Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
MUNI/A/1425/2020
Masarykova Univerzita
PubMed
33924516
PubMed Central
PMC8069399
DOI
10.3390/ijms22084007
PII: ijms22084007
Knihovny.cz E-resources
- Keywords
- DAPI, Desulfovibrio, FISH, IBD, SRB, SRM, SRP, anaerobic microorganisms, fluorescence microscopy, gut microbiota, habitats, identification, microscopy, sulfate reduction,
- MeSH
- Bacteria metabolism MeSH
- Ecosystem * MeSH
- Humans MeSH
- Metagenomics MeSH
- Microscopy methods MeSH
- Oxidation-Reduction MeSH
- Sulfates metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Sulfates MeSH
This paper is devoted to microscopic methods for the identification of sulfate-reducing bacteria (SRB). In this context, it describes various habitats, morphology and techniques used for the detection and identification of this very heterogeneous group of anaerobic microorganisms. SRB are present in almost every habitat on Earth, including freshwater and marine water, soils, sediments or animals. In the oil, water and gas industries, they can cause considerable economic losses due to their hydrogen sulfide production; in periodontal lesions and the colon of humans, they can cause health complications. Although the role of these bacteria in inflammatory bowel diseases is not entirely known yet, their presence is increased in patients and produced hydrogen sulfide has a cytotoxic effect. For these reasons, methods for the detection of these microorganisms were described. Apart from selected molecular techniques, including metagenomics, fluorescence microscopy was one of the applied methods. Especially fluorescence in situ hybridization (FISH) in various modifications was described. This method enables visual identification of SRB, determining their abundance and spatial distribution in environmental biofilms and gut samples.
See more in PubMed
Plugge C.M., Zhang W., Scholten J.C.M., Stams A.J.M. Metabolic Flexibility of Sulfate-Reducing Bacteria. Front. Microbiol. 2002;2 doi: 10.3389/fmicb.2011.00081. PubMed DOI PMC
Barton L.L., Fauque G.D. Advances in Applied Microbiology. Volume 68. Academic Press; Cambridge, MA, USA: 2009. Chapter 2 Biochemistry, Physiology and Biotechnology of Sulfate-Reducing Bacteria; pp. 41–98. PubMed
Kushkevych I., Coufalová M., Vítězová M., Rittmann S.K.-M.R. Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis—Recent Advances. JCM. 2020;9:2347. doi: 10.3390/jcm9082347. PubMed DOI PMC
Kushkevych I. Isolation and Purification of Sulfate-Reducing Bacteria. In: Blumenberg M., Shaaban M., Elgaml A., editors. Microorganisms. IntechOpen; London, UK: 2020.
Gibson G.R. Physiology and Ecology of the Sulphate-Reducing Bacteria. J. Appl. Bacteriol. 1990;69:769–797. doi: 10.1111/j.1365-2672.1990.tb01575.x. PubMed DOI
Dalsgaard T., Bak F. Nitrate Reduction in a Sulfate-Reducing Bacterium, Desulfovibrio Desulfuricans, Isolated from Rice Paddy Soil: Sulfide Inhibition, Kinetics, and Regulation. Appl. Environ. Microbiol. 1994;60:291–297. doi: 10.1128/AEM.60.1.291-297.1994. PubMed DOI PMC
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio Piger Vib-7 and Desulfomicrobium Sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI
Kushkevych I.V. Activity and Kinetic Properties of Phosphotransacetylase from Intestinal Sulfate-Reducing Bacteria. Acta Biochim. Pol. 2015;62:103–108. doi: 10.18388/abp.2014_845. PubMed DOI
Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+/K+-Activated Mg2+-Dependent ATP-Hydrolase in the Cell-Free Extracts of the Sulfate-Reducing Bacteria Desulfovibrio Piger Vib-7 and Desulfomicrobium Sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Fauque G. The Sulfate-Reducing Bacteria. Springer; New York, NY, USA: 1995. Ecology of Sulfate-Reducing Bacteria; pp. 217–241.
Postgate J.R. The Sulphate-Reducing Bacteria. 2nd ed. Cambridge University Press; Cambridge, UK: 1984.
