Polyhydroxyalkanoate involvement in stress-survival of two psychrophilic bacterial strains from the High Arctic
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2017/24/C/NZ9/00232
Narodowym Centrum Nauki
PubMed
38520566
PubMed Central
PMC10960890
DOI
10.1007/s00253-024-13092-8
PII: 10.1007/s00253-024-13092-8
Knihovny.cz E-zdroje
- Klíčová slova
- Arctic bacteria, Environmental stressors, Polyhydroxyalkanoates, Survival,
- MeSH
- Bacteria metabolismus MeSH
- polyhydroxyalkanoáty * metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polyhydroxyalkanoáty * MeSH
- uhlík MeSH
An ever-growing body of literature evidences the protective role of polyhydroxyalkanoates (PHAs) against a plethora of mostly physical stressors in prokaryotic cells. To date, most of the research done involved bacterial strains isolated from habitats not considered to be life-challenging or extremely impacted by abiotic environmental factors. Polar region microorganisms experience a multitude of damaging factors in combinations rarely seen in other of Earth's environments. Therefore, the main objective of this investigation was to examine the role of PHAs in the adaptation of psychrophilic, Arctic-derived bacteria to stress conditions. Arctic PHA producers: Acidovorax sp. A1169 and Collimonas sp. A2191, were chosen and their genes involved in PHB metabolism were deactivated making them unable to accumulate PHAs (ΔphaC) or to utilize them (Δi-phaZ) as a carbon source. Varying stressors were applied to the wild-type and the prepared mutant strains and their survival rates were assessed based on CFU count. Wild-type strains with a functional PHA metabolism were best suited to survive the freeze-thaw cycle - a common feature of polar region habitats. However, the majority of stresses were best survived by the ΔphaC mutants, suggesting that the biochemical imbalance caused by the lack of PHAs induced a permanent cell-wide stress response thus causing them to better withstand the stressor application. Δi-phaZ mutants were superior in surviving UV irradiation, hinting that PHA granule presence in bacterial cells is beneficial despite it being biologically inaccessible. Obtained data suggests that the ability to metabolize PHA although important for survival, probably is not the most crucial mechanism in the stress-resistance strategies arsenal of cold-loving bacteria. KEY POINTS: • PHA metabolism helps psychrophiles survive freezing • PHA-lacking psychrophile mutants cope better with oxidative and heat stresses • PHA granule presence enhances the UV resistance of psychrophiles.
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Alves LPS, Santana-Filho AP, Sassaki GL, de Oliveira PF, Maltempi de Souza E, Chubatsu LS, Müller-Santos M. 3-Hydroxybutyrate derived from poly-3-hydroxybutyrate mobilization alleviates protein aggregation in heat-stressed Herbaspirillum seropedicae SmR1. Appl Environ Microbiol. 2020;86:e01265–e1320. doi: 10.1128/AEM.01265-20. PubMed DOI PMC
Andrews, S (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Ayub ND, Tribelli PM, López NI. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation. Extremophiles. 2009;13:59–66. doi: 10.1007/s00792-008-0197-z. PubMed DOI
Baek K-H, Skinner DZ (2012) Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. 2012. 10.4236/jacen.2012.11006
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys. 2012;525:161–169. doi: 10.1016/j.abb.2012.02.007. PubMed DOI
D’Amico S, Collins T, Marx J-C, Feller G, Gerday C, Gerday C. Psychrophilic microorganisms: challenges for life. EMBO Rep. 2006;7:385–389. doi: 10.1038/sj.embor.7400662. PubMed DOI PMC
De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014;15:508–517. doi: 10.1002/embr.201338170. PubMed DOI PMC
El-Sayed AK, Hothersall J, Thomas CM. Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586The GenBank accession numbers for the sequences determined in this work are AF318063 (mupA), AF318064 (mupR) and AF318065 (mupI) Microbiology. 2001;147:2127–2139. doi: 10.1099/00221287-147-8-2127. PubMed DOI
Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters. 2004;25:375–388. PubMed
Gupta A, Gupta R, Singh RL. Microbes and environment. In: Singh RL, editor. Principles and applications of environmental biotechnology for a sustainable future. Singapore: Springer; 2017. pp. 43–84.
