Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes
Status PubMed-not-MEDLINE Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33318866
PubMed Central
PMC7728594
DOI
10.1016/j.jare.2020.03.003
PII: S2090-1232(20)30052-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bowel inflammations, Hydrogen sulfide, Lactic acid bacteria, Probiotics, Sulfate-reducing bacteria, Toxicity, Ulcerative colitis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Hydrogen sulfide is the final product of sulfate-reducing bacteria metabolism. Its high concentration in the gut can affect adversely bowel environment and intestinal microbiota by toxicity and pH lowering. AIM OF REVIEW: The aim of the review was to give observations related to the properties of bacterial communities inhabiting the gut, with the emphasis on sulfate-reducing bacteria and lactic acid bacteria. KEY SCIENTIFIC CONCEPTS OF REVIEW: The conduction of meta-analysis was another goal, since it gave statistical observation of the relevant studies. The review literature consisted of more than 160 studies, published from 1945 to 2019. Meta-analysis included 16 studies and they were chosen from the Web of Science database. The systematic review gave important information about the development of gut inflammation, with emphasis on sulfate-reducing and lactic acid bacteria. Oppositely from sulfate-reducing bacteria, probiotic properties of lactic acid bacteria are effective inhibitors against inflammatory bowel disease development, including ulcerative colitis. These facts were confirmed by the conducted meta-analysis. The results and observations gained from the systematic review represent the emphasized importance of gut microbiota for bowel inflammation. On the other side, it should be stated that more studies in the future will provide even better confirmations.
Zobrazit více v PubMed
Barton L.L., Fauque G.D. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol. 2009;68:41–98. PubMed
Barton L.L., Hamilton W.A. Cambridge University Press; Cambridge, London, Melbourne, New York, New Rochelle, Sydney: 2010. Sulphate-reducing bacteria: environmental and engineered systems; p. 533.
Kushkevych I., Dordevic D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. PubMed PMC
Kushkevych I., Dordevic D., Vitezova M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. PubMed PMC
Kushkevych I., Dordevic D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch Microbiol. 2019;201:389–397. PubMed
Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria. MendelNet. 2017:702–707.
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC
Rowan F., Docherty N., Coffey J.A. Sulphate-reducing bacteria and hydrogen sulphide in theaetiology of ulcerative colitis. Br J Surg. 2009;96:151–158. PubMed
Pitcher M., Cummings J. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4. PubMed PMC
Roediger W.E., Moore J., Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci. 1997;42:1571–1579. PubMed
Roediger W.E.W., Duncan A., Kapaniris O., Millard S. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology. 1993;104:802–809. PubMed
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Manuel Lopes M. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J Appl Biomed. 2016;14:125–130.
Coutinho C.M.L.M., Coutinho-Silva R., Zinkevich V., Pearce C.B., Ojcius D.M., Beech I. Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb Pathog. 2017;112:126–134. PubMed
Loubinoux J., Bronowicki J.P., Pereira I.A., Mougenel J.L., Le Faou A.E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol. 2002;40:107–112. PubMed
Kleessen B., Kroesen A.J., Buhr H.J., Blaut M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol. 2002;37:1034–1041. PubMed
Zinkevich V., Beech I.B. Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol Ecol. 2000;34:147–155. PubMed
Tursi A., Brandimarte G., Giorgetti G.M. Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med Sci Monit. 2004;10:PI126–PI131. PubMed
Tursi A., Brandimarte G., Papa A. Treatment of relapsing mild-tomoderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2010;105:2218–2227. PubMed PMC
Matthes H., Krummenerl T., Giensch M. Clinical trial: probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN) BMC Complement Altern Med. 2010;10:13. PubMed PMC
Ng S.C., Plamondon S., Kamm M.A. Immunosuppressive effects via human intestinal dendritic cells of probiotic bacteria and steroids in the treatment of acute ulcerative colitis. Inflamm Bowel Dis. 2010;16:1286–1298. PubMed
Rembacken B.J., Snelling A.M., Hawkey P.M. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet. 1999;354:635–639. PubMed
Backhed F., Ley R., Sonnenburg J., Peterson D., Gordon J. Host-Bacterial Mutualism in the Human Intestine. Science. 2005;307:1915–1920. PubMed
Kushkevych I.V. Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Studia Biologica. 2016;10:197–228.
