NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37626119
PubMed Central
PMC10457377
DOI
10.1038/s41598-023-41185-3
PII: 10.1038/s41598-023-41185-3
Knihovny.cz E-zdroje
- MeSH
- antioxidancia * MeSH
- buněčné extrakty MeSH
- Desulfovibrio * MeSH
- lidé MeSH
- NAD MeSH
- NADP MeSH
- obranné mechanismy MeSH
- peroxidasy MeSH
- sírany MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia * MeSH
- buněčné extrakty MeSH
- NAD MeSH
- NADP MeSH
- NADPH peroxidase MeSH Prohlížeč
- peroxidasy MeSH
- sírany MeSH
Animal and human feces typically include intestinal sulfate-reducing bacteria (SRB). Hydrogen sulfide and acetate are the end products of their dissimilatory sulfate reduction and may create a synergistic effect. Here, we report NADH and NADPH peroxidase activities from intestinal SRB Desulfomicrobium orale and Desulfovibrio piger. We sought to compare enzymatic activities under the influence of various temperature and pH regimes, as well as to carry out kinetic analyses of enzymatic reaction rates, maximum amounts of the reaction product, reaction times, maximum rates of the enzyme reactions, and Michaelis constants in cell-free extracts of intestinal SRB, D. piger Vib-7, and D. orale Rod-9, collected from exponential and stationary growth phases. The optimal temperature (35 °C) and pH (7.0) for both enzyme's activity were determined. The difference in trends of Michaelis constants (Km) during exponential and stationary phases are noticeable between D. piger Vib-7 and D. orale Rod-9; D. orale Rod-9 showed much higher Km (the exception is NADH peroxidase of D. piger Vib-7: 1.42 ± 0.11 mM) during the both monitored phases. Studies of the NADH and NADPH peroxidases-as putative antioxidant defense systems of intestinal SRB and detailed data on the kinetic properties of this enzyme, as expressed by the decomposition of hydrogen peroxide-could be important for clarifying evolutionary mechanisms of antioxidant defense systems, their etiological role in the process of dissimilatory sulfate reduction, and their possible role in the development of bowel diseases.
Zobrazit více v PubMed
Rowan FE, Docherty NG, Coffey JC, O’Connell PR. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br. J. Surg. 2009;96:151–158. PubMed
Pitcher MC, Cummings JH. Hydrogen sulphide: A bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4. PubMed PMC
Florin THJ, Gibson GR, Neale G, Cummings JH. A role for sulfate reducing bacteria in ulcerative colitis. Gastroenterology. 1990;A170:1–10.
Kováč J, Vítězová M, Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC
Kushkevych I, et al. Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases. Biomolecules. 2019;9:752. PubMed PMC
Kushkevych I, Dordević D, Kollar P, Vítězová M, Drago L. Hydrogen sulfide as a toxic product in the small-large intestine axis and its role in IBD development. JCM. 2019;8:1054. PubMed PMC
Kushkevych I, et al. Evaluation of physiological parameters of intestinal sulfate-reducing bacteria isolated from patients suffering from IBD and healthy people. JCM. 2020;9:1920. PubMed PMC
Dordević D, Jančíková S, Vítězová M, Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2020 doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC
Paulo LM, Stams AJM, Sousa DZ. Methanogens, sulphate and heavy metals: A complex system. Rev. Environ. Sci. Biotechnol. 2015;14:537–553.
Singh S, Lin H. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms. 2015;3:866–889. PubMed PMC
Cummings JH, Macfarlane GT, Macfarlane S. Intestinal bacteria and ulcerative colitis. Curr. Issues Intest. Microbiol. 2003;4:9–20. PubMed
Gibson GR, Macfarlane GT, Cummings JH. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 1988;65:103–111. PubMed
Kushkevych I, Coufalová M, Vítězová M, Rittmann SK-MR. Sulfate-reducing bacteria of the oral cavity and their relation with periodontitis—recent advances. JCM. 2020;9:2347. PubMed PMC
Kushkevych I, Dordević D, Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J. Adv. Res. 2021;27:71–78. PubMed PMC
Kushkevych I, et al. Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells. 2020;9:698. PubMed PMC
Kushkevych I, et al. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411.