Imlay JA. Transcription factors that defend bacteria against reactive oxygen species. Annu Rev Microbiol. 2015;69:93–108. doi: 10.1146/annurev-micro-091014-104322. PubMed DOI PMC
Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990;96:23–28. doi: 10.1016/0378-1119(90)90336-P. PubMed DOI
Johnson LA, Hug LA. Distribution of reactive oxygen species defense mechanisms across domain bacteria. Free Radic Biol Med. 2019;140:93–102. doi: 10.1016/j.freeradbiomed.2019.03.032. PubMed DOI
Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. Waste to bioplastics: how close are we to sustainable polyhydroxyalkanoates production? Waste Manag. 2021;119:374–388. doi: 10.1016/j.wasman.2020.10.008. PubMed DOI
Kim JK, Won YJ, Nikoh N, Nakayama H, Han SH, Kikuchi Y, Rhee YH, Park HY, Kwon JY, Kurokawa K, Dohmae N, Fukatsu T, Lee BL. Polyester synthesis genes associated with stress resistance are involved in an insect–bacterium symbiosis. Proc Natl Acad Sci. 2013;110:E2381–E2389. doi: 10.1073/pnas.1303228110. PubMed DOI PMC
Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J. The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinformatics. 2009;10:89. doi: 10.1186/1471-2105-10-89. PubMed DOI PMC
Koller M (2018) Chemical and Biochemical Engineering Approaches in Manufacturing Polyhydroxyalkanoate (PHA) Biopolyesters of Tailored Structure with Focus on the Diversity of Building Blocks. Chem Biochem Eng Q 32(4):413–438 10.15255/CABEQ.2018.1385
Kourilova X, Pernicova I, Vidlakova M, Krejcirik R, Mrazova K, Hrubanova K, Krzyzanek V, Nebesarova J, Obruca S. Biotechnological conversion of grape pomace to poly(3-hydroxybutyrate) by moderately thermophilic bacterium Tepidimonas taiwanensis. Bioengineering. 2021;8:141. doi: 10.3390/bioengineering8100141. PubMed DOI PMC
Kushkevych I, Dordević D, Alberfkani MI, et al. NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria. Sci Rep. 2023;13:13922. doi: 10.1038/s41598-023-41185-3. PubMed DOI PMC
López NI, Pettinari MJ, Nikel PI, Méndez BS. Polyhydroxyalkanoates: much more than biodegradable plastics. Adv Appl Microbiol. 2015;93:73–106. doi: 10.1016/bs.aambs.2015.06.001. PubMed DOI
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev. 2021;45:fuaa058. doi: 10.1093/femsre/fuaa058. PubMed DOI
Neoh SZ, Fey Chek M, Tiang Tan H, Linares-Pastén JA, Nandakumar A, Hakoshima T, Sudesh K. Polyhydroxyalkanoate synthase (PhaC): the key enzyme for biopolyester synthesis. Curr Res Biotechnol. 2022;4:87–101. doi: 10.1016/j.crbiot.2022.01.002. DOI
Nuss AM, Glaeser J, Klug G. RpoHII activates oxidative-stress defense systems and is controlled by RpoE in the singlet oxygen-dependent response in Rhodobacter sphaeroides. J Bacteriol. 2009;191:220–230. doi: 10.1128/jb.00925-08. PubMed DOI PMC
Obruca S, Snajdar O, Svoboda Z, Marova I. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J Microbiol Biotechnol. 2013;29:2417–2428. doi: 10.1007/s11274-013-1410-5. PubMed DOI
Obruca S, Sedlacek P, Mravec F, Samek O, Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol. 2016;100:1365–1376. doi: 10.1007/s00253-015-7162-4. PubMed DOI
Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, Kucera D, Benesova P, Marova I. Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS One. 2016;11:e0157778. doi: 10.1371/journal.pone.0157778. PubMed DOI PMC
Obruca S, Sedlacek P, Mravec F, Krzyzanek V, Nebesarova J, Samek O, Kucera D, Benesova P, Hrubanova K, Milerova M, Marova I. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI
Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI
Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, Sedrlova Z, Koller M. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol. 2020;104:4795–4810. doi: 10.1007/s00253-020-10568-1. PubMed DOI