Sen A.M., Johnson B. Acidophilic sulphate-reducing bacteria: Candidates for bioremediation of acid mine drainage. In: Amils R., Ballester A., editors. Process Metallurgy. Volume 9. Elsevier; Amsterdam, The Netherlands: 1999. pp. 709–718.
Kushkevych I., Dordević D., Vítězová M. Toxicity of Hydrogen Sulfide toward Sulfate-Reducing Bacteria Desulfovibrio Piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and Its Role in IBD Development. JCM. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC
Langendijk P.S., Hanssen J.T., Van der Hoeven J.S. Sulfate-Reducing Bacteria in Association with Human Periodontitis. J. Clin. Periodontol. 2000;27:943–950. doi: 10.1034/j.1600-051x.2000.027012943.x. PubMed DOI
Barton L.L., Ritz N.L., Fauque G.D., Lin H.C. Sulfur Cycling and the Intestinal Microbiome. Dig. Dis. Sci. 2017;62:2241–2257. doi: 10.1007/s10620-017-4689-5. PubMed DOI
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial Effect of Salicylamide Derivatives against Intestinal Sulfate-Reducing Bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of Selected Salicylamides against Intestinal Sulfate-Reducing Bacteria. Neuro Endocrinol. Lett. 2015;36(Suppl. 1):106–113. PubMed
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampílek J. Effect of Selected 8-Hydroxyquinoline-2-Carboxanilides on Viability and Sulfate Metabolism of Desulfovibrio Piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Rabus R., Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., Hansen T.A., Widdel F. The Prokaryotes. Springer; Berlin, Germany: 2006. Dissimilatory Sulfate- and Sulfur-Reducing Prokaryotes; pp. 659–768.
Odom J.M., Singleton R., editors. The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer; New York, NY, USA: 1993. Brock/Springer Series in Contemporary Bioscience.
Widdel F., Bak F. Gram-Negative Mesophilic Sulfate-Reducing Bacteria. In: Balows A., Trüper H.G., Dworkin M., Harder W., Schleifer K.-H., editors. The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Springer; New York, NY, USA: 1992. pp. 3352–3378.
Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC
Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A New Combination of Substrates: Biogas Production and Diversity of the Methanogenic Microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of Biogas: Relationship between Methanogenic and Sulfate-Reducing Microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI
Postgate J. Sulphate Reduction by Bacteria. Annu. Rev. Microbiol. 1959;13:505–520. doi: 10.1146/annurev.mi.13.100159.002445. DOI
Tang K., Baskaran V., Nemati M. Bacteria of the Sulphur Cycle: An Overview of Microbiology, Biokinetics and Their Role in Petroleum and Mining Industries. Biochem. Eng. J. 2009;44:73–94. doi: 10.1016/j.bej.2008.12.011. DOI
Kushkevych I., Dordević D., Vítězová M., Rittmann S.K.-M.R. Environmental Impact of Sulfate-Reducing Bacteria, Their Role in Intestinal Bowel Diseases, and Possible Control by Bacteriophages. Appl. Sci. 2021;11:735. doi: 10.3390/app11020735. DOI
Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP Sulfurylase Activity of Sulfate-Reducing Bacteria from Various Ecotopes. 3 Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC
Cypionka H. Oxygen Respiration by Desulfovibrio Species. Annu. Rev. Microbiol. 2000;54:827–848. doi: 10.1146/annurev.micro.54.1.827. PubMed DOI
Okabe S. Ecophysiology of sulphate-reducing bacteria in environmental biofilms. In: Barton L.L., Hamilton W.A., editors. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press; Cambridge, UK: 2007. pp. 359–382.
Okabe S., Itoh T., Satoh H., Watanabe Y. Analyses of Spatial Distributions of Sulfate-Reducing Bacteria and Their Activity in Aerobic Wastewater Biofilms. Appl. Environ. Microbiol. 1999;65:5107–5116. doi: 10.1128/AEM.65.11.5107-5116.1999. PubMed DOI PMC
Ito T., Nielsen J., Okabe S., Watanabe Y., Nielsen P. Phylogenetic Identification and Substrate Uptake Patterns of Sulfate-Reducing Bacteria Inhabiting an Oxic-Anoxic Sewer Biofilm Determined by Combining Microautoradiography and Fluorescent In Situ Hybridization. Appl. Environ. Microbiol. 2002;68:356–364. doi: 10.1128/AEM.68.1.356-364.2002. PubMed DOI PMC
Ollivier B., Hatchikian C.E., Prensier G., Guezennec J., Garcia J.-L. Desulfohalobium Retbaense Gen. Nov., Sp. Nov., a Halophilic Sulfate-Reducing Bacterium from Sediments of a Hypersaline Lake in Senegal. IJSB. 1991;41:74–81.
Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small–Large Intestine Axis. JCM. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC
Beech I.B., Sunner J. Sulphate-Reducing Bacteria–Environmental and Engineered Systems. Cambridge University Press; Cambridge, UK: 2007. Sulphate-reducing bacteria and their role in corrosion of ferrous materials; pp. 459–482.
McInerney M.J., Bryant M.P. Anaerobic Degradation of Lactate by Syntrophic Associations of Methanosarcina Barkeri and Desulfovibrio Species and Effect of H(2) on Acetate Degradation. Appl. Environ. Microbiol. 1981;41:346–354. doi: 10.1128/AEM.41.2.346-354.1981. PubMed DOI PMC
Ouattara A., Jacq V. Characterization of Sulfate-Reducing Bacteria Isolated from Senegal Ricefields. FEMS Microbiol. Ecol. 1992;10:217–228. doi: 10.1111/j.1574-6941.1992.tb01658.x. DOI
Kushkevych I., Abdulina D., Kováč J., Dordević D., Vítězová M., Iutynska G., Rittmann S.K.-M.R. Adenosine-5′-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments. Biomolecules. 2020;10:921. doi: 10.3390/biom10060921. PubMed DOI PMC
Hamilton W.A., Lee W. Biocorrosion. In: Barton L.L., editor. Sulfate-Reducing Bacteria. Springer; Boston, MA, USA: 1995. pp. 243–264. Biotechnology Handbooks.
Rabus R., Fukui M., Wilkes H., Widdle F. Degradative Capacities and 16S RRNA-Targeted Whole-Cell Hybridization of Sulfate-Reducing Bacteria in an Anaerobic Enrichment Culture Utilizing Alkylbenzenes from Crude Oil. Appl. Environ. Microbiol. 1996;62:3605–3613. doi: 10.1128/AEM.62.10.3605-3613.1996. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Possible Synergy Effect of Hydrogen Sulfide and Acetate Produced by Sulfate-Reducing Bacteria on Inflammatory Bowel Disease Development. J. Adv. Res. 2020:S2090123220300564. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC
Kushkevych I., Dordević D., Kollár P. Analysis of Physiological Parameters of Desulfovibrio Strains from Individuals with Colitis. Open Life Sci. 2019;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen Sulfide Toxicity in the Gut Environment: Meta-Analysis of Sulfate-Reducing and Lactic Acid Bacteria in Inflammatory Processes. J. Adv. Res. 2020:S2090123220300527. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-Correlation Analysis of the Desulfovibrio Growth Parameters of Intestinal Species Isolated from People with Colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
Kushkevych I., Castro Sangrador J., Dordević D., Rozehnalová M., Černý M., Fafula R., Vítězová M., Rittmann S.K.-M.R. Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People. JCM. 2020;9:1920. doi: 10.3390/jcm9061920. PubMed DOI PMC
Gibson G.R., Macfarlane G.T., Cummings J.H. Occurrence of Sulphate-Reducing Bacteria in Human Faeces and the Relationship of Dissimilatory Sulphate Reduction to Methanogenesis in the Large Gut. J. Appl. Bacteriol. 1988;65:103–111. doi: 10.1111/j.1365-2672.1988.tb01498.x. PubMed DOI
Vítězová M., Kohoutová A., Vítěz T., Hanišáková N., Kushkevych I. Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment. Processes. 2020;8:1546. doi: 10.3390/pr8121546. DOI
Christl S.U., Gibson G.R., Cummings J.H. Role of Dietary Sulphate in the Regulation of Methanogenesis in the Human Large Intestine. Gut. 1992;33:1234–1238. doi: 10.1136/gut.33.9.1234. PubMed DOI PMC
