• This record comes from PubMed

Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments

. 2020 Jun 17 ; 10 (6) : . [epub] 20200617

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
MUNI/A/0947/2019 Masarykova Univerzita

A comparative study of the kinetic characteristics (specific activity, initial and maximum rate, and affinity for substrates) of key enzymes of assimilatory sulfate reduction (APS reductase and dissimilatory sulfite reductase) in cell-free extracts of sulphate-reducing bacteria (SRB) from various biotopes was performed. The material for the study represented different strains of SRB from various ecotopes. Microbiological (isolation and cultivation), biochemical (free cell extract preparation) and chemical (enzyme activity determination) methods served in defining kinetic characteristics of SRB enzymes. The determined affinity data for substrates (i.e., sulfite) were 10 times higher for SRB strains isolated from environmental (soil) ecotopes than for strains from the human intestine. The maximum rate of APS reductase reached 0.282-0.862 µmol/min×mg-1 of protein that is only 10 to 28% higher than similar initial values. The maximum rate of sulfite reductase for corrosive relevant collection strains and SRB strains isolated from heating systems were increased by 3 to 10 times. A completely different picture was found for the intestinal SRB Vmax in the strains Desulfovibrio piger Vib-7 (0.67 µmol/min × mg-1 protein) and Desulfomicrobium orale Rod-9 (0.45 µmol/min × mg-1 protein). The determinant in the cluster distribution of SRB strains is the activity of the terminal enzyme of dissimilatory sulfate reduction-sulfite reductase, but not APS reductase. The data obtained from the activity of sulfate reduction enzymes indicated the adaptive plasticity of SRB strains that is manifested in the change in enzymatic activity.

See more in PubMed

Barton L.L., Hamilton W.A. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge University Press; Cambridge, UK: 2010.

Pester M., Knorr K.-H., Friedrich M.W., Wagner M., Loy A. Sulfate reducing microorganisms in wetlands—Fameless actors in carbon cycling and climate change. Front. Microbiol. 2012;3:72. doi: 10.3389/fmicb.2012.00072. PubMed DOI PMC

Bowles M.W., Mogollón J.M., Kasten S., Zabel M., Hinrichs K.-U. Global rates of marine sulfate reduction and implications for subsea-floor metabolic activities. Science. 2014;344:889–891. doi: 10.1126/science.1249213. PubMed DOI

Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI

Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and its Role in IBD Development. J. Clin. Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC

Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC

Iutynska G.A., Purish L.M., Abdulina D.R. Corrosive-Relevant Sulfidogenic Microbial Communities of Man-Caused Ecotopes. Lambert Academic Publishing; Saarbrücken, Germany: 2014.

Abdulina D.R., Kurmakova I.N., Bondar E.S. Seasonal Dynamics of Bacteria in Corrosive Biofilms Formed on the Surface of Wastewater Treatment Plants. J. Water Chem. Technol. 2019;41:44–51. doi: 10.3103/S1063455X19010077. DOI

Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res. Appl. Chem. 2019;9:4066–4069.

Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small–Large Intestine Axis. J. Clin. Med. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC

Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI

Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI

Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI

Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuro Endocrinol. Lett. 2015;36:106–113. PubMed

Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents of health subjects and patients with ulcerative colitis. Fems. Microbiol. Ecol. 1991;86:103–112. doi: 10.1111/j.1574-6968.1991.tb04799.x. DOI

Coutinho C.M.L.M., Coutinho-Silva R., Zinkevich V., Pearce C.B., Ojcius D.M., Beech I. Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb. Pathog. 2017;112:126–134. doi: 10.1016/j.micpath.2017.09.054. PubMed DOI

Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI

Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI

Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI

Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. Wars. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC

Tomasova L., Konopelski P., Ufnal M. Gut bacteria and hydrogen sulfide: The new old players in circulatory system homeostasis. Molecules. 2016;21:1558. doi: 10.3390/molecules21111558. PubMed DOI PMC

Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. Wars. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC

Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI

Leavitt W.D., Bradley A.S., Santos A.A., Pereira I.A.C., Johnston D.T. Sulfur isotope effects of dissimilatory sulfite reductase. Front. Microbiol. 2015;6:1392. doi: 10.3389/fmicb.2015.01392. PubMed DOI PMC

Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI

Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC

Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC

Friedrich M.W. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J. Bacteriol. 2002;184:278–289. doi: 10.1128/JB.184.1.278-289.2002. PubMed DOI PMC

Fritz G., Büchert T., Huber H., Stetter K.O., Kroneck P.M. Adenylylsulfate reductases from archaea and bacteria are 1:1 alpha beta-heterodimeric iron-sulfur flavoenzymes—high similarity of molecular properties emphasizes their central role in sulfur metabolism. FEBS Lett. 2000;473:63–66. doi: 10.1016/S0014-5793(00)01500-3. PubMed DOI

Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI

Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; Proceedings of the International PhD Students Conference Mendel Net; Brno, Czech Republic. 6–7 November 2019; pp. 702–707.

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI

Dahl C., Kredich N.M., Deutzmann R., Trlfper H.G. Dissimilatory sulphite reductase from Archaeoglobus fulgidus: Physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. Microbiology. 1993;139:1817–1828. doi: 10.1099/00221287-139-8-1817. PubMed DOI

Larsen Ø., Lien T., Birkeland N.-K. Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: Phylogenetic and structural implications from gene sequences. Extremophiles. 1999;3:63–70. doi: 10.1007/s007920050100. PubMed DOI

Molitor M., Dahl C., Molitor I., Schäfer U., Speich N., Huber R., Deutzmann R., Trüper H.G. A dissimilatory sirohaem-sulfite reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology. 1998;144:529–541. doi: 10.1099/00221287-144-2-529. PubMed DOI

Huang C.J., Barret E.L. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J. Bacteriol. 1991;173:1544–1553. doi: 10.1128/JB.173.4.1544-1553.1991. PubMed DOI PMC

Harrison G., Curle C., Laishley E.J. Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum. Arch. Microbiol. 1984;138:72–78. doi: 10.1007/BF00425411. PubMed DOI

Plugge C.M., Zhang W., Scholten J., Stams A.J. Metabolic flexibility of sulphate educing bacteria. Front. Microbiol. 2011;2:81. doi: 10.3389/fmicb.2011.00081. PubMed DOI PMC

Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC

Postgate J.R. The Sulfate-Reducing Bacteria. 2nd ed. Cambridge University Press; Cambridge, UK: 1984.

Asaulenko L.H., Abdulina D.R., Purish L.M. Taxonomic position of certain representatives of sulphate-reducing corrosive microbial community. Mikrobiol. Zhurn. 2010;72:3–10. PubMed

Purish L.M., Asaulenko L.G., Abdulina D.R., Iutinskaia G.A. Biodiversity of sulfate-reducing bacteria growing on objects of heating systems. Mikrobiol. Zhurn. 2014;76:11–17. PubMed

Kolmert A., Wikstrom P., Hallberg K.B. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods. 2000;41:179–184. doi: 10.1016/S0167-7012(00)00154-8. PubMed DOI

Sugiyama M. Reagent Composition for Measuring Hydrogen Sulfide and Method for Measuring Hydrogen. 6340596 B1 USA. U.S. Patent. 2002 Jan 22;

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Huisingh J., McNeill J.J., Matrone G. Sulfate reduction by a Desulfovibrio species isolated from sheep rumen. Appl. Environ. Microbiol. 1974;28:489–497. doi: 10.1128/AEM.28.3.489-497.1974. PubMed DOI PMC

Warburg O. On the origin of cancer cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309. PubMed DOI

Keleti T. Basic Enzyme Kinetics. Akademiai Kiado; Budapest, Hungary: 1988.

Bailey N.T.J. Statistical Methods in Biology. Cambridge University Press; Cambridge, UK: 1995.

Peck H.D., Jr., Deacon T.E., Davidson J.T. Studies on adenosine 5′-phosphosulfate reductase from desulfovibrio desulfuricans and thiobacillus thioparus I. The assay and purification. Biochim. et Biophys. Acta BBA Nucleic Acids Protein Synth. 1965;96:429–446. doi: 10.1016/0005-2787(65)90561-7. PubMed DOI

Ishimoto M. Biochemistry of sulfate-reduction. Enzyme system of sulfate-reduction of Desulfovibrio. Seikagaku. 1960;32:1.

Seki Y., Ishimoto M. Catalytic activity of the chromophore of desulfoviridin, sirohydrochlorin, in sulfite reduction in the presence of iron. J. Biochem. 1979;86:273–276. PubMed

Seki Y., Sogawa N., Ishimoto M. Siroheme as an active catalyst in sulfite reduction. J. Biochem. 1981;90:1487–1492. doi: 10.1093/oxfordjournals.jbchem.a133615. PubMed DOI

Oliveira T.F., Vonrhein C., Matias P.M. The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J. Biol. Chem. 2008;283:34141–34149. doi: 10.1074/jbc.M805643200. PubMed DOI PMC

Canfield D.E., Habicht K.S., Thamdrup B.O. The Archean sulfur cycle and the early history of atmospheric oxygen. Science. 2000;288:658–661. doi: 10.1126/science.288.5466.658. PubMed DOI

Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC

Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI

Jørgensen B.B. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature. 1982;296:643–645. doi: 10.1038/296643a0. DOI

Florin T.H., Neale G., Goretski S. Sulfate in food and beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI

D’Hondt S., Jørgensen B.B., Miller D.J. Distributions of microbial activities in deep subseafloor sediments. Science. 2004;306:2216–2221. doi: 10.1126/science.1101155. PubMed DOI

Aoki M., Kakiuchi R., Yamaguchi T., Takai K., Inagaki F., Imachi H. Phylogenetic Diversity of aprA Genes in Subseafloor Sediments on the Northwestern Pacific Margin off Japan. Microbes Environ. 2015;30:276–280. doi: 10.1264/jsme2.ME15023. PubMed DOI PMC

Liu М.C., der Vartanian D.V., Peck H.D. On the nature of the oxidation reduction properties of nitrite reductase from Desulfovibrio desulfuricans. Biochem. Biophys. Res. Commun. 1980;96:278–285. doi: 10.1016/0006-291X(80)91211-5. PubMed DOI

Peck H.D., Legall J., Vanbeeumen J. Biochemistry of dissimilatory sulfate reduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982;298:443–466. PubMed

Seitz H.J., Cypionka H. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch. Microbiol. 1986;146:63–67. doi: 10.1007/BF00690160. DOI

Anantharaman K., Hausmann B., Jungbluth S.P. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–1728. doi: 10.1038/s41396-018-0078-0. PubMed DOI PMC

Voordouw G., Armstrong S.M., Reimer M.F., Fouts B., Telang A.J., Shen Y. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 1996;62:1623–1629. doi: 10.1128/AEM.62.5.1623-1629.1996. PubMed DOI PMC

Widdel F., Kohring G.W., Mayer F. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Arch. Microbiol. 1983;134:286–294. doi: 10.1007/BF00407804. PubMed DOI

Klein M., Friedrich M., Roger A.J., Hugenholtz P., Fishbain S., Abicht H., Blackall L.L., Stahl D.A. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 2001;183:6028–6035. doi: 10.1128/JB.183.20.6028-6035.2001. PubMed DOI PMC

Laue H., Friedrich M., Ruff J., Cook A.M. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J. Bacteriol. 2001;183:1727–1733. doi: 10.1128/JB.183.5.1727-1733.2001. PubMed DOI PMC

Loy A., Duller S., Baranyi C., Mussmann M., Ott J., Sharon I., Béjà O., Le Paslier D., Dahl C., Wagner M. Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ. Microbiol. 2009;11:289–299. doi: 10.1111/j.1462-2920.2008.01760.x. PubMed DOI PMC

Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2020 doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J. Adv. Res. 2020 doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...