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv. 2022;58:107906. doi: 10.1016/j.biotechadv.2022.107906. PubMed DOI
Pischedda A, Ramasamy KP, Mangiagalli M, Chiappori F, Milanesi L, Miceli C, Pucciarelli S, Lotti M. Antarctic marine ciliates under stress: superoxide dismutases from the psychrophilic Euplotes focardii are cold-active yet heat tolerant enzymes. Sci Rep. 2018;8:14721. doi: 10.1038/s41598-018-33127-1. PubMed DOI PMC
R Core Team (2021) R: A language and environment for statistical ## computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Ravanat J-L, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B. 2001;63:88–102. doi: 10.1016/S1011-1344(01)00206-8. PubMed DOI
Reddy CSK, Ghai R, Rashmi KVC. Polyhydroxyalkanoates: an overview. Bioresour Technol. 2003;87:137–146. doi: 10.1016/S0960-8524(02)00212-2. PubMed DOI
Ren Q, de Roo G, Ruth K, Witholt B, Zinn M, Thöny-Meyer L. Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? Biomacromol. 2009;10:916–922. doi: 10.1021/bm801431c. PubMed DOI
Rhodes M, Knelman J, Lynch R, Darcy J, Nemergut D, Schmidt S (2013) Alpine and arctic soil microbial communities. In: The Prokaryotes: Prokaryotic Communities and Ecophysiology. Springer-Verlag Berlin Heidelberg 2013, pp 43–55
Rogala MM, Gawor J, Gromadka R, Kowalczyk M, Grzesiak J. Biodiversity and habitats of polar region polyhydroxyalkanoic acid-producing bacteria: bioprospection by popular screening methods. Genes. 2020;11:873. doi: 10.3390/genes11080873. PubMed DOI PMC
Sedlacek P, Slaninova E, Enev V, Koller M, Nebesarova J, Marova I, Hrubanova K, Krzyzanek V, Samek O, Obruca S. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl Microbiol Biotechnol. 2019;103:1905–1917. doi: 10.1007/s00253-018-09584-z. PubMed DOI
Sedlacek P, Slaninova E, Koller M, Nebesarova J, Marova I, Krzyzanek V, Obruca S. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol. 2019;49:129–136. doi: 10.1016/j.nbt.2018.10.005. PubMed DOI
Seo SW, Kim D, Szubin R, Palsson BO. Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep. 2015;12:1289–1299. doi: 10.1016/j.celrep.2015.07.043. PubMed DOI
Shen R, Ning Z-Y, Lan Y-X, Chen J-C, Chen G-Q. Manipulation of polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis. Metab Eng. 2019;54:117–126. doi: 10.1016/j.ymben.2019.03.011. PubMed DOI
Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, Hesko O, Kucera D, Marova I, Obruca S. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl Microbiol Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI
Slaninova E, Obruca S, Kocherbitov V, Sedlacek P. On the bioprotective effects of 3-hydroxybutyrate: thermodynamic study of binary 3HB-water systems. Biophys J. 2023;122:460–469. doi: 10.1016/j.bpj.2023.01.004. PubMed DOI PMC
Tan IKP, Foong CP, Tan HT, Lim H, Zain N-AA, Tan YC, Hoh CC, Sudesh K. Polyhydroxyalkanoate (PHA) synthase genes and PHA-associated gene clusters in Pseudomonas spp. and Janthinobacterium spp. isolated from Antarctica. J Biotechnol. 2020;313:18–28. doi: 10.1016/j.jbiotec.2020.03.006. PubMed DOI
Thomas DN, Fogg GE (Tony), Convey P, Fritsen CH, Gili J-M, Gradinger R, Laybourn-Parry J, Reid K, Walton DWH (2008) Stress, adaptation, and survival in polar regions. In: Thomas DN, Fogg GE, Convey P, Fritsen CH, Gili J-M, Gradinger R, Laybourn-Parry J, Reid K, Walton DWH (eds) The Biology of Polar Regions. Oxford University Press, pp 28–52
Ungelenk S, Moayed F, Ho C-T, Grousl T, Scharf A, Mashaghi A, Tans S, Mayer MP, Mogk A, Bukau B. Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nat Commun. 2016;7:13673. doi: 10.1038/ncomms13673. PubMed DOI PMC
Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 56:2.4.1–2.4.5. 10.1002/047114272 PubMed