Florin T.H.J., Neale G., Goretski S., Cummings J.H. The Sulfate Content of Foods and Beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI
Lozniewski A., Maurer P., Schuhmacher H., Carlier J.P., Mory F. First Isolation of Desulfovibrio Species as Part of a Polymicrobial Infection from a Brain Abscess. Eur. J. Clin. Microbiol. Infect. Dis. 1999;18:602–603. doi: 10.1007/s100960050357. PubMed DOI
Loubinoux J., Bronowicki J.-P., Pereira I.A.C., Mougenel J.-L., Faou A.E. Sulfate-Reducing Bacteria in Human Feces and Their Association with Inflammatory Bowel Diseases. FEMS Microbiol. Ecol. 2002;40:107–112. doi: 10.1111/j.1574-6941.2002.tb00942.x. PubMed DOI
Ichiishi S., Tanaka K., Nakao K., Izumi K., Mikamo H., Watanabe K. First Isolation of Desulfovibrio from the Human Vaginal Flora. Anaerobe. 2010;16:229–233. doi: 10.1016/j.anaerobe.2010.02.002. PubMed DOI
Kushkevych I., Abdulina D., Dordević D., Rozehnalová M., Vítězová M., Černý M., Svoboda P., Rittmann S.K.-M.R. Basic Bioelement Contents in Anaerobic Intestinal Sulfate-Reducing Bacteria. Appl. Sci. 2021;11:1152. doi: 10.3390/app11031152. DOI
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic Properties of Growth of Intestinal Sulphate-Reducing Bacteria Isolated from Healthy Mice and Mice with Ulcerative Colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Cummings J.H., Macfarlane G.T., Macfarlane S. Intestinal Bacteria and Ulcerative Colitis. Curr. Issues Intest. Microbiol. 2003;4:9–20. PubMed
Dzierzewicz Z., Cwalina B., Szczerba J., Wȩglarz L., Wilczok T. Focus on DNA fingerprinting research. Nova Biomedical Books; New York, NY, USA: 2006. Diversity of Ribosomal RNA Operon in Strains of Desulfovibrio desulfuricans; pp. 61–98.
Ollivier B., Magot M., editors. Petroleum Microbiology. ASM Press; Washington, DC, USA: 2005.
Holt J.G., Krieg N.R., Sneath P.H., editors. Bergey’s Manual of Determinative Bacteriology. 9th ed. Lippincott, Williams & Wilkins; Baltimore, MD, USA: 1994.
Whitman W.B. Bergey’s Manual of Systematics of Archaea and Bacteria. 1st ed. Wiley; Hoboken, NJ, USA: 2015.
Kováč J., Kushkevych I. New Modification of Cultivation Medium for Isolation and Growth of Intestinal Sulfate-Reducing Bacteria; Proceedings of the MendelNet 2017; Mendel Univ Brno, Fac AgriSciences, Brno, Czech Republic. 6 November 2019; pp. 702–707.
Kuever J., Rainey F., Widdel F. Bergey’s Manual of Systematic Bacteriology. Springer; New York, NY, USA: 2005. Genus Desulfovibrio; pp. 926–930.
Loubinoux J., Valente F.M.A., Pereira I.A.C., Costa A., Grimont P.A.D., Le Faou A.E. Reclassification of the Only Species of the Genus Desulfomonas, Desulfomonas Pigra, as Desulfovibrio Piger Comb. Nov. Int. J. Syst. Evol. Microbiol. 2002;52:1305–1308. doi: 10.1099/00207713-52-4-1305. PubMed DOI
Kuever J., Rainey F., Widdel F. Bergey’s Manual of Systematic Bacteriology. Springer; New York, NY, USA: 2005. Genus Desulfobacter; pp. 961–964.
Kuever J., Rainey F., Widdel F. Bergey’s Manual of Systematic Bacteriology. Springer; New York, NY, USA: 2005. Genus Desulfobulbus; pp. 988–992.
Kuever J., Rainey F.A. Bergey’s Manual of Systematics of Archaea and Bacteria. American Cancer Society; Atlanta, GA, USA: 2015. Genus Desulfotomaculum; pp. 1–12.
Sharak Genthner B.R., Devereux R. Bergey’s Manual of Systematics of Archaea and Bacteria. American Cancer Society; Atlanta, GA, USA: 2015. Desulfomicrobium; pp. 1–9.