Thursby E., Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836. PubMed PMC
Rolfe R.D. The role of probiotic cultures in the control of gastrointestinal health. J Nutr. 2000;130:396S–402S. PubMed
Rey F., Gonzalez M., Cheng J., Wu M., Ahern P., Gordon J. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci USA. 2013;110:13582–13587. PubMed PMC
Ndeh D., Gilbert H. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev. 2018;42:146–164. PubMed
Harmsen H., Goffau M. The Human Gut Microbiota. Adv Exp Med Biol. 2016;95–108 PubMed
Walter J., Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–429. PubMed
Johnson K., Foster K. Why does the microbiome affect behaviour? Nat Rev Microbiol. 2018;16:647–655. PubMed
Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013;9 PubMed PMC
Neuman H., Debelius J.W., Knight R., Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev. 2015;39:509–521. PubMed
Pflughoeft K.J., Versalovic J. Human microbiome in health and disease. Annu Rev Pathol-Mech. 2012;7:99–122. PubMed
Fukuda S., Toh H., Taylor T.D., Ohno H., Hattori M. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes. 2012;3:449–454. PubMed
Ananthakrishnan A.N. Epidemiology and risk factors for IBD. Rev Gastroenterol Hepatol. 2015;12:205–217. PubMed
Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M. The sulfate-reducing microbial communities and meta-analysis of their occurrence during diseases of small-large intestine axis. J Clin Med. 2019;8(10):1656. PubMed PMC
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen sulfide as a toxic product in the small-large intestine axis and its role in IBD development. J Clin Med. 2019;8:1054. PubMed PMC
Geerling B., Dagnelie P., Badart-Smook A., Russel M., Stockbrügger E., Brummer R. Diet as a risk factor for the development of ulcerative colitis. Am J Gastroenterol. 2000;95:1008–1013. PubMed
Jowett S, Seal C, Pearce M, Phillips E, Gregory W, Barton J, Welfare M. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study 2004; 53:1479–84. PubMed PMC
Gibson G., Cummings J., Macfarlane G. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol. 1991;86:103–112.
Kushkevych I. 1st edition. Science Publishers; Hauppauge, New York, USA: Nova: 2019. Sulfate source and its role in the development of colitis. in soren garcia. Colitis: causes, diagnosis and treatment; pp. 1–56.
Head K.A., Jurenka J.S. Inflammatory bowel disease Part I: Ulcerative colitis – pathophysiology and conventional and alternative treatment options. Altern Med Rev. 2003;8:247–283. PubMed
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases. Biomolecules. 2019;9(12):752. PubMed PMC
Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res Appl Chem. 2019;9:4066–4069.
Roediger W. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet. 1980;2:712–715. PubMed
Muyzer G., Stams A.J., Muyzer G., Stams A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6:441–454. PubMed
Barton L.L., Fardeau M.L., Fauque G.D. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Metal Ions Life Sci. 2014;14:237–277. PubMed
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91.
Kushkevych I., Vítězová M., Vítěz T., Kovac J. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. PubMed PMC
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch Microbiol. 2018;200:945–950. PubMed
Postgate J.R. 2nd ed. Cambridge University Press; Cambridge, London, Melbourne, New York, New Rochelle, Sydney: 1984. The sulphate-reducing bacteria; p. 199.
Jeanthon C., L’haridon S., Cueff V., Banta A., Reysenbach A.L., Prieur D. Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin and emendation of the genus Thermodesulfobacterium. Int J Syst and Evol Microbiol. 2002;52:765–772. PubMed
Kushkevych I., Cejnar J., Vítězová M., Vítěz T., Dordević D., Bomble Y.J. Occurrence of thermophilic microorganisms in different full scale biogas plants. Int J Mol Sci. 2020;21(1):283. PubMed PMC
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11:3270.
Struk M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Modřice plant anaerobic digester: microbial distribution and biogas production. Water Air Soil Pollut. 2019;230(10):240.
Kushkevych I., Kobzová E., Vítězová M., Vítěz T., Dordević D., Bartoš M. Acetogenic microorganisms in operating biogas plants depending on substrate combinations. Biologia. 2019;74(9):1229–1236.
