Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40115534
PubMed Central
PMC11925123
DOI
10.1016/j.csbj.2025.02.026
PII: S2001-0370(25)00053-4
Knihovny.cz E-zdroje
- Klíčová slova
- Anaerobic bacteria, Cytotoxicity assays, Gut microbiome, Inflammatory bowel disease, Microbial pathogenesis, Microbiota-host interaction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, have become increasingly prevalent across all human generations. Despite advances in diagnosis, effective long-term therapeutic options remain limited, with many patients experiencing recurrent symptoms after treatment. The multifactorial origins of ulcerative colitis are widely recognized, but the intestinal microbiome, particularly bacteria from the Desulfovibrionaceae family, is thought to play a central role in the pathogenesis of the disease. These bacteria contribute significantly to gut microbial functions, yet their cytotoxic and viability characteristics under disease conditions remain poorly understood. Our review provides insights on recent advancements in methodologies for assessing the cytotoxicity and viability of anaerobic intestinal bacteria, with a specific focus on their relevance to gut health and disease. We introduce overview from current literature on modern techniques including flow cytometry, high-throughput screening, and molecular-based assays, highlighting their applications in understanding the role of Desulfovibrionaceae and other gut microbes in IBD pathogenesis. By bridging methodological advancements with functional implications, this review aims to enhance our understanding of gut microbiota-host interactions, which are crucial for maintaining health and preventing disease through immune modulation, where microbiota help regulate immune responses and prevent excessive inflammation; nutrient metabolism, including the breakdown of dietary fibers into short-chain fatty acids that support gut health; and colonization resistance, where beneficial microbes outcompete harmful pathogens to maintain microbial balance.
Department of Microbiology and Immunology Faculty of Pharmacy Tanta University Tanta 31527 Egypt
Instituto de Formación Continua IL3 University of Barcelona Barcelona 08018 Spain
Zobrazit více v PubMed
Sands B.E. Inflammatory bowel disease: past, present, and future. J Gastroenterol. 2007;42:16–25. doi: 10.1007/s00535-006-1995-7. PubMed DOI PMC
M’Koma AE. Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol. 2013;6:33–47. doi: 10.4137/CGast.S12731. PubMed DOI PMC
Hetta H.F., Ramadan Y.N., Alharbi A.A., Alsharef S., Alkindy T.T., Alkhamali A., et al. Gut microbiome as a target of intervention in inflammatory bowel disease pathogenesis and therapy. Immuno. 2024;4:400–425. doi: 10.3390/immuno4040026. DOI
Ordás I., Eckmann L., Talamini M., Baumgart D.C., Sandborn W.J. Ulcerative colitis. Lancet. 2012;380:1606–1619. doi: 10.1016/S0140-6736(12)60150-0. PubMed DOI
Fabián O., Kamarádová K. Morphology of inflammatory bowel disease (IBD) Czechoslov Pathol. 2022;58:27–37. PubMed
Alatab S., Sepanlou S.G., Ikuta K., Vahedi H., Bisignano C., Safiri S., et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:17–30. doi: 10.1016/S2468-1253(19)30333-4. PubMed DOI PMC
Wang R., Li Z., Liu S., Zhang D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open. 2023;13 doi: 10.1136/bmjopen-2022-065186. PubMed DOI PMC
Roda G., Chien Ng S., Kotze P.G., Argollo M., Panaccione R., Spinelli A., et al. Crohn’s disease. Nat Rev Dis Prim. 2020;6:22. doi: 10.1038/s41572-020-0156-2. PubMed DOI
Ungaro R., Mehandru S., Allen P.B., Peyrin-Biroulet L., Colombel J.-F. Ulcerative colitis. Lancet. 2017;389:1756–1770. doi: 10.1016/S0140-6736(16)32126-2. PubMed DOI PMC
Dordevic D., Capikova J., Dordevic S., Tremlová B., Gajdács M., Kushkevych I. Sulfur content in foods and beverages and its role in human and animal metabolism: a scoping review of recent studies. Heliyon. 2023;9 doi: 10.1016/j.heliyon.2023.e15452. PubMed DOI PMC
Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen sulfide toxicity in the gut environment: meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J Adv Res. 2021;27:55–69. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC
Fernandes D., Andreyev J. The role of the human gut microbiome in inflammatory bowel disease and radiation enteropathy. Microorganisms. 2022;10:1613. doi: 10.3390/microorganisms10081613. PubMed DOI PMC
Kushkevych I., Kovářová A., Dordevic D., Gaine J., Kollar P., Vítězová M., et al. Distribution of sulfate-reducing bacteria in the environment: cryopreservation techniques and their potential storage application. Processes. 2021;9:1843. doi: 10.3390/pr9101843. DOI
Núñez-Sánchez M.A., Melgar S., O’Donoghue K., Martínez-Sánchez M.A., Fernández-Ruiz V.E., Ferrer-Gómez M., et al. Crohn’s disease, host–microbiota interactions, and immunonutrition: dietary strategies targeting gut microbiome as novel therapeutic approaches. Int J Mol Sci. 2022;23:8361. doi: 10.3390/ijms23158361. PubMed DOI PMC
Kushkevych I., Bychkov M., Bychkova S., Gajdács M., Merza R., Vítězová M. ATPase activity of the subcellular fractions of colorectal cancer samples under the action of nicotinic acid adenine dinucleotide phosphate. Biomedicines. 2021;9:1805. doi: 10.3390/biomedicines9121805. PubMed DOI PMC
Selinger C.P., Rosiou K., Lenti M.V. Biological therapy for inflammatory bowel disease: cyclical rather than lifelong treatment? BMJ Open Gastroenterol. 2024;11 doi: 10.1136/bmjgast-2023-001225. PubMed DOI PMC
Bortlík M. Conventional and biological therapy for inflammatory bowel disease. Vnitř Lékařství. 2018;64:642–653. doi: 10.36290/vnl.2018.088. PubMed DOI
Ledder O., Turner D. Antibiotics in IBD: still a role in the biological era? Inflamm Bowel Dis. 2018;24:1676–1688. doi: 10.1093/ibd/izy067. PubMed DOI
Kushkevych I., Hýžová B., Vítězová M., Rittmann S.K.-M.R. Microscopic methods for identification of sulfate-reducing bacteria from various habitats. Int J Mol Sci. 2021;22:4007. doi: 10.3390/ijms22084007. PubMed DOI PMC
Kushkevych I., Abdulina D., Dordević D., Rozehnalová M., Vítězová M., Černý M., et al. Basic bioelement contents in anaerobic intestinal sulfate-reducing bacteria. Appl Sci. 2021;11:1152. doi: 10.3390/app11031152. DOI
Çelik T.A. In: Cytotoxicity. Çelik T.A., editor. InTech; 2018. Introductory Chapter: Cytotoxicity.