Thevenieau F., Fardeau M.-L., Ollivier B., Joulian C., Baena S. Desulfomicrobium Thermophilum Sp. Nov., a Novel Thermophilic Sulphate-Reducing Bacterium Isolated from a Terrestrial Hot Spring in Colombia. Extremophiles. 2007;11:295–303. doi: 10.1007/s00792-006-0039-9. PubMed DOI
Langendijk P.S., Kulik E.M., Sandmeier H., Meyer J., van der Hoeven J.S. Isolation of Desulfomicrobium Orale Sp. Nov. and Desulfovibrio Strain NY682, Oral Sulfate-Reducing Bacteria Involved in Human Periodontal Disease. Int. J. Syst. Evol. Microbiol. 2001;51:1035–1044. doi: 10.1099/00207713-51-3-1035. PubMed DOI
Sharak Gerthner B.R., Devereux R. Bergey’s Manual of Systematic Bacteriology. Springer; New York, NY, USA: 2005. Genus Desulfomicrobium; pp. 944–948.
Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., da Costa M.S., Rooney A.P., Yi H., Xu X.-W., De Meyer S., et al. Proposed Minimal Standards for the Use of Genome Data for the Taxonomy of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2018;68:461–466. doi: 10.1099/ijsem.0.002516. PubMed DOI
Cho J.C., Tiedje J.M. Bacterial Species Determination from DNA-DNA Hybridization by Using Genome Fragments and DNA Microarrays. Appl. Environ. Microbiol. 2001;67:3677–3682. doi: 10.1128/AEM.67.8.3677-3682.2001. PubMed DOI PMC
Auch A.F., von Jan M., Klenk H.-P., Göker M. Digital DNA-DNA Hybridization for Microbial Species Delineation by Means of Genome-to-Genome Sequence Comparison. Stand. Genomic Sci. 2010;2:117–134. doi: 10.4056/sigs.531120. PubMed DOI PMC
Stackebrandt E., Frederiksen W., Garrity G.M., Grimont P.A.D., Kämpfer P., Maiden M.C.J., Nesme X., Rosselló-Mora R., Swings J., Trüper H.G., et al. Report of the Ad Hoc Committee for the Re-Evaluation of the Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 2002;52:1043–1047. doi: 10.1099/00207713-52-3-1043. PubMed DOI
Goris J., Konstantinidis K.T., Klappenbach J.A., Coenye T., Vandamme P., Tiedje J.M. DNA–DNA Hybridization Values and Their Relationship to Whole-Genome Sequence Similarities. Int. J. Syst. Evol. Microbiol. 2007;57:81–91. doi: 10.1099/ijs.0.64483-0. PubMed DOI
Felis G., Dellaglio F. Taxonomy of Lactobacilli and Bifidobacteria. Curr. Issues Intest. Microbiol. 2007;8:44–61. PubMed
Woese C.R. Bacterial Evolution. Microbiol. Rev. 1987;51:221–271. doi: 10.1128/MR.51.2.221-271.1987. PubMed DOI PMC
Stackebrandt E., Stahl D.A., Devereux R. Taxonomic Relationships. In: Barton L.L., editor. Sulfate-Reducing Bacteria. Springer; Boston, MA, USA: 1995. pp. 49–87. Biotechnology Handbooks.
Castro H.F., Williams N.H., Ogram A. Phylogeny of Sulfate-Reducing Bacteria(1) FEMS Microbiol. Ecol. 2000;31:1–9. doi: 10.1016/S0168-6496(99)00071-9. PubMed DOI
Daly K., Sharp R.J., McCarthy A.J. Development of Oligonucleotide Probes and PCR Primers for Detecting Phylogenetic Subgroups of Sulfate-Reducing Bacteria. Microbiology. 2000;146 Pt 7:1693–1705. doi: 10.1099/00221287-146-7-1693. PubMed DOI
Wegmann U., Nueno Palop C., Mayer M.J., Crost E., Narbad A. Complete Genome Sequence of Desulfovibrio Piger FI11049. Genome Announc. 2017;5 doi: 10.1128/genomeA.01528-16. PubMed DOI PMC
Kováč J., Vítězová M., Kushkevych I. Metabolic Activity of Sulfate-Reducing Bacteria from Rodents with Colitis. Open Med. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of Ring-Substituted 8-Hydroxyquinoline-2-Carboxanilides against Intestinal Sulfate-Reducing Bacteria Desulfovibrio Piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Kushkevych I. Identification of sulfate-reducing bacteria strains of human large intestine. Studia Biol. 2013;7:115–132. doi: 10.30970/sbi.0703.312. DOI
Pepper I.L., Gerba C.P., Brendecke J.W. Environmental Microbiology: A Laboratory Manual. Academic Press; San Diego, CA, USA: 1995.
