A Large Starphene Comprising Pentacene Branches
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/17 050/0008490
EXPERIENTIA, ERDF/ESF "UOCHB MSCA Mobility"
ORQUID
EraNET Cofund Initiatives QuantERA
MITI
CNRS
JPMJER1903
JST-ERATO
MAT2016-78293-C6, PID2019-107338RB-C63
Spanish Ministry of Science and Innovation
IT-1255-19
Basque Government
CSIC, COOPB20432
Spanish National Research Council
EFA 194/16 TNSI
European Regional Development Fund
635919
FP7 People: Marie-Curie Actions
PubMed
33460518
DOI
10.1002/anie.202016163
Knihovny.cz E-zdroje
- Klíčová slova
- HOMO-LUMO gap, [16]Starphene, acenes, decarbonylation, solid-state synthesis,
- Publikační typ
- časopisecké články MeSH
Starphenes are attractive compounds due to their characteristic physicochemical properties that are inherited from acenes, making them interesting compounds for organic electronics and optics. However, the instability and low solubility of larger starphene homologs make their synthesis extremely challenging. Herein, we present a new strategy leading to pristine [16]starphene in preparative scale. Our approach is based on a synthesis of a carbonyl-protected starphene precursor that is thermally converted in a solid-state form to the neat [16]starphene, which is then characterised with a variety of analytical methods, such as 13 C CP-MAS NMR, TGA, MS MALDI, UV/Vis and FTIR spectroscopy. Furthermore, high-resolution STM experiments unambiguously confirm its expected structure and reveal a moderate electronic delocalisation between the pentacene arms. Nucleus-independent chemical shifts NICS(1) are also calculated to survey its aromatic character.
Centro de Fisica de Materiales CSIC UPV EHU 20018 San Sebastián Spain
Donostia International Physics Center 20018 San Sebastián Spain
Institute of Physics Polish Academy of Sciences Al Lotników 32 46 02 668 Warsaw Poland
Zobrazit více v PubMed
M. Müller, L. Ahrens, V. Brosius, J. Freudenberg, U. H. F. Bunz, J. Mater. Chem. C 2019, 7, 14011-14034.
E. C. Rüdiger, M. Müller, J. Freudenberg, U. H. F. Bunz, Org. Mater. 2019, 1, 1-18.
D. Skidin, O. Faizy, J. Krüger, F. Eisenhut, A. Jancarik, K.-H. Nguyen, G. Cuniberti, A. Gourdon, F. Moresco, C. Joachim, ACS Nano 2018, 12, 1139-1145.
W. H. Soe, C. Manzano, P. de Mendoza, P. R. McGonigal, A. M. Echavarren, C. Joachim, Surf. Sci. 2018, 678, 163-168.
A. L. Kanibolotsky, I. F. Perepichka, P. J. Skabara, Chem. Soc. Rev. 2010, 39, 2695.
I. Pozo, E. Guitián, D. Pérez, D. Peña, Acc. Chem. Res. 2019, 52, 2472-2481.
E. Clar, A. Mullen, Tetrahedron 1968, 24, 6719-6724.
S. J. Hein, D. Lehnherr, W. R. Dichtel, Chem. Sci. 2017, 8, 5675-5681.
P. T. Lynett, K. E. Maly, Org. Lett. 2009, 11, 3726-3729.
E. C. Rüdiger, M. Porz, M. Schaffroth, F. Rominger, U. H. F. Bunz, Chem. Eur. J. 2014, 20, 12725-12728.
D. Peña, S. Escudero, D. Pérez, E. Guitián, L. Castedo, Angew. Chem. Int. Ed. 1998, 19, 2659-2661;
Angew. Chem. 1998, 110, 2804-2806.