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochim Pol. 2015;62:103–108. doi: 10.18388/abp.2014_845. PubMed DOI
Kushkevych I., Dordević D., Vítězová M., Rittmann S.K.-M.R. Environmental impact of sulfate-reducing bacteria, their role in intestinal bowel diseases, and possible control by bacteriophages. Appl Sci. 2021;11:735. doi: 10.3390/app11020735. DOI
Requena T., Velasco M. The human microbiome in sickness and in health. Rev Clínica Esp Engl Ed. 2021;221:233–240. doi: 10.1016/j.rceng.2019.07.018. PubMed DOI
Růžičková M., Vítězová M., Kushkevych I. The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Med. 2020;15:211–224. doi: 10.1515/med-2020-0032. PubMed DOI PMC
Simon J.-C., Marchesi J.R., Mougel C., Selosse M.-A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 2019;7:5. doi: 10.1186/s40168-019-0619-4. PubMed DOI PMC
Lewis J.D., Parlett L.E., Jonsson Funk M.L., Brensinger C., Pate V., Wu Q., et al. Incidence, prevalence, and racial and ethnic distribution of inflammatory bowel disease in the United States. Gastroenterology. 2023;165:1197–1205.e2. doi: 10.1053/j.gastro.2023.07.003. PubMed DOI PMC
Carolina P.M. Crohn’s Disease Treatment Update n.d. 〈https://www.uspharmacist.com/article/crohns-disease-treatment-update〉 (accessed December 27, 2024).
Gravina A., Federico A., Ruocco E., Lo Schiavo A., Romano F., Miranda A., et al. Crohn’s disease and skin. U Eur Gastroenterol J. 2016;4:165–171. doi: 10.1177/2050640615597835. PubMed DOI PMC
Feuerstein J.D., Cheifetz A.S. Crohn disease: epidemiology, diagnosis, and management. Mayo Clin Proc. 2017;92:1088–1103. doi: 10.1016/j.mayocp.2017.04.010. PubMed DOI
Rafiq S., Melzer D., Weedon M.N., Lango H., Saxena R., Scott L.J., et al. Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory diseases are not associated with the risk of type 2 diabetes. Diabetologia. 2008;51:2205–2213. doi: 10.1007/s00125-008-1160-3. PubMed DOI PMC
Ananthakrishnan A.N., Khalili H., Konijeti G.G., Higuchi L.M., de Silva P., Korzenik J.R., et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology. 2013;145:970–977. doi: 10.1053/j.gastro.2013.07.050. PubMed DOI PMC
Alfredsson J., Wick M.J. Mechanism of fibrosis and stricture formation in Crohn’s disease. Scand J Immunol. 2020;92 doi: 10.1111/sji.12990. PubMed DOI PMC
Neurath M.F., Leppkes M. Resolution of ulcerative colitis. Semin Immunopathol. 2019;41:747–756. doi: 10.1007/s00281-019-00751-6. PubMed DOI
Lynch W.D., Hsu R. StatPearls Publishing; Treasure Island (FL): 2024. Ulcerative Colitis. StatPearls. PubMed
Kucharzik T., Koletzko S., Kannengießer K., Dignaß A. Ulcerative colitis—diagnostic and therapeutic algorithms. Dtsch Ärztebl Int. 2020 doi: 10.3238/arztebl.2020.0564. PubMed DOI PMC
Mohammed Vashist N., Samaan M., Mosli M.H., Parker C.E., MacDonald J.K., Nelson S.A., et al. Endoscopic scoring indices for evaluation of disease activity in ulcerative colitis. Cochrane Database Syst Rev. 2018 doi: 10.1002/14651858.CD011450.pub2. 2018:CD011450. PubMed DOI PMC
Paine E.R. Colonoscopic evaluation in ulcerative colitis. Gastroenterol Rep. 2014;2:161–168. doi: 10.1093/gastro/gou028. PubMed DOI PMC
Satsangi J., Silverberg M.S., Vermeire S., Colombel J. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55:749–753. doi: 10.1136/gut.2005.082909. PubMed DOI PMC
Monstad I., Hovde Ø., Solberg I.C., A. Moum B. Clinical course and prognosis in ulcerative colitis: results from population-based and observational studies. Ann Gastroenterol Q Publ Hell Soc Gastroenterol. 2014;27:95–104. PubMed PMC
Jandhyala S.M. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787. doi: 10.3748/wjg.v21.i29.8787. PubMed DOI PMC
Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009. PubMed DOI
Thursby E., Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836. doi: 10.1042/BCJ20160510. PubMed DOI PMC
Ouwerkerk J.P., De Vos W.M., Belzer C. Glycobiome: bacteria and mucus at the epithelial interface. Best Pr Res Clin Gastroenterol. 2013;27:25–38. doi: 10.1016/j.bpg.2013.03.001. PubMed DOI
Adeolu M., Alnajar S., Naushad S., S. Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575–5599. doi: 10.1099/ijsem.0.001485. PubMed DOI
Memia A., Deda X., Broka A., Kawalet M., Berger J. Escherichia coli meningitis in a patient with urinary tract infection: a case report. Cureus. 2023 doi: 10.7759/cureus.41312. PubMed DOI PMC