Chang I.S., Ballard J.D., Krumholz L.R. Evidence for Chimeric Sequences Formed during Random Arbitrarily Primed PCR. J. Microbiol. Methods. 2003;54:427–431. doi: 10.1016/S0167-7012(03)00093-9. PubMed DOI
Versalovic J., Koeuth T., Lupski J.R. Distribution of Repetitive DNA Sequences in Eubacteria and Application to Fingerprinting of Bacterial Genomes. Nucleic Acids Res. 1991;19:6823–6831. doi: 10.1093/nar/19.24.6823. PubMed DOI PMC
Dzierżewicz Z., Szczerba J., Wȩglarz L., Świa̧tkowska L., Jasinska D., Wilczok T. Intraspecies Variability of Desulfovibrio Desulfuricans Strains Determined by the Genetic Profiles. FEMS Microbiol. Lett. 2003;219:69–74. doi: 10.1016/S0378-1097(02)01199-0. PubMed DOI
Devereux R., Kane M.D., Winfrey J., Stahl D.A. Genus- and Group-Specific Hybridization Probes for Determinative and Environmental Studies of Sulfate-Reducing Bacteria. Syst. Appl. Microbiol. 1992;15:601–609. doi: 10.1016/S0723-2020(11)80122-0. DOI
Loubinoux J., Mory F., Pereira I.A.C., Faou A.E.L. Bacteremia Caused by a Strain of Desulfovibrio Related to the Provisionally Named Desulfovibrio Fairfieldensis. J. Clin. Microbiol. 2000;38:1707. doi: 10.1128/JCM.38.2.931-934.2000. PubMed DOI PMC
McDougall R., Robson J., Paterson D., Tee W. Bacteremia Caused by a Recently Described Novel Desulfovibrio Species. J. Clin. Microbiol. 1997;35:1805–1808. doi: 10.1128/JCM.35.7.1805-1808.1997. PubMed DOI PMC
Tee W., Dyall-Smith M., Woods W., Eisen D. Probable New Species of Desulfovibrio Isolated from a Pyogenic Liver Abscess. J. Clin. Microbiol. 1996;34:1760–1764. doi: 10.1128/JCM.34.7.1760-1764.1996. PubMed DOI PMC
Geets J., Borremans B., Diels L., Springael D., Vangronsveld J., van der Lelie D., Vanbroekhoven K. DsrB Gene-Based DGGE for Community and Diversity Surveys of Sulfate-Reducing Bacteria. J. Microbiol. Methods. 2006;66:194–205. doi: 10.1016/j.mimet.2005.11.002. PubMed DOI
Pérez-Jiménez J.R., Kerkhof L.J. Phylogeography of Sulfate-Reducing Bacteria among Disturbed Sediments, Disclosed by Analysis of the Dissimilatory Sulfite Reductase Genes (DsrAB) AEM. 2005;71:1004–1011. doi: 10.1128/AEM.71.2.1004-1011.2005. PubMed DOI PMC
Tuffin M., Anderson D., Heath C., Cowan D.A. Metagenomic Gene Discovery: How Far Have We Moved into Novel Sequence Space? Biotechnol. J. 2009;4:1671–1683. doi: 10.1002/biot.200900235. PubMed DOI
Pinnell L.J., Turner J.W. Shotgun Metagenomics Reveals the Benthic Microbial Community Response to Plastic and Bioplastic in a Coastal Marine Environment. Front. Microbiol. 2019;10:1252. doi: 10.3389/fmicb.2019.01252. PubMed DOI PMC
Dyksma S., Pjevac P., Ovanesov K., Mussmann M. Evidence for H 2 Consumption by Uncultured Desulfobacterales in Coastal Sediments: H2 -Consuming Sulfate Reducers in Coastal Sediments. Environ. Microbiol. 2018;20:450–461. doi: 10.1111/1462-2920.13880. PubMed DOI
Li J., Jia P., Wang X., Feng S., Yang T., Fang Z., Liu J., Liao B., Shu W., Liang J.-L. Metagenomic Insights into Sulfate-Reducing Bacteria in a Revegetated Acidic Mine Wasteland. Res. Sq. 2020:1–21. doi: 10.21203/rs.3.rs-92205/v1. PubMed DOI PMC
Ran S., Mu C., Zhu W. Diversity and Community Pattern of Sulfate-Reducing Bacteria in Piglet Gut. J. Anim. Sci. Biotechnol. 2019;10:40. doi: 10.1186/s40104-019-0346-5. PubMed DOI PMC
Kocherginskaya S.A., Aminov R.I., White B.A. Analysis of the Rumen Bacterial Diversity under Two Different Diet Conditions Using Denaturing Gradient Gel Electrophoresis, Random Sequencing, and Statistical Ecology Approaches. Anaerobe. 2001;7:119–134. doi: 10.1006/anae.2001.0378. DOI
Regensbogenova M., Pristas P., Javorsky P., Moon-van der Staay S.Y., van der Staay G.W.M., Hackstein J.H.P., Newbold C.J., McEwan N.R. Assessment of Ciliates in the Sheep Rumen by DGGE. Lett. Appl. Microbiol. 2004;39:144–147. doi: 10.1111/j.1472-765X.2004.01542.x. PubMed DOI
Galbraith E.A., Antonopoulos D.A., White B.A. Suppressive Subtractive Hybridization as a Tool for Identifying Genetic Diversity in an Environmental Metagenome: The Rumen as a Model. Environ. Microbiol. 2004;6:928–937. doi: 10.1111/j.1462-2920.2004.00575.x. PubMed DOI
Ferrer M., Golyshina O.V., Chernikova T.N., Khachane A.N., Reyes-Duarte D., Santos V.A.P.M.D., Strompl C., Elborough K., Jarvis G., Neef A., et al. Novel Hydrolase Diversity Retrieved from a Metagenome Library of Bovine Rumen Microflora: Enzymatic Diversity from Bovine Rumen Metagenome. Environ. Microbiol. 2005;7:1996–2010. doi: 10.1111/j.1462-2920.2005.00920.x. PubMed DOI
Fichtel K., Mathes F., Könneke M., Cypionka H., Engelen B. Isolation of Sulfate-Reducing Bacteria from Sediments Above the Deep-Subseafloor Aquifer. Front. Microbiol. 2012;3 doi: 10.3389/fmicb.2012.00065. PubMed DOI PMC
Pluta M. In: Nomarski’s DIC Microscopy: A Review. Pluta M., Szyjer M., editors. Materials Science, Engineering; Warsaw, Poland: 1994. pp. 10–25. DOI
Fan X., Healy J.J., O’Dwyer K., Hennelly B.M. Label-Free Color Staining of Quantitative Phase Images of Biological Cells by Simulated Rheinberg Illumination. Appl. Opt. 2019;58:3104. doi: 10.1364/AO.58.003104. PubMed DOI
Lichtman J.W., Conchello J.-A. Fluorescence Microscopy. Nat. Methods. 2005;2:910–919. doi: 10.1038/nmeth817. PubMed DOI
Life Technologies . In: The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies. 11th ed. Johnson I., editor. Life Technologies; Carlsbad, CA, USA: 2010.
Gough H.L., Stahl D.A. Optimization of Direct Cell Counting in Sediment. J. Microbiol. Methods. 2003;52:39–46. doi: 10.1016/S0167-7012(02)00135-5. PubMed DOI
Amalfitano S., Fazi S. Recovery and Quantification of Bacterial Cells Associated with Streambed Sediments. J. Microbiol. Methods. 2008;75:237–243. doi: 10.1016/j.mimet.2008.06.004. PubMed DOI
Zhu X., Al-Moniee M.A. 22—Molecular microbiology techniques. In: El-Sherik A.M., editor. Trends in Oil and Gas Corrosion Research and Technologies. Woodhead Publishing; Boston, MA, USA: 2017. pp. 513–536. Woodhead Publishing Series in Energy.
Araujo J.C., Mortara R., Campos J.R., Vazoller R.F. Development and Analysis of Anaerobic Biofilms onto Hydrophobic and Hydrophilic Surfaces. Environ. Technol. 2004;25:809–817. doi: 10.1080/09593330.2004.9619372. PubMed DOI
Bhattacharyaa J. Low Cost Wastewater Bioremediation Technology: Innovative Treatment of Sulphate and Metal.-Rich Wastewater. 1st ed. Elsevier; Cambridge, CA, USA: 2017.
Speicher M., Carter N. The New Cytogenetics: Blurring the Boundaries with Molecular Biology. Nat. Rev. Genet. 2005 doi: 10.1038/nrg1692. PubMed DOI
Amann R., Moraru C. Two Decades of Fluorescence in Situ Hybridization in Systematic and Applied Microbiology. Syst. Appl. Microbiol. 2012;35:483–484. doi: 10.1016/j.syapm.2012.10.002. PubMed DOI
Amann R., Fuchs B.M., Behrens S. The Identification of Microorganisms by Fluorescence in Situ Hybridisation. Curr. Opin. Biotechnol. 2001;12:231–236. doi: 10.1016/S0958-1669(00)00204-4. PubMed DOI
Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A., Amann R., Jørgensen B.B., Witte U., Pfannkuche O. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature. 2000;407:623–626. doi: 10.1038/35036572. PubMed DOI
Probst A.J., Holman H.-Y.N., DeSantis T.Z., Andersen G.L., Birarda G., Bechtel H.A., Piceno Y.M., Sonnleitner M., Venkateswaran K., Moissl-Eichinger C. Tackling the Minority: Sulfate-Reducing Bacteria in an Archaea-Dominated Subsurface Biofilm. ISME J. 2013;7:635–651. doi: 10.1038/ismej.2012.133. PubMed DOI PMC
Zwirglmaier K. Fluorescence in Situ Hybridisation (FISH)--the next Generation. FEMS Microbiol. Lett. 2005;246:151–158. doi: 10.1016/j.femsle.2005.04.015. PubMed DOI
Schmidt H., Eickhorst T., Mußmann M. Gold-FISH: A New Approach for the in Situ Detection of Single Microbial Cells Combining Fluorescence and Scanning Electron Microscopy. Syst. Appl. Microbiol. 2012;35:518–525. doi: 10.1016/j.syapm.2012.04.006. PubMed DOI
Lee N., Nielsen P.H., Andreasen K.H., Juretschko S., Nielsen J.L., Schleifer K.-H., Wagner M. Combination of Fluorescent In Situ Hybridization and Microautoradiography—A New Tool for Structure-Function Analyses in Microbial Ecology. Appl. Environ. Microbiol. 1999;65:1289–1297. doi: 10.1128/AEM.65.3.1289-1297.1999. PubMed DOI PMC
Okabe S., Kindaichi T., Ito T. MAR-FISH—An Ecophysiological Approach to Link Phylogenetic Affiliation and In Situ Metabolic Activity of Microorganisms at a Single-Cell Resolution. Microbes Environ. 2004;19:83–98. doi: 10.1264/jsme2.19.83. DOI
Alonso C. Tips and Tricks for High Quality MAR-FISH Preparations: Focus on Bacterioplankton Analysis. Syst. Appl. Microbiol. 2012;35:503–512. doi: 10.1016/j.syapm.2012.02.005. PubMed DOI
Sekar R., Pernthaler A., Pernthaler J., Warnecke F., Posch T., Amann R. An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization. AEM. 2003;69:2928–2935. doi: 10.1128/AEM.69.5.2928-2935.2003. PubMed DOI PMC
Pernthaler A., Pernthaler J. Fluorescence in Situ Hybridization for the Identification of Environmental Microbes. Methods Mol. Biol. 2007;353:153–164. doi: 10.1385/1-59745-229-7:153. PubMed DOI
FISH Protocols. [(accessed on 13 March 2019)]; Available online: https://www.arb-silva.de/fileadmin/graphics_fish/CARD_FISH.jpg.