Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives

. 2025 ; 27 () : 851-868. [epub] 20250225

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40115534
Odkazy

PubMed 40115534
PubMed Central PMC11925123
DOI 10.1016/j.csbj.2025.02.026
PII: S2001-0370(25)00053-4
Knihovny.cz E-zdroje

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, have become increasingly prevalent across all human generations. Despite advances in diagnosis, effective long-term therapeutic options remain limited, with many patients experiencing recurrent symptoms after treatment. The multifactorial origins of ulcerative colitis are widely recognized, but the intestinal microbiome, particularly bacteria from the Desulfovibrionaceae family, is thought to play a central role in the pathogenesis of the disease. These bacteria contribute significantly to gut microbial functions, yet their cytotoxic and viability characteristics under disease conditions remain poorly understood. Our review provides insights on recent advancements in methodologies for assessing the cytotoxicity and viability of anaerobic intestinal bacteria, with a specific focus on their relevance to gut health and disease. We introduce overview from current literature on modern techniques including flow cytometry, high-throughput screening, and molecular-based assays, highlighting their applications in understanding the role of Desulfovibrionaceae and other gut microbes in IBD pathogenesis. By bridging methodological advancements with functional implications, this review aims to enhance our understanding of gut microbiota-host interactions, which are crucial for maintaining health and preventing disease through immune modulation, where microbiota help regulate immune responses and prevent excessive inflammation; nutrient metabolism, including the breakdown of dietary fibers into short-chain fatty acids that support gut health; and colonization resistance, where beneficial microbes outcompete harmful pathogens to maintain microbial balance.

Zobrazit více v PubMed

Sands B.E. Inflammatory bowel disease: past, present, and future. J Gastroenterol. 2007;42:16–25. doi: 10.1007/s00535-006-1995-7. PubMed DOI PMC

M’Koma AE. Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol. 2013;6:33–47. doi: 10.4137/CGast.S12731. PubMed DOI PMC

Hetta H.F., Ramadan Y.N., Alharbi A.A., Alsharef S., Alkindy T.T., Alkhamali A., et al. Gut microbiome as a target of intervention in inflammatory bowel disease pathogenesis and therapy. Immuno. 2024;4:400–425. doi: 10.3390/immuno4040026. DOI

Ordás I., Eckmann L., Talamini M., Baumgart D.C., Sandborn W.J. Ulcerative colitis. Lancet. 2012;380:1606–1619. doi: 10.1016/S0140-6736(12)60150-0. PubMed DOI

Fabián O., Kamarádová K. Morphology of inflammatory bowel disease (IBD) Czechoslov Pathol. 2022;58:27–37. PubMed

Alatab S., Sepanlou S.G., Ikuta K., Vahedi H., Bisignano C., Safiri S., et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:17–30. doi: 10.1016/S2468-1253(19)30333-4. PubMed DOI PMC

Wang R., Li Z., Liu S., Zhang D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open. 2023;13 doi: 10.1136/bmjopen-2022-065186. PubMed DOI PMC

Roda G., Chien Ng S., Kotze P.G., Argollo M., Panaccione R., Spinelli A., et al. Crohn’s disease. Nat Rev Dis Prim. 2020;6:22. doi: 10.1038/s41572-020-0156-2. PubMed DOI

Ungaro R., Mehandru S., Allen P.B., Peyrin-Biroulet L., Colombel J.-F. Ulcerative colitis. Lancet. 2017;389:1756–1770. doi: 10.1016/S0140-6736(16)32126-2. PubMed DOI PMC

Dordevic D., Capikova J., Dordevic S., Tremlová B., Gajdács M., Kushkevych I. Sulfur content in foods and beverages and its role in human and animal metabolism: a scoping review of recent studies. Heliyon. 2023;9 doi: 10.1016/j.heliyon.2023.e15452. PubMed DOI PMC

Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen sulfide toxicity in the gut environment: meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J Adv Res. 2021;27:55–69. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC

Fernandes D., Andreyev J. The role of the human gut microbiome in inflammatory bowel disease and radiation enteropathy. Microorganisms. 2022;10:1613. doi: 10.3390/microorganisms10081613. PubMed DOI PMC