Pfennig Norbert, Widdel Friedrich, Trüper Hans G. The dissimilatory sulfate-reducing bacteria. In: Starr Mortimer P., Stolp Heinz, Trüper Hans G., Balows Albert, Schlegel Hans G., editors. The Prokaryotes. Springer Berlin Heidelberg; Berlin, Heidelberg: 1981. pp. 926–940. DOI
Widdel F., Musat F., Knittel K., Galushko A. Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton L.L., Hamilton W.A., editors. Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press; Cambridge, UK: 2007. pp. 265–304.
Widdel F. Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Rabus R, Hansen TA, Widdell F (editors). 2013. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. The Prokaryotes – Prokaryotic Physiology and Biochemistry. Springer-Verlag Berlin, Heidelberg 1988; 309–404.
Jonkers H.M., Van Der Maarel M.J.E.C., Van Gemerden H., Hansen T.A. Dimethylsulfoxide reduction by marine sulphate-reducing bacteria. FEMS Microbiol Lett. 1996;136:283–287.
Lie T.J., Godchaux W., Leadbetter E.R. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol. 1999;65:4611–4617. PubMed PMC
Sass H., Berchtold M., Branke J., Konig H., Cypionka H., Babenzien H.D. Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol. 1998;21:212–219. PubMed
Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M., Boone D.R., De Vos P. Springer US; Boston: 2005. Bergey’s Manual of Systematic Bacteriology; p. 1388.
Rabus R., Hansen T.A., Widdel F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. Prokaryotes. 2006;2:659–768.
Cypionka H., Widdel F., Pfennig N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Ecol. 1985;31:39–45.
Fauque G, Ollivier B. Anaerobes: The sulfate-reducing bacteria as an example of metabolic diversity. In: Bull AT (editor). Microbial Diversity and Bioprospecting. ASM Press, Washington, DC 2004; 169–176.
Dolla A., Fournier M., Dermoun Z. Oxygen defense in sulfate-reducing bacteria. J Biotechnol. 2006;126:87–100. PubMed
Madigan MT, Martinko JM, Brock TD. Brock biology of microorganisms. 11th ed., internat. ed. Upper Saddle River, NJ, Pearson, Prentice Hall 2006; 1032.
Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. 2015;84:3–12.
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol J Microbiol. 2015;64:107–114. PubMed
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem Pol. 2015;62:1037–1108. PubMed
Grein F., Ramos A.R., Venceslau S., Pereira A. Unifying concepts in anaerobic respiration: Insights from dissimilatory sulfur metabolism. Biochimica et Biophysica Acta (BBA) –. Bioenergetics. 2013;1827:145–160. PubMed
Abdulina D., Kováč J., Iutynska G. Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3. Biotech. 2020;10(2):55. PubMed PMC
Gibson G., Macfarlane G., Cummings J. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut. 1993;34:437–439. PubMed PMC
Dolla A., Fu R., Brumlik M.J., Voordouw G. Nucleotide Sequence of dcrA, a Desulfovibrio vulganis Hildenborough Chemoreceptor Gene, and its Expression in Escherichia coli. J Bacteriol. 1992;174:1726–1733. PubMed PMC
Hatchikian E.C., Henry Y.A. An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4) Biochimie. 1977;59:153–161. PubMed
Nakamura N., Lin H.C., MCsweeney C.S., Mackie R.I., Gaskins H.R. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Ann Rev Food Sci Technol. 2010;1:363–395. PubMed
Kobayashi K., Takahashi E., Ishimoto M. Biochemical studies of sulfate-reducing Bacteria: XI. Purification and some properties of sulfite reductase, desulfoviridin. J Biochem. 1972;72:879–887. PubMed
Arendsen A., Verhagen M.F.J.M., Wolbert R.B.G., Pierik A.J., Stams A.J.M., Jetten M.S.M. The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S=9/2 iron-sulfur clusters. Biochemistry. 1993;32:10323–10330. PubMed
Der Vartanian DV. Desulforubidin: Dissimilatory, high-spin sulfite reductase of Desulfomicrobium species. In: Peck Jr. H. D., Le Gall J (editors). Inorganic Microbial Sulfur Metabolism. Academic Press, San Diego, 1994; 243:270–76. PubMed
Chadwick VS. Etiology of chronic ulcerative colitis and Crohn’s disease. The Large Intestine: Physiology, Pathophysiology and Disease. In: Phillips SF, Pemberton JH, Shorter RG. (editors), Raven Press Ltd, New York 1991; 445–63.