Baldelli V., Scaldaferri F., Putignani L., Del Chierico F. The Role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms. 2021;9:697. doi: 10.3390/microorganisms9040697. PubMed DOI PMC
Abdelhalim K.A., Uzel A., Gülşen Ünal N. The role of major virulence factors and pathogenicityof adherent-invasive Escherichia coli in patients withCrohn’s disease. Gastroenterol Rev. 2020;15:279–288. doi: 10.5114/pg.2020.93235. PubMed DOI PMC
Malinowska A.M., Kok D.E., Steegenga W.T., Hooiveld G.J.E.J., Chmurzynska A. Human gut microbiota composition and its predicted functional properties in people with western and healthy dietary patterns. Eur J Nutr. 2022;61:3887–3903. doi: 10.1007/s00394-022-02928-6. PubMed DOI PMC
Cronin P., Joyce S.A., O’Toole P.W., O’Connor E.M. Dietary fibre modulates the gut microbiota. Nutrients. 2021;13:1655. doi: 10.3390/nu13051655. PubMed DOI PMC
Fu J., Zheng Y., Gao Y., Xu W. Dietary fiber intake and gut microbiota in human health. Microorganisms. 2022;10:2507. doi: 10.3390/microorganisms10122507. PubMed DOI PMC
Makki K., Deehan E.C., Walter J., Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23:705–715. doi: 10.1016/j.chom.2018.05.012. PubMed DOI
Vieira A.T., Castelo P.M., Ribeiro D.A., Ferreira C.M. Influence of oral and gut microbiota in the health of menopausal women. Front Microbiol. 2017;8:1884. doi: 10.3389/fmicb.2017.01884. PubMed DOI PMC
O’Toole P.W., Jeffery I.B. Microbiome–health interactions in older people. Cell Mol Life Sci. 2018;75:119–128. doi: 10.1007/s00018-017-2673-z. PubMed DOI PMC
Martinez J.E., Kahana D.D., Ghuman S., Wilson H.P., Wilson J., Kim S.C.J., et al. Unhealthy lifestyle and gut dysbiosis: a better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Front Endocrinol. 2021;12 doi: 10.3389/fendo.2021.667066. PubMed DOI PMC
Kesavelu D., Jog P. Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther Adv Infect Dis. 2023;10 doi: 10.1177/20499361231154443. 20499361231154443. PubMed DOI PMC
Ferreira C.M., Vieira A.T., Vinolo M.A.R., Oliveira F.A., Curi R., Martins F.D.S. The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res. 2014;2014:1–12. doi: 10.1155/2014/689492. PubMed DOI PMC
Mahnic A., Pintar S., Skok P., Rupnik M. Gut community alterations associated with Clostridioides difficile colonization in hospitalized gastroenterological patients with or without inflammatory bowel disease. Front Microbiol. 2022;13 doi: 10.3389/fmicb.2022.988426. PubMed DOI PMC
Pavel F.M., Vesa C.M., Gheorghe G., Diaconu C.C., Stoicescu M., Munteanu M.A., et al. Highlighting the relevance of gut microbiota manipulation in inflammatory bowel disease. Diagnostics. 2021;11:1090. doi: 10.3390/diagnostics11061090. PubMed DOI PMC
Zhang Z., Zhang H., Chen T., Shi L., Wang D., Tang D. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun Signal. 2022;20:64. doi: 10.1186/s12964-022-00869-5. PubMed DOI PMC
Sanchez-Muñoz F., Dominguez-Lopez A., Yamamoto-Furusho J.K. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008;14:4280. doi: 10.3748/wjg.14.4280. PubMed DOI PMC
Reiff C., Kelly D. Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol. 2010;300:25–33. doi: 10.1016/j.ijmm.2009.08.004. PubMed DOI
Lawson P.A., Citron D.M., Tyrrell K.L., Finegold S.M. Reclassification of clostridium difficile as clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe. 2016;40:95–99. doi: 10.1016/j.anaerobe.2016.06.008. PubMed DOI
Rodríguez C., Romero E., Garrido-Sanchez L., Alcaín-Martínez G., Andrade Rj, Taminiau B., et al. Microbiota insights in clostridium difficile infection and inflammatory bowel disease. Gut Microbes. 2020;12:1725220. doi: 10.1080/19490976.2020.1725220. PubMed DOI PMC
Hung Y.-P., Lee J.-C., Lin H.-J., Liu H.-C., Wu Y.-H., Tsai P.-J., et al. Clinical impact of Clostridium difficile colonization. J Microbiol Immunol Infect. 2015;48:241–248. doi: 10.1016/j.jmii.2014.04.011. PubMed DOI
Boeriu A., Roman A., Fofiu C., Dobru D. The current knowledge on clostridioides difficile infection in patients with inflammatory bowel diseases. Pathogens. 2022;11:819. doi: 10.3390/pathogens11070819. PubMed DOI PMC
Bien J., Palagani V., Bozko P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Ther Adv Gastroenterol. 2013;6:53–68. doi: 10.1177/1756283X12454590. PubMed DOI PMC
Kuever J. In: The Prokaryotes. Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F., editors. Springer Berlin Heidelberg; Berlin, Heidelberg: 2014. The Family Desulfovibrionaceae; pp. 107–133. DOI
Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+ /K+ -activated Mg2+ -dependent ATP-hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Rowan F., Docherty N.G., Murphy M., Murphy B., Coffey J.C., O‘Connell P.R. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum. 2010;53:1530–1536. doi: 10.1007/DCR.0b013e3181f1e620. PubMed DOI
Kushkevych I., Coufalová M., Vítězová M., Rittmann S.K.-M.R. Sulfate-reducing bacteria of the oral cavity and their relation with periodontitis—recent advances. J Clin Med. 2020;9:2347. doi: 10.3390/jcm9082347. PubMed DOI PMC
Kushkevych I.V. Kinetic properties of pyruvate ferredoxin oxidoreductase of intestinal sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol J Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuro Endocrinol Lett. 2015;36 1:106–113. PubMed
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
Kushkevych I., Abdulina D., Kováč J., Dordević D., Vítězová M., Iutynska G., et al. Adenosine-5′-phosphosulfate- and sulfite reductases activities of sulfate-reducing bacteria from various environments. Biomolecules. 2020;10:921. doi: 10.3390/biom10060921. PubMed DOI PMC
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med Chem Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen sulfide as a toxic product in the small–large intestine axis and its role in IBD development. J Clin Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Kushkevych I., Castro Sangrador J., Dordević D., Rozehnalová M., Černý M., Fafula R., et al. Evaluation of physiological parameters of intestinal sulfate-reducing bacteria isolated from patients suffering from IBD and healthy people. J Clin Med. 2020;9:1920. doi: 10.3390/jcm9061920. PubMed DOI PMC
Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC
Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3 Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC
Loubinoux J., Bronowicki J.-P., Pereira I.A.C., Mougenel J.-L., Faou A.E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol. 2002;40:107–112. doi: 10.1111/j.1574-6941.2002.tb00942.x. PubMed DOI
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC
Brandt L.J., Aroniadis O.C. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc. 2013;78:240–249. doi: 10.1016/j.gie.2013.03.1329. PubMed DOI
Derwa Y., Gracie D.J., Hamlin P.J., Ford A.C. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharm Ther. 2017;46:389–400. doi: 10.1111/apt.14203. PubMed DOI
Rasmussen H.E., Hamaker B.R. Prebiotics and Inflammatory Bowel Disease. Gastroenterol Clin North Am. 2017;46:783–795. doi: 10.1016/j.gtc.2017.08.004. PubMed DOI
Wasilewski A., Zielińska M., Storr M., Fichna J. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1674–1682. doi: 10.1097/MIB.0000000000000364. PubMed DOI
Olaisen M., Spigset O., Flatberg A., Granlund A. van B., Brede W.R., Albrektsen G., et al. Mucosal 5-aminosalicylic acid concentration, drug formulation and mucosal microbiome in patients with quiescent ulcerative colitis. Aliment Pharm Ther. 2019;49:1301–1313. doi: 10.1111/apt.15227. PubMed DOI PMC
Campregher C., Gasche C. Aminosalicylates. Best Pr Res Clin Gastroenterol. 2011;25:535–546. doi: 10.1016/j.bpg.2011.10.013. PubMed DOI
Xu C.-T. Drug therapy for ulcerative colitis. World J Gastroenterol. 2004;10:2311. doi: 10.3748/wjg.v10.i16.2311. PubMed DOI PMC
Zenlea T. Immunosuppressive therapies for inflammatory bowel disease. World J Gastroenterol. 2014;20:3146. doi: 10.3748/wjg.v20.i12.3146. PubMed DOI PMC
Nawaz A., Glick L.R., Chaar A., Li D.K., Gaidos J.K.J., Proctor D.D., et al. Impact of thiopurine dose in anti-tumor necrosis factor combination therapy on outcomes in inflammatory bowel disease. Ann Gastroenterol. 2023;36:39–44. doi: 10.20524/aog.2022.0766. PubMed DOI PMC
Strik A.S., Bots S.J.A., D’Haens G., Löwenberg M. Optimization of anti-TNF therapy in patients with inflammatory bowel disease. Expert Rev Clin Pharm. 2016;9:429–439. doi: 10.1586/17512433.2016.1133288. PubMed DOI
Infliximab - an overview | ScienceDirect Topics n.d. 〈https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/infliximab〉 (accessed December 29, 2024).
Atri A., Shaughnessy L.W., Locascio J.J., Growdon J.H. Long-term course and effectiveness of combination therapy in Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2008;22:209–221. doi: 10.1097/WAD.0b013e31816653bc. PubMed DOI PMC
Petric Z., Goncalves J., Paixao P. Under the umbrella of clinical pharmacology: inflammatory bowel disease, infliximab and adalimumab, and a bridge to an era of biosimilars. Pharmaceutics. 2022;14:1766. doi: 10.3390/pharmaceutics14091766. PubMed DOI PMC
Gubatan J., Keyashian K., Rubin S.J., Wang J., Buckman C., Sinha S. Anti-integrins for the treatment of inflammatory bowel disease: current evidence and perspectives. Clin Exp Gastroenterol. 2021;14:333–342. doi: 10.2147/CEG.S293272. PubMed DOI PMC
Deepak P., Loftus E.V. Ustekinumab in treatment of Crohn’s disease: design, development, and potential place in therapy. Drug Des Devel Ther. 2016;10:3685–3698. doi: 10.2147/DDDT.S102141. PubMed DOI PMC
Walker W.A., Duffy L.C. Diet and bacterial colonization: role of probiotics and prebiotics. J Nutr Biochem. 1998;9:668–675. doi: 10.1016/S0955-2863(98)00058-8. DOI
Kushkevych I., Jampílek J. In: Probiotics Prev. Manag. Hum. Dis. editors. Dwivedi M.K., Amaresan N., Sankaranarayanan A., Kemp E.H., editors. Academic Press; 2022. Chapter 4 - Effect of intestinal microbiome, antibiotics, and probiotics in the prevention and management of ulcerative colitis; pp. 59–92. DOI
Office of Dietary Supplements - Probiotics n.d. 〈https://ods.od.nih.gov/factsheets/Probiotics-HealthProfessional/〉 (accessed January 12, 2025).
Trush E.A., Poluektova E.A., Beniashvilli A.G., Shifrin O.S., Poluektov Y.M., Ivashkin V.T. The evolution of human probiotics: challenges and prospects. Probiotics Antimicrob Proteins. 2020;12:1291–1299. doi: 10.1007/s12602-019-09628-4. PubMed DOI
Geier M., Butler R., Howarth G. Inflammatory bowel disease: current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int J Food Microbiol. 2007;115:1–11. doi: 10.1016/j.ijfoodmicro.2006.10.006. PubMed DOI
Damaskos D., Kolios G. Probiotics and prebiotics in inflammatory bowel disease: microflora ‘on the scope. Br J Clin Pharm. 2008;65:453–467. doi: 10.1111/j.1365-2125.2008.03096.x. PubMed DOI PMC
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC
Looijer–van Langen M.A.C., Dieleman L.A. Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis. 2009;15:454–462. doi: 10.1002/ibd.20737. PubMed DOI PMC
Roy S., Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: current perspectives. World J Gastroenterol. 2023;29:2078–2100. doi: 10.3748/wjg.v29.i14.2078. PubMed DOI PMC
Zikou E., Koliaki C., Makrilakis K. The role of fecal microbiota transplantation (FMT) in the management of metabolic diseases in humans: a narrative review. Biomedicines. 2024;12:1871. doi: 10.3390/biomedicines12081871. PubMed DOI PMC
Tan P., Li X., Shen J., Feng Q. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front Pharm. 2020;11 doi: 10.3389/fphar.2020.574533. PubMed DOI PMC
Barbau-Piednoir E., Mahillon J., Pillyser J., Coucke W., Roosens N.H., Botteldoorn N. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J Microbiol Methods. 2014;103:131–137. doi: 10.1016/j.mimet.2014.06.003. PubMed DOI
Gupta R., Rajpoot K., Tekade M., Sharma M.C., Tekade R.K. Pharmacokinet. Toxicokinet. Consid. Elsevier; 2022. Methods and models for in vitro toxicity; pp. 145–174. DOI
Bunthof C.J., Bloemen K., Breeuwer P., Rombouts F.M., Abee T. Flow cytometric assessment of viability of lactic acid bacteria. Appl Environ Microbiol. 2001;67:2326–2335. doi: 10.1128/AEM.67.5.2326-2335.2001. PubMed DOI PMC
Lee S., Bae S. Molecular viability testing of viable but non-culturable bacteria induced by antibiotic exposure. Micro Biotechnol. 2018;11:1008–1016. doi: 10.1111/1751-7915.13039. PubMed DOI PMC
Barer M.R., Harwood C.R. Vol. 41. Elsevier; 1999. Bacterial Viability and Culturability; pp. 93–137. (Adv. Microb. Physiol.). PubMed DOI
Zhu G., Yan B., Xing M., Tian C. Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light. J Microbiol Methods. 2018;153:66–73. doi: 10.1016/j.mimet.2018.09.004. PubMed DOI
Glasson J.H., Guthrie L.H., Nielsen D.J., Bethell F.A. Evaluation of an automated instrument for inoculating and spreading samples onto agar plates. J Clin Microbiol. 2008;46:1281–1284. doi: 10.1128/JCM.01687-07. PubMed DOI PMC
Tantray J.A., Mansoor S., Wani R.F.C., Nissa N.U. Basic Life Sci. Methods. Elsevier; 2023. Spread plate method of the bacterial cells; pp. 167–169. DOI
Tantray J.A., Mansoor S., Wani R.F.C., Nissa N.U. Basic Life Sci. Methods. Elsevier; 2023. Pour plate method for bacterial colony counting; pp. 177–179. DOI
Luria Broth (LB) and Luria Agar (LA) Media and Their Uses. ASMOrg n.d. 〈https://asm.org:443/Protocols/Luria-Broth-LB-and-Luria-Agar-LA-Media-and-Their-U〉 (accessed December 27, 2024).
Gajdács M., Spengler G., Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: rubik’s cube of clinical microbiology? Antibiotics. 2017;6:25. doi: 10.3390/antibiotics6040025. PubMed DOI PMC
Edwards A.N., Suárez J.M., McBride S.M. Culturing and maintaining clostridium difficile in an anaerobic environment. J Vis Exp. 2013:50787. doi: 10.3791/50787-v. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J Adv Res. 2021;27:71–78. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC
Kushkevych I., Dordević D., Kollár P. Analysis of physiological parameters of desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Kushkevych I. In: Microorganisms. Blumenberg M., Shaaban M., Elgaml A., editors. IntechOpen; 2020. Isolation and Purification of Sulfate-Reducing Bacteria. DOI
Kushkevych I.V. Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Stud Biol. 2017;10:197–228. doi: 10.30970/sbi.1001.560. DOI
Beal J., Farny N.G., Haddock-Angelli T., Selvarajah V., Baldwin G.S., Buckley-Taylor R., et al. Robust estimation of bacterial cell count from optical density. Commun Biol. 2020;3:512. doi: 10.1038/s42003-020-01127-5. PubMed DOI PMC
Bernardez L.A., De Andrade Lima L.R.P. Improved method for enumerating sulfate-reducing bacteria using optical density. MethodsX. 2015;2:249–255. doi: 10.1016/j.mex.2015.04.006. PubMed DOI PMC
Wilkins T.D., Holdeman L.V., Abramson I.J., Moore W.E.C. Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother. 1972;1:451–459. doi: 10.1128/AAC.1.6.451. PubMed DOI PMC
Sträuber H., Müller S. Viability states of bacteria—Specific mechanisms of selected probes. Cytom A. 2010;77A:623–634. doi: 10.1002/cyto.a.20920. PubMed DOI
Futoma-Kołoch B., Godlewska U., Guz-Regner K., Dorotkiewicz-Jach A., Klausa E., Rybka J., et al. Presumable role of outer membrane proteins of Salmonella containing sialylated lipopolysaccharides serovar Ngozi, sv. Isaszeg and subspecies arizonae in determining susceptibility to human serum. Gut Pathog. 2015;7:18. doi: 10.1186/s13099-015-0066-0. PubMed DOI PMC
Futoma-Kołoch B., Książczyk M., Korzekwa K., Migdał I., Pawlak A., Jankowska M., et al. Selection and electrophoretic characterization of Salmonella enterica subsp. enterica biocide variants resistant to antibiotics. Pol J Vet Sci. 2015;18:725–732. doi: 10.1515/pjvs-2015-0094. PubMed DOI
Futoma-Kołoch B., Dudek B., Kapczyńska K., Krzyżewska E., Wańczyk M., Korzekwa K., et al. Relationship of triamine-biocide tolerance of salmonella enterica serovar senftenberg to antimicrobial susceptibility, serum resistance and outer membrane proteins. Int J Mol Sci. 2017;18:1459. doi: 10.3390/ijms18071459. PubMed DOI PMC
Futoma-Kołoch B., Małaszczuk M., Korzekwa K., Steczkiewicz M., Gamian A., Bugla-Płoskońska G. The prolonged treatment of salmonella enterica strains with human serum effects in phenotype related to virulence. Int J Mol Sci. 2023;24:883. doi: 10.3390/ijms24010883. PubMed DOI PMC
Do J., Zafar H., Saier M.H. Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains. Micro Pathog. 2017;107:106–115. doi: 10.1016/j.micpath.2017.03.022. PubMed DOI PMC
Mydock-McGrane L.K., Hannan T.J., Janetka J.W. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn’s disease. Expert Opin Drug Discov. 2017;12:711–731. doi: 10.1080/17460441.2017.1331216. PubMed DOI PMC
Schwechheimer C., Kuehn M.J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13:605–619. doi: 10.1038/nrmicro3525. PubMed DOI PMC
Nadalian B., Nadalian B., Zali M.R., Yadegar A. Outer membrane vesicles derived from adherent-invasive Escherichia coli induce inflammatory response and alter the gene expression of junction-associated proteins in human intestinal epithelial cells. Can J Infect Dis Med Microbiol. 2024;2024:1–11. doi: 10.1155/2024/2701675. PubMed DOI PMC
Gul L., Modos D., Fonseca S., Madgwick M., Thomas J.P., Sudhakar P., et al. Extracellular vesicles produced by the human commensal gut bacterium Bacteroides thetaiotaomicron affect host immune pathways in a cell-type specific manner that are altered in inflammatory bowel disease. J Extra Vesicles. 2022;11 doi: 10.1002/jev2.12189. PubMed DOI PMC
Wang L., Tang L., Feng Y., Zhao S., Han M., Zhang C., et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut. 2020;69:1988–1997. doi: 10.1136/gutjnl-2019-320105. PubMed DOI PMC
Candelli M., Franza L., Pignataro G., Ojetti V., Covino M., Piccioni A., et al. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int J Mol Sci. 2021;22:6242. doi: 10.3390/ijms22126242. PubMed DOI PMC
Nighot M., Al-Sadi R., Guo S., Rawat M., Nighot P., Watterson M.D., et al. Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) activation of myosin light chain kinase expression. Am J Pathol. 2017;187:2698–2710. doi: 10.1016/j.ajpath.2017.08.005. PubMed DOI PMC
Stephens M., von der Weid P.-Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes. 2020;11:421–432. doi: 10.1080/19490976.2019.1629235. PubMed DOI PMC
Stephens M., Von Der Weid P.-Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes. 2020;11:421–432. doi: 10.1080/19490976.2019.1629235. PubMed DOI PMC
Steimle A., Michaelis L., Di Lorenzo F., Kliem T., Münzner T., Maerz J.K., et al. Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Mol Ther. 2019;27:1974–1991. doi: 10.1016/j.ymthe.2019.07.007. PubMed DOI PMC
Roussel C., Galia W., Leriche F., Chalancon S., Denis S., Van De Wiele T., et al. Comparison of conventional plating, PMA-qPCR, and flow cytometry for the determination of viable enterotoxigenic Escherichia coli along a gastrointestinal in vitro model. Appl Microbiol Biotechnol. 2018;102:9793–9802. doi: 10.1007/s00253-018-9380-z. PubMed DOI
Gatti M., Bernini V., Lazzi C., Neviani E. Fluorescence microscopy for studying the viability of micro-organisms in natural whey starters. Lett Appl Microbiol. 2006;42:338–343. doi: 10.1111/j.1472-765X.2006.01859.x. PubMed DOI
Franke J.D., Braverman A.L., Cunningham A.M., Eberhard E.E., Perry G.A. Erythrosin B: A Versatile Colorimetric and Fluorescent Vital Dye for Bacteria. BioTechniques. 2020;68:7–13. doi: 10.2144/btn-2019-0066. PubMed DOI
LIVE/DEAD BacLight Bacterial Viability Kits n.d.