Kushkevych I., Kovářová A., Dordevic D., Gaine J., Kollar P., Vítězová M., et al. Distribution of sulfate-reducing bacteria in the environment: cryopreservation techniques and their potential storage application. Processes. 2021;9:1843. doi: 10.3390/pr9101843. DOI

Núñez-Sánchez M.A., Melgar S., O’Donoghue K., Martínez-Sánchez M.A., Fernández-Ruiz V.E., Ferrer-Gómez M., et al. Crohn’s disease, host–microbiota interactions, and immunonutrition: dietary strategies targeting gut microbiome as novel therapeutic approaches. Int J Mol Sci. 2022;23:8361. doi: 10.3390/ijms23158361. PubMed DOI PMC

Kushkevych I., Bychkov M., Bychkova S., Gajdács M., Merza R., Vítězová M. ATPase activity of the subcellular fractions of colorectal cancer samples under the action of nicotinic acid adenine dinucleotide phosphate. Biomedicines. 2021;9:1805. doi: 10.3390/biomedicines9121805. PubMed DOI PMC

Selinger C.P., Rosiou K., Lenti M.V. Biological therapy for inflammatory bowel disease: cyclical rather than lifelong treatment? BMJ Open Gastroenterol. 2024;11 doi: 10.1136/bmjgast-2023-001225. PubMed DOI PMC

Bortlík M. Conventional and biological therapy for inflammatory bowel disease. Vnitř Lékařství. 2018;64:642–653. doi: 10.36290/vnl.2018.088. PubMed DOI

Ledder O., Turner D. Antibiotics in IBD: still a role in the biological era? Inflamm Bowel Dis. 2018;24:1676–1688. doi: 10.1093/ibd/izy067. PubMed DOI

Kushkevych I., Hýžová B., Vítězová M., Rittmann S.K.-M.R. Microscopic methods for identification of sulfate-reducing bacteria from various habitats. Int J Mol Sci. 2021;22:4007. doi: 10.3390/ijms22084007. PubMed DOI PMC

Kushkevych I., Abdulina D., Dordević D., Rozehnalová M., Vítězová M., Černý M., et al. Basic bioelement contents in anaerobic intestinal sulfate-reducing bacteria. Appl Sci. 2021;11:1152. doi: 10.3390/app11031152. DOI

Çelik T.A. In: Cytotoxicity. Çelik T.A., editor. InTech; 2018. Introductory Chapter: Cytotoxicity.

Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochim Pol. 2015;62:103–108. doi: 10.18388/abp.2014_845. PubMed DOI

Kushkevych I., Dordević D., Vítězová M., Rittmann S.K.-M.R. Environmental impact of sulfate-reducing bacteria, their role in intestinal bowel diseases, and possible control by bacteriophages. Appl Sci. 2021;11:735. doi: 10.3390/app11020735. DOI

Requena T., Velasco M. The human microbiome in sickness and in health. Rev Clínica Esp Engl Ed. 2021;221:233–240. doi: 10.1016/j.rceng.2019.07.018. PubMed DOI

Růžičková M., Vítězová M., Kushkevych I. The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Med. 2020;15:211–224. doi: 10.1515/med-2020-0032. PubMed DOI PMC

Simon J.-C., Marchesi J.R., Mougel C., Selosse M.-A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 2019;7:5. doi: 10.1186/s40168-019-0619-4. PubMed DOI PMC

Lewis J.D., Parlett L.E., Jonsson Funk M.L., Brensinger C., Pate V., Wu Q., et al. Incidence, prevalence, and racial and ethnic distribution of inflammatory bowel disease in the United States. Gastroenterology. 2023;165:1197–1205.e2. doi: 10.1053/j.gastro.2023.07.003. PubMed DOI PMC

Carolina P.M. Crohn’s Disease Treatment Update n.d. 〈https://www.uspharmacist.com/article/crohns-disease-treatment-update〉 (accessed December 27, 2024).