Galvez J., Rodriguez-Cabezas M.E., Zarzuelo A. Effects of dietary fiber on inflammatory bowel disease. Mol Nutr Food Res. 2005;49:601–608. PubMed
Tian Y., Xua Q., Sun L., Ye Y., Ji G. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. J Nutr Biochem. 2018;57:103–109. PubMed
Kang M., Martin A. Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development. Semin Immunol. 2017;32:3–13. PubMed
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411.
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143.
Rutgeerts P., Geboes K. Understanding Inflammatory Bowel Disease –The Clinician’s Perspective. Eur J Surg. 2001;167:66–72. PubMed
Macdonald T.T., Murch S.H. Aetiology and pathogenesis of chronic inflammatory bowel disease. Baillieres Clin Gastroenterol. 1994;8:1–34. PubMed
Velayos F.S., Liu L., Lewis J.D. Prevalence of Colorectal Cancer Surveillance for Ulcerative Colitis in an Integrated Health Care Delivery Systém. Gastroenterology. 2010;139:1511–1518. PubMed
Den Hond E., Hiele M., Evenepoel P., Peeters M., Ghoos Y., Rutgeerts P. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis. Gastroenterology. 1998;115:584–590. PubMed
Blachier F., Beaumont B., Kim E. Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin. Curr Opin Clin Nutr Metab Care. 2019;22:68–75. PubMed
Florin T.H., Neale G., Goretski S., Cummings J.H. The sulfate content of foods and beverages. J Food Compos Anal. 1993;6(2):140–151.
Calabrese E., Yanai H., Shuster D., Rubin D.T., Hanauer S.B. Low-dose smoking resumption in ex-smokers with refractory ulcerative colitis. J Crohn's Colitis. 2012;6:756–762. PubMed
Fiorino G., D'amico F., Italia A., Gilardi D., Furfaro F., Danese S. JAK inhibitors: novel developments in management of ulcerative colitis. Best Practice Res Clin Gastroenterol. 2018:32–33. 89–93. PubMed
Beech I.B., Sunner J.A. Sulphate-reducing bacteria and their role in corrosion of ferrous materials. In: Barton L.L., Hamilton W.A., editors. Sulphate-Reducing bacteria: environmental and engineered systems. Cambridge University Press; Cambridge, UK: 2007. pp. 459–482.
Ruckert C. Sulfate reduction in microorganisms − recent advances and biotechnological applications. Curr Opin Microbiol. 2016;33:140–146. PubMed
Biswas K., Taylor M.W., Turner S.J. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants. Appl Microbiol Biotechnol. 2014;98:7211–7222. PubMed
Haveman S.A., Greene E.A., Stilwell C.P., Voordouw J.K., Voordouw G. Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol. 2004;186:7944–7950. PubMed PMC
Haveman S.A., Greene E.A., Voordouw G. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol. 2005;7:1461–1465. PubMed
Cullimore D.R. Lewis Publishers, CRC Press; Boca Raton, Florida: 1999. Microbiology of well biofouling; p. 456.
Greene E.A., Brunelle V., Jenneman G.E., Voordouw G. Synergistic inhibition of microbial sulfide production by combinations of the metabolic inhibitor nitrite and biocides. Appl Environ Microbiol. 2006;72:7897–7901. PubMed PMC
Jayaraman A., Mansfield F.B., Wood T.K. Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J Ind Microbiol Biotechnol. 1999;22:167–175. PubMed
Wang Y., Chen Z., Wu Y., Zhong H. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil. Sci Total Environ. 2019;697:134–143. PubMed
Hsu-Kim H., Kucharzyk K.H., Zhang T., Deshusses M.A. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol. 2013;47(6):2441–2456. PubMed
Ekstrom E.B., Morel F.M.M. Cobalt limitation of growth andmercury methylation in sulfate-reducing bacteria. Environ Sci Technol. 2008;42(1):93–99. PubMed
Hockin SL, Gadd GM. Bioremediation of metals and metalloids by precipitation and cellular binding. In: Barton LL, Hamilton WA (editors). Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press, Cambridge, UK 2007; 405–34.
