Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes

. 2021 Jan ; 27 () : 55-69. [epub] 20200317

Status PubMed-not-MEDLINE Jazyk angličtina Země Egypt Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33318866
Odkazy

PubMed 33318866
PubMed Central PMC7728594
DOI 10.1016/j.jare.2020.03.003
PII: S2090-1232(20)30052-7
Knihovny.cz E-zdroje

BACKGROUND: Hydrogen sulfide is the final product of sulfate-reducing bacteria metabolism. Its high concentration in the gut can affect adversely bowel environment and intestinal microbiota by toxicity and pH lowering. AIM OF REVIEW: The aim of the review was to give observations related to the properties of bacterial communities inhabiting the gut, with the emphasis on sulfate-reducing bacteria and lactic acid bacteria. KEY SCIENTIFIC CONCEPTS OF REVIEW: The conduction of meta-analysis was another goal, since it gave statistical observation of the relevant studies. The review literature consisted of more than 160 studies, published from 1945 to 2019. Meta-analysis included 16 studies and they were chosen from the Web of Science database. The systematic review gave important information about the development of gut inflammation, with emphasis on sulfate-reducing and lactic acid bacteria. Oppositely from sulfate-reducing bacteria, probiotic properties of lactic acid bacteria are effective inhibitors against inflammatory bowel disease development, including ulcerative colitis. These facts were confirmed by the conducted meta-analysis. The results and observations gained from the systematic review represent the emphasized importance of gut microbiota for bowel inflammation. On the other side, it should be stated that more studies in the future will provide even better confirmations.

Zobrazit více v PubMed

Barton L.L., Fauque G.D. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol. 2009;68:41–98. PubMed

Barton L.L., Hamilton W.A. Cambridge University Press; Cambridge, London, Melbourne, New York, New Rochelle, Sydney: 2010. Sulphate-reducing bacteria: environmental and engineered systems; p. 533.

Kushkevych I., Dordevic D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. PubMed PMC

Kushkevych I., Dordevic D., Vitezova M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. PubMed PMC

Kushkevych I., Dordevic D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch Microbiol. 2019;201:389–397. PubMed

Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria. MendelNet. 2017:702–707.

Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC

Rowan F., Docherty N., Coffey J.A. Sulphate-reducing bacteria and hydrogen sulphide in theaetiology of ulcerative colitis. Br J Surg. 2009;96:151–158. PubMed

Pitcher M., Cummings J. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4. PubMed PMC

Roediger W.E., Moore J., Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci. 1997;42:1571–1579. PubMed

Roediger W.E.W., Duncan A., Kapaniris O., Millard S. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology. 1993;104:802–809. PubMed

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Manuel Lopes M. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J Appl Biomed. 2016;14:125–130.

Coutinho C.M.L.M., Coutinho-Silva R., Zinkevich V., Pearce C.B., Ojcius D.M., Beech I. Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb Pathog. 2017;112:126–134. PubMed

Loubinoux J., Bronowicki J.P., Pereira I.A., Mougenel J.L., Le Faou A.E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol. 2002;40:107–112. PubMed

Kleessen B., Kroesen A.J., Buhr H.J., Blaut M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol. 2002;37:1034–1041. PubMed

Zinkevich V., Beech I.B. Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol Ecol. 2000;34:147–155. PubMed

Tursi A., Brandimarte G., Giorgetti G.M. Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med Sci Monit. 2004;10:PI126–PI131. PubMed

Tursi A., Brandimarte G., Papa A. Treatment of relapsing mild-tomoderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2010;105:2218–2227. PubMed PMC

Matthes H., Krummenerl T., Giensch M. Clinical trial: probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN) BMC Complement Altern Med. 2010;10:13. PubMed PMC

Ng S.C., Plamondon S., Kamm M.A. Immunosuppressive effects via human intestinal dendritic cells of probiotic bacteria and steroids in the treatment of acute ulcerative colitis. Inflamm Bowel Dis. 2010;16:1286–1298. PubMed

Rembacken B.J., Snelling A.M., Hawkey P.M. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet. 1999;354:635–639. PubMed

Backhed F., Ley R., Sonnenburg J., Peterson D., Gordon J. Host-Bacterial Mutualism in the Human Intestine. Science. 2005;307:1915–1920. PubMed

Kushkevych I.V. Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Studia Biologica. 2016;10:197–228.