C. Guo, D. Xia, Y. Yang, X. Zuo, Chem. Rec. 2019, 19, 2143-2156.
I. Pozo, D. Peña, E. Guitián, D. Pérez, Chem. Commun. 2020, 56, 12853-12856.
E. C. Rüdiger, S. Koser, F. Rominger, J. Freudenberg, U. H. F. Bunz, Chem. Eur. J. 2018, 24, 9919-9927.
Q. Shen, H.-Y. Gao, H. Fuchs, Nano Today 2017, 13, 77-96.
X. Zhang, Q. Zeng, C. Wang, Nanoscale 2013, 5, 8269.
A. Narita, Z. Chen, Q. Chen, K. Müllen, Chem. Sci. 2019, 10, 964-975.
C. Sánchez-Sánchez, A. Nicolaï, F. Rossel, J. Cai, J. Liu, X. Feng, K. Müllen, P. Ruffieux, R. Fasel, V. Meunier, J. Am. Chem. Soc. 2017, 139, 17617-17623.
M. Koch, M. Gille, S. Hecht, L. Grill, Surf. Sci. 2018, 678, 194-200.
G. Levet, N. K. Hung, M. Šámal, J. Rybáček, I. Cisařová, A. Jančařík, A. Gourdon, Eur. J. Org. Chem. 2020, 1658-1664.
A. Jancarik, G. Levet, A. Gourdon, Chem. Eur. J. 2019, 25, 2366-2374.
B. Schuler, S. Collazos, L. Gross, G. Meyer, D. Pérez, E. Guitián, D. Peña, Angew. Chem. Int. Ed. 2014, 53, 9004-9006;
Angew. Chem. 2014, 126, 9150-9152.
S. Yoshida, T. Hosoya, Chem. Lett. 2015, 44, 1450-1460.
A. Bhunia, S. R. Yetra, A. T. Biju, Chem. Soc. Rev. 2012, 41, 3140.
R. Einholz, T. Fang, R. Berger, P. Grüninger, A. Früh, T. Chassé, R. F. Fink, H. F. Bettinger, J. Am. Chem. Soc. 2017, 139, 4435-4442.
R. Mondal, C. Tönshoff, D. Khon, D. C. Neckers, H. F. Bettinger, J. Am. Chem. Soc. 2009, 131, 14281-14289.
M. L. Tiago, J. E. Northrup, S. G. Louie, Phys. Rev. B 2003, 67, 115212.
E. S. Kadantsev, M. J. Stott, A. Rubio, J. Chem. Phys. 2006, 124, 134901.
Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842-3888.
R. Dabestani, I. N. Ivanov, Photochem. Photobiol. 1999, 70, 10-34.
P. Jelínek, J. Phys. Condens. Matter 2017, 29, 343002.
J. I. Urgel, S. Mishra, H. Hayashi, J. Wilhelm, C. A. Pignedoli, M. Di Giovannantonio, R. Widmer, M. Yamashita, N. Hieda, P. Ruffieux, H. Yamada, R. Fasel, Nat. Commun. 2019, 10, 861.
J. I. Urgel, H. Hayashi, M. Di Giovannantonio, C. A. Pignedoli, S. Mishra, O. Deniz, M. Yamashita, T. Dienel, P. Ruffieux, H. Yamada, R. Fasel, J. Am. Chem. Soc. 2017, 139, 11658-11661.
L. Colazzo, M. S. G. Mohammed, R. Dorel, P. Nita, C. García Fernández, P. Abufager, N. Lorente, A. M. Echavarren, D. G. de Oteyza, Chem. Commun. 2018, 54, 10260-10263.
R. Zuzak, R. Dorel, M. Krawiec, B. Such, M. Kolmer, M. Szymonski, A. M. Echavarren, S. Godlewski, ACS Nano 2017, 11, 9321-9329.
F. Eisenhut, T. Kühne, F. García, S. Fernández, E. Guitián, D. Pérez, G. Trinquier, G. Cuniberti, C. Joachim, D. Peña, F. Moresco, ACS Nano 2020, 14, 1011-1017.
J. Krüger, F. Eisenhut, D. Skidin, T. Lehmann, D. A. Ryndyk, G. Cuniberti, F. García, J. M. Alonso, E. Guitián, D. Pérez, D. Peña, G. Trinquier, J.-P. Malrieu, F. Moresco, C. Joachim, ACS Nano 2018, 12, 8506-8511.
W.-H. Soe, C. Manzano, A. De Sarkar, N. Chandrasekhar, C. Joachim, Phys. Rev. Lett. 2009, 102, 176102.
Tuning the Diradical Character of Pentacene Derivatives via Non-Benzenoid Coupling Motifs