Gravina A., Federico A., Ruocco E., Lo Schiavo A., Romano F., Miranda A., et al. Crohn’s disease and skin. U Eur Gastroenterol J. 2016;4:165–171. doi: 10.1177/2050640615597835. PubMed DOI PMC

Feuerstein J.D., Cheifetz A.S. Crohn disease: epidemiology, diagnosis, and management. Mayo Clin Proc. 2017;92:1088–1103. doi: 10.1016/j.mayocp.2017.04.010. PubMed DOI

Rafiq S., Melzer D., Weedon M.N., Lango H., Saxena R., Scott L.J., et al. Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory diseases are not associated with the risk of type 2 diabetes. Diabetologia. 2008;51:2205–2213. doi: 10.1007/s00125-008-1160-3. PubMed DOI PMC

Ananthakrishnan A.N., Khalili H., Konijeti G.G., Higuchi L.M., de Silva P., Korzenik J.R., et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology. 2013;145:970–977. doi: 10.1053/j.gastro.2013.07.050. PubMed DOI PMC

Alfredsson J., Wick M.J. Mechanism of fibrosis and stricture formation in Crohn’s disease. Scand J Immunol. 2020;92 doi: 10.1111/sji.12990. PubMed DOI PMC

Neurath M.F., Leppkes M. Resolution of ulcerative colitis. Semin Immunopathol. 2019;41:747–756. doi: 10.1007/s00281-019-00751-6. PubMed DOI

Lynch W.D., Hsu R. StatPearls Publishing; Treasure Island (FL): 2024. Ulcerative Colitis. StatPearls. PubMed

Kucharzik T., Koletzko S., Kannengießer K., Dignaß A. Ulcerative colitis—diagnostic and therapeutic algorithms. Dtsch Ärztebl Int. 2020 doi: 10.3238/arztebl.2020.0564. PubMed DOI PMC

Mohammed Vashist N., Samaan M., Mosli M.H., Parker C.E., MacDonald J.K., Nelson S.A., et al. Endoscopic scoring indices for evaluation of disease activity in ulcerative colitis. Cochrane Database Syst Rev. 2018 doi: 10.1002/14651858.CD011450.pub2. 2018:CD011450. PubMed DOI PMC

Paine E.R. Colonoscopic evaluation in ulcerative colitis. Gastroenterol Rep. 2014;2:161–168. doi: 10.1093/gastro/gou028. PubMed DOI PMC

Satsangi J., Silverberg M.S., Vermeire S., Colombel J. The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut. 2006;55:749–753. doi: 10.1136/gut.2005.082909. PubMed DOI PMC

Monstad I., Hovde Ø., Solberg I.C., A. Moum B. Clinical course and prognosis in ulcerative colitis: results from population-based and observational studies. Ann Gastroenterol Q Publ Hell Soc Gastroenterol. 2014;27:95–104. PubMed PMC

Jandhyala S.M. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787. doi: 10.3748/wjg.v21.i29.8787. PubMed DOI PMC

Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009. PubMed DOI

Thursby E., Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836. doi: 10.1042/BCJ20160510. PubMed DOI PMC

Ouwerkerk J.P., De Vos W.M., Belzer C. Glycobiome: bacteria and mucus at the epithelial interface. Best Pr Res Clin Gastroenterol. 2013;27:25–38. doi: 10.1016/j.bpg.2013.03.001. PubMed DOI

Adeolu M., Alnajar S., Naushad S., S. Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575–5599. doi: 10.1099/ijsem.0.001485. PubMed DOI

Memia A., Deda X., Broka A., Kawalet M., Berger J. Escherichia coli meningitis in a patient with urinary tract infection: a case report. Cureus. 2023 doi: 10.7759/cureus.41312. PubMed DOI PMC

Baldelli V., Scaldaferri F., Putignani L., Del Chierico F. The Role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms. 2021;9:697. doi: 10.3390/microorganisms9040697. PubMed DOI PMC

Abdelhalim K.A., Uzel A., Gülşen Ünal N. The role of major virulence factors and pathogenicityof adherent-invasive Escherichia coli in patients withCrohn’s disease. Gastroenterol Rev. 2020;15:279–288. doi: 10.5114/pg.2020.93235. PubMed DOI PMC