Lovley D.R., Widman P.K., Woodward J.C., Phillips E.J.P. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol. 1993;59:3572–3576. PubMed PMC
Fijan S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int J Environ Res Public Health. 2014;11:4745–4767. PubMed PMC
Rayes N., Seehofer D., Neuhaus P. Prebiotics, probiotics, synbiotics in surgery - are they only trendy, truly effective or even dangerous? Langenbecks Arch Surg. 2009;394:547–555. PubMed
Stilesa M., Holzapfel W. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;36:1–29. PubMed
Wua C., Huanga J., Zhoua R. Genomics of lactic acid bacteria: Current status and potential applications. Crit Rev Microbiol. 2017;43:393–404. PubMed
Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol. 2012;2:86. PubMed PMC
Aguirre M., Collins M. Lactic acid bacteria and human clinical infection. J Appl Bacteriol. 1993;75:95–107. PubMed
Sheeladevi A., Ramanathan R. Lactic acid production using lactic acid bacteria under optimized conditions. Int J Pharm Biol Sci Arch. 2011;2:1686–1691.
Zotta T., Ricciardi A., Ianniello R.G., Storti L.V., Glibota N.A., Parente E. Aerobic and respirative growth of heterofermentative lactic acidbacteria: a screening study. Food Microbiol. 2018;76:117–127. PubMed
Wee Y., Kim J., Ryu H. Biotechnological Production of lactic acid and its recent applications. Food Technol Biotechnol. 2006;44:163–172.
Hofvendahl K., Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol. 2000;26:87–107. PubMed
Mason S., Reinecke C., Kulik W., Cruchten A., Solomons R., Furth M. Cerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic acid. BMC Infect Dis. 2016;16:251. PubMed PMC
Alakomi H.L., Skyita E., Saarela M., Mattila-Sandholm T., Latva-Kala K., Helander I. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol. 2000;66:2001–2005. PubMed PMC
Datta R., Tsai S.P., Bonsignore P., Moon S.H., Frank J.R. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev. 1995;16:221–231.
Leroy F., Vuyst L.D. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol. 2004;15:67–78.
Lourens-Hattingh A., Viljoen B. Yogurt as probiotic carrier food. Int Dairy J. 2001;11:1–17.
Moriwaki H., Hagiwara A., Takasaki M., Izumi F., Watanabe A., Shimizu R. Electrospray ionization-mass spectrometric measurement of sake, a traditional Japanese alcohol beverage, for characterization. Anal Sci. 2010;26:379–382. PubMed
Halász A., Baráth Á., Holzapfel W.H. The influence of starter culture selection on sauerkraut fermentation. Zeitschrift für Lebensmittel-Untersuchung und -Forschung. 1999;208:434–438.
Gardner N., Savard T., Obermeier P., Caldwell G., Champagne C.P. Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int J Food Microbiol. 2001;64:261–275. PubMed
Spitaels F., Wieme A.D., Janssens M., Aerts M., Daniel H.M., Van Landschoot A. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS One. 2014;9 PubMed PMC
Bartowsky E.J. Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol. 2009;48:149–156. PubMed
Driehuis F., Elferink S.O., Spoelstra S. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneriinhibits yeast growth and improves aerobic stability. J Appl Microbiol. 1999;87:583–594. PubMed
Gibson G., Rastall R. John Wiley & Sons; Chichester: 2006. Prebiotics: development & application.
Parvez S., Malik K., Kang A., Kim H. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006;100:1171–1185. PubMed
Hart A., Lammers K., Brigidi P., Vitali B., Rizzello F., Gionchetti P. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004;53:1602–1609. PubMed PMC
Servin A. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbial Rev. 2004;28:405–440. PubMed
Fernandes C., Shahani K., Amer M. Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol Rev. 1987;46:343–356.
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline- 2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J Appl Biomed. 2018;16:241–246.
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline- 2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med Chem Res. 2018;27:278–284.
Ishikawa H., Akedo I., Umesaki Y., Tanaka R., Imaoka A., Otani T. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr. 2003;22:56–63. PubMed
Sood A., Midha V., Makharia G.K. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin Gastroenterol Hepatol. 2009;7:1202–1209. PubMed
Furrie E., Macfarlane S., Kennedy A. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomisedcontrolledpilottrial. Gut. 2005;54:242–249. PubMed PMC
Kato K., Mizuno S., Umesaki Y. Randomized placebo controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther. 2004;20:1133–1141. PubMed
Wildt S., Nordgaard I., Hansen U. A randomised double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for maintenance of remission in ulcerative colitis. J Crohns Colitis. 2011;5:115–121. PubMed
NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria
Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats
Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances