–4128. doi: 10.1002/anie.200906355. PubMed DOI

Shen B, Tatchen J, Sanchez-Garcia E, Bettinger HF. Evolution of the Optical Gap in the Acene Series: Undecacene. Angew. Chem. Int. Ed. 2018;57:10506–10509. doi: 10.1002/anie.201802197. PubMed DOI

Yamada H, et al. Photochemical Synthesis of Pentacene and its Derivatives. Chem. - A Eur. J. 2005;11:6212–6220. doi: 10.1002/chem.200500564. PubMed DOI

Strating J, Zwanenburg B, Wagenaar A, Udding AC. Evidence for the expulsion of bis-CO from bridged α-diketones. Tetrahedron Lett. 1969;10:125–128. doi: 10.1016/S0040-4039(01)87489-X. DOI

Krüger J, et al. Imaging the electronic structure of on-surface generated hexacene. Chem. Commun. 2017;53:1583–1586. doi: 10.1039/C6CC09327B. PubMed DOI

Krüger J, et al. Decacene: On-Surface Generation. Angew. Chem. Int. Ed. 2017;56:11945–11948. doi: 10.1002/anie.201706156. PubMed DOI

Zuzak R, et al. Nonacene Generated by On-Surface Dehydrogenation. ACS Nano. 2017;11:9321–9329. doi: 10.1021/acsnano.7b04728. PubMed DOI

Zuzak R, et al. Higher Acenes by On-Surface Dehydrogenation: From Heptacene to Undecacene. Angew. Chem. Int. Ed. 2018;57:10500–10505. doi: 10.1002/anie.201802040. PubMed DOI PMC

Urgel JI, et al. On-Surface Synthesis of Heptacene Organometallic Complexes. J. Am. Chem. Soc. 2017;139:11658–11661. doi: 10.1021/jacs.7b05192. PubMed DOI

Zugermeier M, et al. On-surface synthesis of heptacene and its interaction with a metal surface. Nanoscale. 2017;9:12461–12469. doi: 10.1039/C7NR04157H. PubMed DOI

Urgel, J. I. et al. On-surface light-induced generation of higher acenes and elucidation of their open-shell character. PubMed PMC

Zade SS, Bendikov M. Heptacene and Beyond: The Longest Characterized Acenes. Angew. Chem. Int. Ed. 2010;49:4012–4015. doi: 10.1002/anie.200906002. PubMed DOI

Watanabe M, et al. The synthesis, crystal structure and charge-transport properties of hexacene. Nat. Chem. 2012;4:574–578. doi: 10.1038/nchem.1381. PubMed DOI

Jancarik A, Levet G, Gourdon A. A Practical General Method for the Preparation of Long Acenes. Chem. - A Eur. J. 2019;25:2366–2374. doi: 10.1002/chem.201805975. PubMed DOI

Miyazaki T, et al. Heptacene: Synthesis and Its Hole‐Transfer Property in Stable Thin Films. Chem. Eur. J. 2021;27:10677–10684. doi: 10.1002/chem.202100936. PubMed DOI

Clar, E & Schoental, R. Polycyclic Hydrocarbons: Volume 1. (Springer, Heidelberg, 2013).

Tönshoff C, Bettinger HF. Pushing the Limits of Acene Chemistry: The Recent Surge of Large Acenes. Chem. Eur. J. 2021;27:3193–3212. doi: 10.1002/chem.202003112. PubMed DOI PMC

Holec J, et al. A Large Starphene Comprising Pentacene Branches. Angew. Chem. Int. Ed. 2021;60:7752–7758. doi: 10.1002/anie.202016163. PubMed DOI

Jančařík, A. et al. Synthesis and Absorption Properties of Long Acenoacenes. PubMed

Watanabe M, Chen K-Y, Chang YJ, Chow TJ. Acenes Generated from Precursors and Their Semiconducting Properties. Acc. Chem. Res. 2013;46:1606–1615. doi: 10.1021/ar400002y. PubMed DOI

Yoshida S, Hosoya T. The Renaissance and Bright Future of Synthetic Aryne Chemistry. Chem. Lett. 2015;44:1450–1460. doi: 10.1246/cl.150839. DOI

Pena, D. Bottom-up Approaches to Nanographenes through Organic Synthesis. In

Rodríguez-Lojo D, Peña D, Pérez D, Guitián E. Straightforward Synthesis of Novel Acene-Based Aryne Precursors. Synlett. 2015;26:1633–1637. doi: 10.1055/s-0034-1381005. DOI

Gaussian 16, Revision C.01, M. J. Frisch, et al, Gaussian, Inc., Wallingford CT, 2016.

Pieniazek SN, Clemente FR, Houk KN. Sources of Error in DFT Computations of C-C Bond Formation Thermochemistries: π→σ Transformations and Error Cancellation by DFT Methods. Angew. Chem. Int. Ed. 2008;47:7746–7749. doi: 10.1002/anie.200801843. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...