Thursby E., Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836. PubMed PMC

Rolfe R.D. The role of probiotic cultures in the control of gastrointestinal health. J Nutr. 2000;130:396S–402S. PubMed

Rey F., Gonzalez M., Cheng J., Wu M., Ahern P., Gordon J. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci USA. 2013;110:13582–13587. PubMed PMC

Ndeh D., Gilbert H. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev. 2018;42:146–164. PubMed

Harmsen H., Goffau M. The Human Gut Microbiota. Adv Exp Med Biol. 2016;95–108 PubMed

Walter J., Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–429. PubMed

Johnson K., Foster K. Why does the microbiome affect behaviour? Nat Rev Microbiol. 2018;16:647–655. PubMed

Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013;9 PubMed PMC

Neuman H., Debelius J.W., Knight R., Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev. 2015;39:509–521. PubMed

Pflughoeft K.J., Versalovic J. Human microbiome in health and disease. Annu Rev Pathol-Mech. 2012;7:99–122. PubMed

Fukuda S., Toh H., Taylor T.D., Ohno H., Hattori M. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes. 2012;3:449–454. PubMed

Ananthakrishnan A.N. Epidemiology and risk factors for IBD. Rev Gastroenterol Hepatol. 2015;12:205–217. PubMed

Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M. The sulfate-reducing microbial communities and meta-analysis of their occurrence during diseases of small-large intestine axis. J Clin Med. 2019;8(10):1656. PubMed PMC

Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen sulfide as a toxic product in the small-large intestine axis and its role in IBD development. J Clin Med. 2019;8:1054. PubMed PMC

Geerling B., Dagnelie P., Badart-Smook A., Russel M., Stockbrügger E., Brummer R. Diet as a risk factor for the development of ulcerative colitis. Am J Gastroenterol. 2000;95:1008–1013. PubMed

Jowett S, Seal C, Pearce M, Phillips E, Gregory W, Barton J, Welfare M. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study 2004; 53:1479–84. PubMed PMC

Gibson G., Cummings J., Macfarlane G. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol Ecol. 1991;86:103–112.

Kushkevych I. 1st edition. Science Publishers; Hauppauge, New York, USA: Nova: 2019. Sulfate source and its role in the development of colitis. in soren garcia. Colitis: causes, diagnosis and treatment; pp. 1–56.

Head K.A., Jurenka J.S. Inflammatory bowel disease Part I: Ulcerative colitis – pathophysiology and conventional and alternative treatment options. Altern Med Rev. 2003;8:247–283. PubMed

Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases. Biomolecules. 2019;9(12):752. PubMed PMC

Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res Appl Chem. 2019;9:4066–4069.

Roediger W. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet. 1980;2:712–715. PubMed

Muyzer G., Stams A.J., Muyzer G., Stams A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6:441–454. PubMed

Barton L.L., Fardeau M.L., Fauque G.D. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Metal Ions Life Sci. 2014;14:237–277. PubMed

Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91.

Kushkevych I., Vítězová M., Vítěz T., Kovac J. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. PubMed PMC

Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch Microbiol. 2018;200:945–950. PubMed

Postgate J.R. 2nd ed. Cambridge University Press; Cambridge, London, Melbourne, New York, New Rochelle, Sydney: 1984. The sulphate-reducing bacteria; p. 199.

Jeanthon C., L’haridon S., Cueff V., Banta A., Reysenbach A.L., Prieur D. Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin and emendation of the genus Thermodesulfobacterium. Int J Syst and Evol Microbiol. 2002;52:765–772. PubMed

Kushkevych I., Cejnar J., Vítězová M., Vítěz T., Dordević D., Bomble Y.J. Occurrence of thermophilic microorganisms in different full scale biogas plants. Int J Mol Sci. 2020;21(1):283. PubMed PMC

Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11:3270.

Struk M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Modřice plant anaerobic digester: microbial distribution and biogas production. Water Air Soil Pollut. 2019;230(10):240.

Kushkevych I., Kobzová E., Vítězová M., Vítěz T., Dordević D., Bartoš M. Acetogenic microorganisms in operating biogas plants depending on substrate combinations. Biologia. 2019;74(9):1229–1236.

Pfennig Norbert, Widdel Friedrich, Trüper Hans G. The dissimilatory sulfate-reducing bacteria. In: Starr Mortimer P., Stolp Heinz, Trüper Hans G., Balows Albert, Schlegel Hans G., editors. The Prokaryotes. Springer Berlin Heidelberg; Berlin, Heidelberg: 1981. pp. 926–940. DOI

Widdel F., Musat F., Knittel K., Galushko A. Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton L.L., Hamilton W.A., editors. Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press; Cambridge, UK: 2007. pp. 265–304.

Widdel F. Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Rabus R, Hansen TA, Widdell F (editors). 2013. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. The Prokaryotes – Prokaryotic Physiology and Biochemistry. Springer-Verlag Berlin, Heidelberg 1988; 309–404.

Jonkers H.M., Van Der Maarel M.J.E.C., Van Gemerden H., Hansen T.A. Dimethylsulfoxide reduction by marine sulphate-reducing bacteria. FEMS Microbiol Lett. 1996;136:283–287.

Lie T.J., Godchaux W., Leadbetter E.R. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol. 1999;65:4611–4617. PubMed PMC

Sass H., Berchtold M., Branke J., Konig H., Cypionka H., Babenzien H.D. Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol. 1998;21:212–219. PubMed

Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M., Boone D.R., De Vos P. Springer US; Boston: 2005. Bergey’s Manual of Systematic Bacteriology; p. 1388.

Rabus R., Hansen T.A., Widdel F. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes. Prokaryotes. 2006;2:659–768.

Cypionka H., Widdel F., Pfennig N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Ecol. 1985;31:39–45.

Fauque G, Ollivier B. Anaerobes: The sulfate-reducing bacteria as an example of metabolic diversity. In: Bull AT (editor). Microbial Diversity and Bioprospecting. ASM Press, Washington, DC 2004; 169–176.

Dolla A., Fournier M., Dermoun Z. Oxygen defense in sulfate-reducing bacteria. J Biotechnol. 2006;126:87–100. PubMed

Madigan MT, Martinko JM, Brock TD. Brock biology of microorganisms. 11th ed., internat. ed. Upper Saddle River, NJ, Pearson, Prentice Hall 2006; 1032.

Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. 2015;84:3–12.

Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol J Microbiol. 2015;64:107–114. PubMed

Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem Pol. 2015;62:1037–1108. PubMed

Grein F., Ramos A.R., Venceslau S., Pereira A. Unifying concepts in anaerobic respiration: Insights from dissimilatory sulfur metabolism. Biochimica et Biophysica Acta (BBA) –. Bioenergetics. 2013;1827:145–160. PubMed

Abdulina D., Kováč J., Iutynska G. Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3. Biotech. 2020;10(2):55. PubMed PMC

Gibson G., Macfarlane G., Cummings J. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut. 1993;34:437–439. PubMed PMC

Dolla A., Fu R., Brumlik M.J., Voordouw G. Nucleotide Sequence of dcrA, a Desulfovibrio vulganis Hildenborough Chemoreceptor Gene, and its Expression in Escherichia coli. J Bacteriol. 1992;174:1726–1733. PubMed PMC

Hatchikian E.C., Henry Y.A. An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4) Biochimie. 1977;59:153–161. PubMed