Malinowska A.M., Kok D.E., Steegenga W.T., Hooiveld G.J.E.J., Chmurzynska A. Human gut microbiota composition and its predicted functional properties in people with western and healthy dietary patterns. Eur J Nutr. 2022;61:3887–3903. doi: 10.1007/s00394-022-02928-6. PubMed DOI PMC

Cronin P., Joyce S.A., O’Toole P.W., O’Connor E.M. Dietary fibre modulates the gut microbiota. Nutrients. 2021;13:1655. doi: 10.3390/nu13051655. PubMed DOI PMC

Fu J., Zheng Y., Gao Y., Xu W. Dietary fiber intake and gut microbiota in human health. Microorganisms. 2022;10:2507. doi: 10.3390/microorganisms10122507. PubMed DOI PMC

Makki K., Deehan E.C., Walter J., Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23:705–715. doi: 10.1016/j.chom.2018.05.012. PubMed DOI

Vieira A.T., Castelo P.M., Ribeiro D.A., Ferreira C.M. Influence of oral and gut microbiota in the health of menopausal women. Front Microbiol. 2017;8:1884. doi: 10.3389/fmicb.2017.01884. PubMed DOI PMC

O’Toole P.W., Jeffery I.B. Microbiome–health interactions in older people. Cell Mol Life Sci. 2018;75:119–128. doi: 10.1007/s00018-017-2673-z. PubMed DOI PMC

Martinez J.E., Kahana D.D., Ghuman S., Wilson H.P., Wilson J., Kim S.C.J., et al. Unhealthy lifestyle and gut dysbiosis: a better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Front Endocrinol. 2021;12 doi: 10.3389/fendo.2021.667066. PubMed DOI PMC

Kesavelu D., Jog P. Current understanding of antibiotic-associated dysbiosis and approaches for its management. Ther Adv Infect Dis. 2023;10 doi: 10.1177/20499361231154443. 20499361231154443. PubMed DOI PMC

Ferreira C.M., Vieira A.T., Vinolo M.A.R., Oliveira F.A., Curi R., Martins F.D.S. The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res. 2014;2014:1–12. doi: 10.1155/2014/689492. PubMed DOI PMC

Mahnic A., Pintar S., Skok P., Rupnik M. Gut community alterations associated with Clostridioides difficile colonization in hospitalized gastroenterological patients with or without inflammatory bowel disease. Front Microbiol. 2022;13 doi: 10.3389/fmicb.2022.988426. PubMed DOI PMC

Pavel F.M., Vesa C.M., Gheorghe G., Diaconu C.C., Stoicescu M., Munteanu M.A., et al. Highlighting the relevance of gut microbiota manipulation in inflammatory bowel disease. Diagnostics. 2021;11:1090. doi: 10.3390/diagnostics11061090. PubMed DOI PMC

Zhang Z., Zhang H., Chen T., Shi L., Wang D., Tang D. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun Signal. 2022;20:64. doi: 10.1186/s12964-022-00869-5. PubMed DOI PMC

Sanchez-Muñoz F., Dominguez-Lopez A., Yamamoto-Furusho J.K. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008;14:4280. doi: 10.3748/wjg.14.4280. PubMed DOI PMC

Reiff C., Kelly D. Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol. 2010;300:25–33. doi: 10.1016/j.ijmm.2009.08.004. PubMed DOI

Lawson P.A., Citron D.M., Tyrrell K.L., Finegold S.M. Reclassification of clostridium difficile as clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe. 2016;40:95–99. doi: 10.1016/j.anaerobe.2016.06.008. PubMed DOI

Rodríguez C., Romero E., Garrido-Sanchez L., Alcaín-Martínez G., Andrade Rj, Taminiau B., et al. Microbiota insights in clostridium difficile infection and inflammatory bowel disease. Gut Microbes. 2020;12:1725220. doi: 10.1080/19490976.2020.1725220. PubMed DOI PMC

Hung Y.-P., Lee J.-C., Lin H.-J., Liu H.-C., Wu Y.-H., Tsai P.-J., et al. Clinical impact of Clostridium difficile colonization. J Microbiol Immunol Infect. 2015;48:241–248. doi: 10.1016/j.jmii.2014.04.011. PubMed DOI