Patakova P., Linhova M., Vykydalova P., Branska B., Rychtera M., Melzoch K. Use of fluorescent staining and flow cytometry for monitoring physiological changes in solventogenic clostridia. Anaerobe. 2014;29:113–117. doi: 10.1016/j.anaerobe.2013.10.006. PubMed DOI
Constante C.K., Rodríguez J., Sonnenholzner S., Domínguez-Borbor C. Adaptation of the methyl thiazole tetrazolium (MTT) reduction assay to measure cell viability in Vibrio spp. Aquaculture. 2022;560 doi: 10.1016/j.aquaculture.2022.738568. DOI
Wang H., Cheng H., Wang F., Wei D., Wang X. An improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010;82(3):330. doi: 10.1016/j.mimet.2010.06.014. PubMed DOI
Cypionka H. Oxygen Respiration by Desulfovibrio Species. Annu Rev Microbiol. 2000;54:827–848. doi: 10.1146/annurev.micro.54.1.827. PubMed DOI
Kint N., Morvan C., Martin-Verstraete I. Oxygen response and tolerance mechanisms in Clostridioides difficile. Curr Opin Microbiol. 2022;65:175–182. doi: 10.1016/j.mib.2021.11.009. PubMed DOI
Ngamwongsatit P., Banada P.P., Panbangred W., Bhunia A.K. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods. 2008;73:211–215. doi: 10.1016/j.mimet.2008.03.002. PubMed DOI
Dojindo Molecular Technologies Inc Microbial Viability Assay Kit (100 TESTS) is a colorimetric microplate assay with a wide variety of microorganism detection (No harvesting or washing required). n.d. 〈https://www.fishersci.com/shop/products/microbial-viab-assay-kit-100/NC1463469〉 (accessed December 29, 2024).
Chamchoy K., Pakotiprapha D., Pumirat P., Leartsakulpanich U., Boonyuen U. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC Biochem. 2019;20:4. doi: 10.1186/s12858-019-0108-1. PubMed DOI PMC
Walsh S., Lappin-Scott H.M., Stockdale H., Herbert B.N. An assessment of the metabolic activity of starved and vegetative bacteria using two redox dyes. J Microbiol Methods. 1995;24:1–9. doi: 10.1016/0167-7012(95)00046-1. DOI
Créach V., Baudoux A.-C., Bertru G., Rouzic B.L. Direct estimate of active bacteria: CTC use and limitations. J Microbiol Methods. 2003;52:19–28. doi: 10.1016/S0167-7012(02)00128-8. PubMed DOI
Benov L. Improved Formazan Dissolution for Bacterial MTT Assay. Microbiol Spectr n.d.;9:e01637-21. 10.1128/spectrum.01637-21. PubMed DOI PMC
Bartosch S., Mansch R., Knötzsch K., Bock E. CTC staining and counting of actively respiring bacteria in natural stone using confocal laser scanning microscopy. J Microbiol Methods. 2003;52:75–84. doi: 10.1016/S0167-7012(02)00133-1. PubMed DOI
BacLight Bacterial Membrane Potential Kit n.d. .
BacLight RedoxSensor Green Vitality Kit n.d. .
Jeckelmann J.-M., Erni B. Transporters of glucose and other carbohydrates in bacteria. PflüG Arch Eur J Physiol. 2020;472:1129–1153. doi: 10.1007/s00424-020-02379-0. PubMed DOI
Kramer B., Thielmann J. Monitoring the live to dead transition of bacteria during thermal stress by a multi-method approach. J Microbiol Methods. 2016;123:24–30. doi: 10.1016/j.mimet.2016.02.009. PubMed DOI
Do J.S., Weigel K.M., Meschke J.S., Cangelosi G.A. Biosynthetic Enhancement of the Detection of Bacteria by the Polymerase Chain Reaction. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0086433. PubMed DOI PMC
Weigel K.M., Nguyen F.K., Kearney M.R., Meschke J.S., Cangelosi G.A. Molecular viability testing of UV-inactivated bacteria. Appl Environ Microbiol. 2017;83 doi: 10.1128/AEM.00331-17. PubMed DOI PMC
Wadhawan T., McEvoy J., Prüβ B.M., Khan E. Assessing tetrazolium and ATP assays for rapid in situ viability quantification of bacterial cells entrapped in hydrogel beads. Enzym Micro Technol. 2010;47:166–173. doi: 10.1016/j.enzmictec.2010.05.003. DOI
BacTiter-GloTM Microbial Cell Viability Assay Protocol n.d. 〈https://worldwide.promega.com/resources/protocols/technical-bulletins/101/bactiter-glo-microbial-cell-viability-assay-protocol/〉 (accessed December 29, 2024).