Nakamura N., Lin H.C., MCsweeney C.S., Mackie R.I., Gaskins H.R. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Ann Rev Food Sci Technol. 2010;1:363–395. PubMed

Kobayashi K., Takahashi E., Ishimoto M. Biochemical studies of sulfate-reducing Bacteria: XI. Purification and some properties of sulfite reductase, desulfoviridin. J Biochem. 1972;72:879–887. PubMed

Arendsen A., Verhagen M.F.J.M., Wolbert R.B.G., Pierik A.J., Stams A.J.M., Jetten M.S.M. The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S=9/2 iron-sulfur clusters. Biochemistry. 1993;32:10323–10330. PubMed

Der Vartanian DV. Desulforubidin: Dissimilatory, high-spin sulfite reductase of Desulfomicrobium species. In: Peck Jr. H. D., Le Gall J (editors). Inorganic Microbial Sulfur Metabolism. Academic Press, San Diego, 1994; 243:270–76. PubMed

Chadwick VS. Etiology of chronic ulcerative colitis and Crohn’s disease. The Large Intestine: Physiology, Pathophysiology and Disease. In: Phillips SF, Pemberton JH, Shorter RG. (editors), Raven Press Ltd, New York 1991; 445–63.

Galvez J., Rodriguez-Cabezas M.E., Zarzuelo A. Effects of dietary fiber on inflammatory bowel disease. Mol Nutr Food Res. 2005;49:601–608. PubMed

Tian Y., Xua Q., Sun L., Ye Y., Ji G. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. J Nutr Biochem. 2018;57:103–109. PubMed

Kang M., Martin A. Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development. Semin Immunol. 2017;32:3–13. PubMed

Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411.

Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143.

Rutgeerts P., Geboes K. Understanding Inflammatory Bowel Disease –The Clinician’s Perspective. Eur J Surg. 2001;167:66–72. PubMed

Macdonald T.T., Murch S.H. Aetiology and pathogenesis of chronic inflammatory bowel disease. Baillieres Clin Gastroenterol. 1994;8:1–34. PubMed

Velayos F.S., Liu L., Lewis J.D. Prevalence of Colorectal Cancer Surveillance for Ulcerative Colitis in an Integrated Health Care Delivery Systém. Gastroenterology. 2010;139:1511–1518. PubMed

Den Hond E., Hiele M., Evenepoel P., Peeters M., Ghoos Y., Rutgeerts P. In vivo butyrate metabolism and colonic permeability in extensive ulcerative colitis. Gastroenterology. 1998;115:584–590. PubMed

Blachier F., Beaumont B., Kim E. Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin. Curr Opin Clin Nutr Metab Care. 2019;22:68–75. PubMed

Florin T.H., Neale G., Goretski S., Cummings J.H. The sulfate content of foods and beverages. J Food Compos Anal. 1993;6(2):140–151.

Calabrese E., Yanai H., Shuster D., Rubin D.T., Hanauer S.B. Low-dose smoking resumption in ex-smokers with refractory ulcerative colitis. J Crohn's Colitis. 2012;6:756–762. PubMed

Fiorino G., D'amico F., Italia A., Gilardi D., Furfaro F., Danese S. JAK inhibitors: novel developments in management of ulcerative colitis. Best Practice Res Clin Gastroenterol. 2018:32–33. 89–93. PubMed

Beech I.B., Sunner J.A. Sulphate-reducing bacteria and their role in corrosion of ferrous materials. In: Barton L.L., Hamilton W.A., editors. Sulphate-Reducing bacteria: environmental and engineered systems. Cambridge University Press; Cambridge, UK: 2007. pp. 459–482.