Boeriu A., Roman A., Fofiu C., Dobru D. The current knowledge on clostridioides difficile infection in patients with inflammatory bowel diseases. Pathogens. 2022;11:819. doi: 10.3390/pathogens11070819. PubMed DOI PMC

Bien J., Palagani V., Bozko P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Ther Adv Gastroenterol. 2013;6:53–68. doi: 10.1177/1756283X12454590. PubMed DOI PMC

Kuever J. In: The Prokaryotes. Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F., editors. Springer Berlin Heidelberg; Berlin, Heidelberg: 2014. The Family Desulfovibrionaceae; pp. 107–133. DOI

Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+ /K+ -activated Mg2+ -dependent ATP-hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI

Rowan F., Docherty N.G., Murphy M., Murphy B., Coffey J.C., O‘Connell P.R. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum. 2010;53:1530–1536. doi: 10.1007/DCR.0b013e3181f1e620. PubMed DOI

Kushkevych I., Coufalová M., Vítězová M., Rittmann S.K.-M.R. Sulfate-reducing bacteria of the oral cavity and their relation with periodontitis—recent advances. J Clin Med. 2020;9:2347. doi: 10.3390/jcm9082347. PubMed DOI PMC

Kushkevych I.V. Kinetic properties of pyruvate ferredoxin oxidoreductase of intestinal sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol J Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI

Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuro Endocrinol Lett. 2015;36 1:106–113. PubMed

Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI

Kushkevych I., Abdulina D., Kováč J., Dordević D., Vítězová M., Iutynska G., et al. Adenosine-5′-phosphosulfate- and sulfite reductases activities of sulfate-reducing bacteria from various environments. Biomolecules. 2020;10:921. doi: 10.3390/biom10060921. PubMed DOI PMC

Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med Chem Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI

Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen sulfide as a toxic product in the small–large intestine axis and its role in IBD development. J Clin Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC

Kushkevych I., Castro Sangrador J., Dordević D., Rozehnalová M., Černý M., Fafula R., et al. Evaluation of physiological parameters of intestinal sulfate-reducing bacteria isolated from patients suffering from IBD and healthy people. J Clin Med. 2020;9:1920. doi: 10.3390/jcm9061920. PubMed DOI PMC

Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC

Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3 Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC

Loubinoux J., Bronowicki J.-P., Pereira I.A.C., Mougenel J.-L., Faou A.E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol Ecol. 2002;40:107–112. doi: 10.1111/j.1574-6941.2002.tb00942.x. PubMed DOI

Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI

Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC

Brandt L.J., Aroniadis O.C. An overview of fecal microbiota transplantation: techniques, indications, and outcomes. Gastrointest Endosc. 2013;78:240–249. doi: 10.1016/j.gie.2013.03.1329. PubMed DOI

Derwa Y., Gracie D.J., Hamlin P.J., Ford A.C. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharm Ther. 2017;46:389–400. doi: 10.1111/apt.14203. PubMed DOI

Rasmussen H.E., Hamaker B.R. Prebiotics and Inflammatory Bowel Disease. Gastroenterol Clin North Am. 2017;46:783–795. doi: 10.1016/j.gtc.2017.08.004. PubMed DOI

Wasilewski A., Zielińska M., Storr M., Fichna J. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1674–1682. doi: 10.1097/MIB.0000000000000364. PubMed DOI

Olaisen M., Spigset O., Flatberg A., Granlund A. van B., Brede W.R., Albrektsen G., et al. Mucosal 5-aminosalicylic acid concentration, drug formulation and mucosal microbiome in patients with quiescent ulcerative colitis. Aliment Pharm Ther. 2019;49:1301–1313. doi: 10.1111/apt.15227. PubMed DOI PMC

Campregher C., Gasche C. Aminosalicylates. Best Pr Res Clin Gastroenterol. 2011;25:535–546. doi: 10.1016/j.bpg.2011.10.013. PubMed DOI

Xu C.-T. Drug therapy for ulcerative colitis. World J Gastroenterol. 2004;10:2311. doi: 10.3748/wjg.v10.i16.2311. PubMed DOI PMC