Jarrad A.M., Blaskovich M.A.T., Prasetyoputri A., Karoli T., Hansford K.A., Cooper M.A. Detection and investigation of eagle effect resistance to vancomycin in clostridium difficile with an atp-bioluminescence assay. Front Microbiol. 2018;9:1420. doi: 10.3389/fmicb.2018.01420. PubMed DOI PMC
Gao S.-H., Ho J.Y., Fan L., Richardson D.J., Yuan Z., Bond P.L. Antimicrobial effects of free nitrous acid on desulfovibrio vulgaris: implications for sulfide-induced corrosion of concrete. Appl Environ Microbiol. 2016;82:5563–5575. doi: 10.1128/AEM.01655-16. PubMed DOI PMC
Wagner A.O., Markt R., Mutschlechner M., Lackner N., Prem E.M., Praeg N., et al. Medium preparation for the cultivation of microorganisms under strictly anaerobic/anoxic conditions. J Vis Exp. 2019:60155. doi: 10.3791/60155-v. PubMed DOI PMC
Brook I. Spectrum and treatment of anaerobic infections. J Infect Chemother. 2016;22:1–13. doi: 10.1016/j.jiac.2015.10.010. PubMed DOI
Reissier S., Penven M., Guérin F., Cattoir V. Recent trends in antimicrobial resistance among anaerobic clinical isolates. Microorganisms. 2023;11:1474. doi: 10.3390/microorganisms11061474. PubMed DOI PMC
Sood A., Ray P., Angrup A. Antimicrobial susceptibility testing of anaerobic bacteria: in routine and research. Anaerobe. 2022;75 doi: 10.1016/j.anaerobe.2022.102559. PubMed DOI
Kullberg R.F.J., Haak B.W., Chanderraj R., Prescott H.C., Dickson R.P., Wiersinga W.J. Empirical antibiotic therapy for sepsis: save the anaerobic microbiota. Lancet Respir Med. 2025;13:92–100. doi: 10.1016/S2213-2600(24)00257-1. PubMed DOI
Schuetz A.N. Antimicrobial resistance and susceptibility testing of anaerobic bacteria. Clin Infect Dis. 2014;59:698–705. doi: 10.1093/cid/ciu395. PubMed DOI
Boyanova L., Kolarov R., Mitov I. Antimicrobial resistance and the management of anaerobic infections. Expert Rev Anti Infect Ther. 2007;5:685–701. doi: 10.1586/14787210.5.4.685. PubMed DOI
Perencevich M., Burakoff R. Use of antibiotics in the treatment of inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:651–664. doi: 10.1097/01.MIB.0000225330.38119.c7. PubMed DOI
Nitzan O. Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol. 2016;22:1078. doi: 10.3748/wjg.v22.i3.1078. PubMed DOI PMC
Venditto V.J., Haydar D., Abdel-Latif A., Gensel J.C., Anstead M.I., Pitts M.G., et al. Immunomodulatory effects of azithromycin revisited: potential applications to COVID-19. Front Immunol. 2021;12 doi: 10.3389/fimmu.2021.574425. PubMed DOI PMC
Banjanac M., Munić Kos V., Nujić K., Vrančić M., Belamarić D., Crnković S., et al. Anti-inflammatory mechanism of action of azithromycin in LPS-stimulated J774A.1 cells. Pharm Res. 2012;66:357–362. doi: 10.1016/j.phrs.2012.06.011. PubMed DOI
Levine A., Turner D. Combined azithromycin and metronidazole therapy is effective in inducing remission in pediatric Crohn’s disease. J Crohns Colitis. 2011;5:222–226. doi: 10.1016/j.crohns.2011.01.006. PubMed DOI
Levine A., Kori M., Kierkus J., Sigall Boneh R., Sladek M., Escher J.C., et al. Azithromycin and metronidazole versus metronidazole-based therapy for the induction of remission in mild to moderate paediatric Crohn’s disease: a randomised controlled trial. Gut. 2019;68:239–247. doi: 10.1136/gutjnl-2017-315199. PubMed DOI
Patel S., Preuss C.V., Bernice F. StatPearls Publishing; FL: 2025. Vancomycin. StatPearls, Treasure Island. PubMed
Abarbanel D.N., Seki S.M., Davies Y., Marlen N., Benavides J.A., Cox K., et al. Immunomodulatory effect of vancomycin on treg in pediatric inflammatory bowel disease and primary sclerosing cholangitis. J Clin Immunol. 2013;33:397–406. doi: 10.1007/s10875-012-9801-1. PubMed DOI PMC
Ayers T.D., Leonard-Puppa E., Kader H.A., Waddell J., Watkins R.D., Blanchard S.S., et al. Oral vancomycin as an adjuvant treatment in IBD. Crohns Colitis 360. 2019;1 doi: 10.1093/crocol/otz015. DOI
Lev-Tzion R., Ledder O., Shteyer E., Tan M.L.N., Uhlig H.H., Turner D. Oral Vancomycin and gentamicin for treatment of very early onset inflammatory bowel disease. Digestion. 2017;95:310–313. doi: 10.1159/000475660. PubMed DOI