Ruckert C. Sulfate reduction in microorganisms − recent advances and biotechnological applications. Curr Opin Microbiol. 2016;33:140–146. PubMed

Biswas K., Taylor M.W., Turner S.J. dsrAB-based analysis of sulphate-reducing bacteria in moving bed biofilm reactor (MBBR) wastewater treatment plants. Appl Microbiol Biotechnol. 2014;98:7211–7222. PubMed

Haveman S.A., Greene E.A., Stilwell C.P., Voordouw J.K., Voordouw G. Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol. 2004;186:7944–7950. PubMed PMC

Haveman S.A., Greene E.A., Voordouw G. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol. 2005;7:1461–1465. PubMed

Cullimore D.R. Lewis Publishers, CRC Press; Boca Raton, Florida: 1999. Microbiology of well biofouling; p. 456.

Greene E.A., Brunelle V., Jenneman G.E., Voordouw G. Synergistic inhibition of microbial sulfide production by combinations of the metabolic inhibitor nitrite and biocides. Appl Environ Microbiol. 2006;72:7897–7901. PubMed PMC

Jayaraman A., Mansfield F.B., Wood T.K. Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J Ind Microbiol Biotechnol. 1999;22:167–175. PubMed

Wang Y., Chen Z., Wu Y., Zhong H. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil. Sci Total Environ. 2019;697:134–143. PubMed

Hsu-Kim H., Kucharzyk K.H., Zhang T., Deshusses M.A. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol. 2013;47(6):2441–2456. PubMed

Ekstrom E.B., Morel F.M.M. Cobalt limitation of growth andmercury methylation in sulfate-reducing bacteria. Environ Sci Technol. 2008;42(1):93–99. PubMed

Hockin SL, Gadd GM. Bioremediation of metals and metalloids by precipitation and cellular binding. In: Barton LL, Hamilton WA (editors). Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press, Cambridge, UK 2007; 405–34.

Lovley D.R., Widman P.K., Woodward J.C., Phillips E.J.P. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol. 1993;59:3572–3576. PubMed PMC

Fijan S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int J Environ Res Public Health. 2014;11:4745–4767. PubMed PMC

Rayes N., Seehofer D., Neuhaus P. Prebiotics, probiotics, synbiotics in surgery - are they only trendy, truly effective or even dangerous? Langenbecks Arch Surg. 2009;394:547–555. PubMed

Stilesa M., Holzapfel W. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;36:1–29. PubMed

Wua C., Huanga J., Zhoua R. Genomics of lactic acid bacteria: Current status and potential applications. Crit Rev Microbiol. 2017;43:393–404. PubMed

Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol. 2012;2:86. PubMed PMC

Aguirre M., Collins M. Lactic acid bacteria and human clinical infection. J Appl Bacteriol. 1993;75:95–107. PubMed

Sheeladevi A., Ramanathan R. Lactic acid production using lactic acid bacteria under optimized conditions. Int J Pharm Biol Sci Arch. 2011;2:1686–1691.

Zotta T., Ricciardi A., Ianniello R.G., Storti L.V., Glibota N.A., Parente E. Aerobic and respirative growth of heterofermentative lactic acidbacteria: a screening study. Food Microbiol. 2018;76:117–127. PubMed

Wee Y., Kim J., Ryu H. Biotechnological Production of lactic acid and its recent applications. Food Technol Biotechnol. 2006;44:163–172.

Hofvendahl K., Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol. 2000;26:87–107. PubMed

Mason S., Reinecke C., Kulik W., Cruchten A., Solomons R., Furth M. Cerebrospinal fluid in tuberculous meningitis exhibits only the L-enantiomer of lactic acid. BMC Infect Dis. 2016;16:251. PubMed PMC

Alakomi H.L., Skyita E., Saarela M., Mattila-Sandholm T., Latva-Kala K., Helander I. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol. 2000;66:2001–2005. PubMed PMC

Datta R., Tsai S.P., Bonsignore P., Moon S.H., Frank J.R. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev. 1995;16:221–231.

Leroy F., Vuyst L.D. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol. 2004;15:67–78.