Zenlea T. Immunosuppressive therapies for inflammatory bowel disease. World J Gastroenterol. 2014;20:3146. doi: 10.3748/wjg.v20.i12.3146. PubMed DOI PMC

Nawaz A., Glick L.R., Chaar A., Li D.K., Gaidos J.K.J., Proctor D.D., et al. Impact of thiopurine dose in anti-tumor necrosis factor combination therapy on outcomes in inflammatory bowel disease. Ann Gastroenterol. 2023;36:39–44. doi: 10.20524/aog.2022.0766. PubMed DOI PMC

Strik A.S., Bots S.J.A., D’Haens G., Löwenberg M. Optimization of anti-TNF therapy in patients with inflammatory bowel disease. Expert Rev Clin Pharm. 2016;9:429–439. doi: 10.1586/17512433.2016.1133288. PubMed DOI

Infliximab - an overview | ScienceDirect Topics n.d. 〈https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/infliximab〉 (accessed December 29, 2024).

Atri A., Shaughnessy L.W., Locascio J.J., Growdon J.H. Long-term course and effectiveness of combination therapy in Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2008;22:209–221. doi: 10.1097/WAD.0b013e31816653bc. PubMed DOI PMC

Petric Z., Goncalves J., Paixao P. Under the umbrella of clinical pharmacology: inflammatory bowel disease, infliximab and adalimumab, and a bridge to an era of biosimilars. Pharmaceutics. 2022;14:1766. doi: 10.3390/pharmaceutics14091766. PubMed DOI PMC

Gubatan J., Keyashian K., Rubin S.J., Wang J., Buckman C., Sinha S. Anti-integrins for the treatment of inflammatory bowel disease: current evidence and perspectives. Clin Exp Gastroenterol. 2021;14:333–342. doi: 10.2147/CEG.S293272. PubMed DOI PMC

Deepak P., Loftus E.V. Ustekinumab in treatment of Crohn’s disease: design, development, and potential place in therapy. Drug Des Devel Ther. 2016;10:3685–3698. doi: 10.2147/DDDT.S102141. PubMed DOI PMC

Walker W.A., Duffy L.C. Diet and bacterial colonization: role of probiotics and prebiotics. J Nutr Biochem. 1998;9:668–675. doi: 10.1016/S0955-2863(98)00058-8. DOI

Kushkevych I., Jampílek J. In: Probiotics Prev. Manag. Hum. Dis. editors. Dwivedi M.K., Amaresan N., Sankaranarayanan A., Kemp E.H., editors. Academic Press; 2022. Chapter 4 - Effect of intestinal microbiome, antibiotics, and probiotics in the prevention and management of ulcerative colitis; pp. 59–92. DOI

Office of Dietary Supplements - Probiotics n.d. 〈https://ods.od.nih.gov/factsheets/Probiotics-HealthProfessional/〉 (accessed January 12, 2025).

Trush E.A., Poluektova E.A., Beniashvilli A.G., Shifrin O.S., Poluektov Y.M., Ivashkin V.T. The evolution of human probiotics: challenges and prospects. Probiotics Antimicrob Proteins. 2020;12:1291–1299. doi: 10.1007/s12602-019-09628-4. PubMed DOI

Geier M., Butler R., Howarth G. Inflammatory bowel disease: current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int J Food Microbiol. 2007;115:1–11. doi: 10.1016/j.ijfoodmicro.2006.10.006. PubMed DOI

Damaskos D., Kolios G. Probiotics and prebiotics in inflammatory bowel disease: microflora ‘on the scope. Br J Clin Pharm. 2008;65:453–467. doi: 10.1111/j.1365-2125.2008.03096.x. PubMed DOI PMC

Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC

Looijer–van Langen M.A.C., Dieleman L.A. Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis. 2009;15:454–462. doi: 10.1002/ibd.20737. PubMed DOI PMC

Roy S., Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: current perspectives. World J Gastroenterol. 2023;29:2078–2100. doi: 10.3748/wjg.v29.i14.2078. PubMed DOI PMC

Zikou E., Koliaki C., Makrilakis K. The role of fecal microbiota transplantation (FMT) in the management of metabolic diseases in humans: a narrative review. Biomedicines. 2024;12:1871. doi: 10.3390/biomedicines12081871. PubMed DOI PMC