Abdulina D, Kováč J, Iutynska G, Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3 Biotech. 2020;10:55. PubMed PMC
Kuever J. The family Desulfovibrionaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Springer; 2014. pp. 107–133.
Kushkevych I, Kováč J, Vítězová M, Vítěz T, Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. PubMed
Kushkevych I. Isolation and purification of sulfate-reducing bacteria. In: Blumenberg M, Shaaban M, Elgaml A, editors. Microorganisms. IntechOpen; 2020.
Kushkevych I, et al. The sulfate-reducing microbial communities and meta-analysis of their occurrence during diseases of small-large intestine axis. JCM. 2019;8:1656. PubMed PMC
Brenner, D. J., Krieg, N. R., Staley, J. T. & Garrity, G. M. The proteobacteria, part C: The alpha-, beta-, delta-, and epsilonproteobacteria. in Bergey’s Manual of Systematic Bacteriology (Springer, 2005).
Postgate JR. Sulphate reduction by bacteria. Annu. Rev. Microbiol. 1959;13:505–520.
Kushkevych IV. Kinetic properties of pyruvate ferredoxin oxidoreductase of intestinal sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. rod-9. Pol. J. Microbiol. 2015;64:107–114. PubMed
Barton, L. L. & Fauque, G. D. Biochemistry, physiology and biotechnology of sulfate‐reducing bacteria. in Advances in Applied Microbiology, vol. 68, 41–98 (Elsevier, 2009). PubMed
Fauque, G. D. Ecology of sulfate-reducing bacteria. in Sulfate-Reducing Bacteria (ed. Barton, L. L.) 217–241 (Springer, 1995). 10.1007/978-1-4899-1582-5_8.
Gülçin İ, Bursal E, Şehitoğlu MH, Bilsel M, Gören AC. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 2010;48:2227–2238. PubMed
TejeraGarcía NA, Iribarne C, Palma F, Lluch C. Inhibition of the catalase activity from Phaseolus vulgaris and Medicago sativa by sodium chloride. Plant Physiol. Biochem. 2007;45:535–541. PubMed
Nóbrega CS, Pauleta SR. Reduction of hydrogen peroxide in gram-negative bacteria–bacterial peroxidases. Adv. Microb. Physiol. 2019;74:415–464. PubMed
Bursal E. Kinetic properties of peroxidase enzyme from chard ( Beta vulgaris Subspecies cicla ) leaves. Int. J. Food Prop. 2013;16:1293–1303.
Pyo Y-H, Lee T-C, Logendra L, Rosen RT. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem. 2004;85:19–26.
La Carbona S, et al. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, alkyl hydroperoxide reductase and Thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. Mol. Microbiol. 2007;66:1148–1163. PubMed
Miller H, Poole LB, Claiborne A. Heterogeneity among the flavin-containing NADH peroxidases of group D streptococci. Analysis of the enzyme from Streptococcus faecalis ATCC 9790. J. Biol. Chem. 1990;265:9857–9863. PubMed
Stehle T, Claiborne A, Schulz GE. NADH binding site and catalysis of NADH peroxidase. Eur. J. Biochem. 1993;211:221–226. PubMed
Yeh JI, Claiborne A. Crystal structures of oxidized and reduced forms of NADH peroxidase. Methods Enzymol. 2002;353:44–54. PubMed
Gordon J, Holman RA, McLeod JW. Further observations on the production of hydrogen peroxide by anaerobic bacteria. J. Pathol. 1953;66:527–537. PubMed
Conn EE, Kraemer LM, Liu PN, Vennesland B. The aerobic oxidation of reduced triphosphopyridine nucleotide by a wheat germ enzyme system. J. Biol. Chem. 1952;194:143–151. PubMed
van Niel EWJ, Gottschal JC. Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl. Environ. Microbiol. 1998;64:1034–1039. PubMed PMC
Kushkevych I. Identification of sulfate-reducing bacteria strains of human large intestine. Biol. Stud. 2013;7:115–132.
Postgate J. The Suphate-Reducing Bacteria. Cambridge University; 1984.
Kovac J, Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria. MendelNet. 2019;2017:702–707.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. PubMed
Lineweaver H, Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666.
Segel IH. Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry. Wiley; 1976.
Bailey NTJ. Statistical Methods in Biology. Cambridge University Press; 1995.
Gülçin I. Melatonin administration increases antioxidant enzymes activities and reduces lipid peroxidation in the rainbow trout (Oncorhynchus mykiss, Walbaum) erythrocytes. Turk. J. Vet. Anim. Sci. 2009;4:1–10. doi: 10.3906/vet-0803-1. DOI
Manu BT, Rao UJSP. Calcium modulated activity enhancement and thermal stability study of a cationic peroxidase purified from wheat bran. Food Chem. 2009;114:66–71.
Gulcin I, Tel AZ, Kirecci E. Antioxidant, antimicrobial, antifungal, and antiradical activities of Cyclotrichium Niveum (BOISS) Manden and Scheng. Int. J. Food Prop. 2008;11:450–471.
Ma X, Li H, Dong J, Qian W. Determination of hydrogen peroxide scavenging activity of phenolic acids by employing gold nanoshells precursor composites as nanoprobes. Food Chem. 2011;126:698–704.
Dilling W, Cypionka H. Aerobic respiration in sulfate-reducing bacteria*. FEMS Microbiol. Lett. 1990;71:123–127.
Lemos RS, et al. The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett. 2001;496:40–43. PubMed
Krekeler D, Teske A, Cypionka H. Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol. Ecol. 1998;25:89–96.
Cypionka H, Widdel F, Pfennig N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Lett. 1985;31:39–45.
Fukui M, Takii S. Survival of sulfate-reducing bacteria in oxic surface sediment of a seawater lake. FEMS Microbiol. Lett. 1990;73:317–322.
Hardy JA, Hamilton WA. The oxygen tolerance of sulfate-reducing bacteria isolated from North Sea waters. Curr. Microbiol. 1981;6:259–262.
Risatti JB, Capman WC, Stahl DA. Community structure of a microbial mat: The phylogenetic dimension. Proc. Natl. Acad. Sci. USA. 1994;91:10173–10177. PubMed PMC
Abdollahi H, Wimpenny JWT. Effects of oxygen on the growth of Desulfovibrio desulfuricans. J. Gen. Microbiol. 1990;136:1025–1030.
Traore AS, Hatchikian CE, Belaich JP, Le Gall J. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J. Bacteriol. 1981;145:191–199. PubMed PMC
Chen L, et al. Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the ‘strict anaerobe’ Desulfovibrio gigas. Biochem. Biophys. Res. Commun. 1993;193:100–105. PubMed
Chen L, et al. Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. Eur. J. Biochem. 1993;216:443–448. PubMed
Postgate JR. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans. J. Gen. Microbiol. 1956;14:545–572. PubMed
Naraki S, Igimi S, Sasaki Y. NADH peroxidase plays a crucial role in consuming H2O2 in Lactobacillus casei IGM394. Biosci. Microb. Food Health. 2020;39:45–56. PubMed PMC
Schmidt H-L, Stocklein W, Danzer J, Kirch P, Limbach B. Isolation and properties of an H2O-forming NADH oxidase from Streptococcus faecalis. Eur. J. Biochem. 1986;156:149–155. PubMed
Hoskins DD, Whiteley HR, Mackler B. The reduced diphosphopyridine nucleotide oxidase of Streptococcus faecalis: Purification and properties. J. Biol. Chem. 1962;237:2647–2651. PubMed
Coulter ED, Shenvi NV, Kurtz DM. NADH peroxidase activity of rubrerythrin. Biochem. Biophys. Res. Commun. 1999;255:317–323. PubMed
Kushkevych I, Dordević D, Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. PubMed PMC
Kushkevych IV. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochim. Pol. 2015;62:103–108. PubMed
Kushkevych I, Kos J, Kollar P, Kralova K, Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284.
Dannenberg S, Kroder M, Dilling W, Cypionka H. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol. 1992;158:93–99.