Lourens-Hattingh A., Viljoen B. Yogurt as probiotic carrier food. Int Dairy J. 2001;11:1–17.

Moriwaki H., Hagiwara A., Takasaki M., Izumi F., Watanabe A., Shimizu R. Electrospray ionization-mass spectrometric measurement of sake, a traditional Japanese alcohol beverage, for characterization. Anal Sci. 2010;26:379–382. PubMed

Halász A., Baráth Á., Holzapfel W.H. The influence of starter culture selection on sauerkraut fermentation. Zeitschrift für Lebensmittel-Untersuchung und -Forschung. 1999;208:434–438.

Gardner N., Savard T., Obermeier P., Caldwell G., Champagne C.P. Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int J Food Microbiol. 2001;64:261–275. PubMed

Spitaels F., Wieme A.D., Janssens M., Aerts M., Daniel H.M., Van Landschoot A. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS One. 2014;9 PubMed PMC

Bartowsky E.J. Bacterial spoilage of wine and approaches to minimize it. Lett Appl Microbiol. 2009;48:149–156. PubMed

Driehuis F., Elferink S.O., Spoelstra S. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneriinhibits yeast growth and improves aerobic stability. J Appl Microbiol. 1999;87:583–594. PubMed

Gibson G., Rastall R. John Wiley & Sons; Chichester: 2006. Prebiotics: development & application.

Parvez S., Malik K., Kang A., Kim H. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006;100:1171–1185. PubMed

Hart A., Lammers K., Brigidi P., Vitali B., Rizzello F., Gionchetti P. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004;53:1602–1609. PubMed PMC

Servin A. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbial Rev. 2004;28:405–440. PubMed

Fernandes C., Shahani K., Amer M. Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol Rev. 1987;46:343–356.

Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline- 2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J Appl Biomed. 2018;16:241–246.

Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed

Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline- 2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med Chem Res. 2018;27:278–284.

Ishikawa H., Akedo I., Umesaki Y., Tanaka R., Imaoka A., Otani T. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr. 2003;22:56–63. PubMed

Sood A., Midha V., Makharia G.K. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin Gastroenterol Hepatol. 2009;7:1202–1209. PubMed

Furrie E., Macfarlane S., Kennedy A. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomisedcontrolledpilottrial. Gut. 2005;54:242–249. PubMed PMC

Kato K., Mizuno S., Umesaki Y. Randomized placebo controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther. 2004;20:1133–1141. PubMed

Wildt S., Nordgaard I., Hansen U. A randomised double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for maintenance of remission in ulcerative colitis. J Crohns Colitis. 2011;5:115–121. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives

. 2025 ; 27 () : 851-868. [epub] 20250225

The impact of 3-sulfo-taurolithocholic acid on ATPase activity in patients' colorectal cancer and normal colon tissues, and its hepatic effects in rodents

. 2024 ; 11 () : 1480122. [epub] 20241205

Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments

. 2024 ; 15 () : 1417714. [epub] 20240711

Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study

. 2024 ; 11 () : 79-89. [epub] 20240314

NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria

. 2023 Aug 25 ; 13 (1) : 13922. [epub] 20230825

Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies

. 2023 Apr ; 9 (4) : e15452. [epub] 20230413

ATPase Activity of the Subcellular Fractions of Colorectal Cancer Samples under the Action of Nicotinic Acid Adenine Dinucleotide Phosphate

. 2021 Nov 30 ; 9 (12) : . [epub] 20211130

Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide

. 2021 May 22 ; 10 (6) : . [epub] 20210522

Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats

. 2021 Apr 13 ; 22 (8) : . [epub] 20210413

Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies

. 2021 Jan 26 ; 10 (3) : . [epub] 20210126

Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances

. 2020 Jul 23 ; 9 (8) : . [epub] 20200723

Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People

. 2020 Jun 19 ; 9 (6) : . [epub] 20200619

Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments

. 2020 Jun 17 ; 10 (6) : . [epub] 20200617

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...