Tan P., Li X., Shen J., Feng Q. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front Pharm. 2020;11 doi: 10.3389/fphar.2020.574533. PubMed DOI PMC

Barbau-Piednoir E., Mahillon J., Pillyser J., Coucke W., Roosens N.H., Botteldoorn N. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J Microbiol Methods. 2014;103:131–137. doi: 10.1016/j.mimet.2014.06.003. PubMed DOI

Gupta R., Rajpoot K., Tekade M., Sharma M.C., Tekade R.K. Pharmacokinet. Toxicokinet. Consid. Elsevier; 2022. Methods and models for in vitro toxicity; pp. 145–174. DOI

Bunthof C.J., Bloemen K., Breeuwer P., Rombouts F.M., Abee T. Flow cytometric assessment of viability of lactic acid bacteria. Appl Environ Microbiol. 2001;67:2326–2335. doi: 10.1128/AEM.67.5.2326-2335.2001. PubMed DOI PMC

Lee S., Bae S. Molecular viability testing of viable but non-culturable bacteria induced by antibiotic exposure. Micro Biotechnol. 2018;11:1008–1016. doi: 10.1111/1751-7915.13039. PubMed DOI PMC

Barer M.R., Harwood C.R. Vol. 41. Elsevier; 1999. Bacterial Viability and Culturability; pp. 93–137. (Adv. Microb. Physiol.). PubMed DOI

Zhu G., Yan B., Xing M., Tian C. Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light. J Microbiol Methods. 2018;153:66–73. doi: 10.1016/j.mimet.2018.09.004. PubMed DOI

Glasson J.H., Guthrie L.H., Nielsen D.J., Bethell F.A. Evaluation of an automated instrument for inoculating and spreading samples onto agar plates. J Clin Microbiol. 2008;46:1281–1284. doi: 10.1128/JCM.01687-07. PubMed DOI PMC

Tantray J.A., Mansoor S., Wani R.F.C., Nissa N.U. Basic Life Sci. Methods. Elsevier; 2023. Spread plate method of the bacterial cells; pp. 167–169. DOI

Tantray J.A., Mansoor S., Wani R.F.C., Nissa N.U. Basic Life Sci. Methods. Elsevier; 2023. Pour plate method for bacterial colony counting; pp. 177–179. DOI

Luria Broth (LB) and Luria Agar (LA) Media and Their Uses. ASMOrg n.d. 〈https://asm.org:443/Protocols/Luria-Broth-LB-and-Luria-Agar-LA-Media-and-Their-U〉 (accessed December 27, 2024).

Gajdács M., Spengler G., Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: rubik’s cube of clinical microbiology? Antibiotics. 2017;6:25. doi: 10.3390/antibiotics6040025. PubMed DOI PMC

Edwards A.N., Suárez J.M., McBride S.M. Culturing and maintaining clostridium difficile in an anaerobic environment. J Vis Exp. 2013:50787. doi: 10.3791/50787-v. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J Adv Res. 2021;27:71–78. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC

Kushkevych I., Dordević D., Kollár P. Analysis of physiological parameters of desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC

Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI

Kushkevych I. In: Microorganisms. Blumenberg M., Shaaban M., Elgaml A., editors. IntechOpen; 2020. Isolation and Purification of Sulfate-Reducing Bacteria. DOI

Kushkevych I.V. Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Stud Biol. 2017;10:197–228. doi: 10.30970/sbi.1001.560. DOI

Beal J., Farny N.G., Haddock-Angelli T., Selvarajah V., Baldwin G.S., Buckley-Taylor R., et al. Robust estimation of bacterial cell count from optical density. Commun Biol. 2020;3:512. doi: 10.1038/s42003-020-01127-5. PubMed DOI PMC

Bernardez L.A., De Andrade Lima L.R.P. Improved method for enumerating sulfate-reducing bacteria using optical density. MethodsX. 2015;2:249–255. doi: 10.1016/j.mex.2015.04.006. PubMed DOI PMC

Wilkins T.D., Holdeman L.V., Abramson I.J., Moore W.E.C. Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother. 1972;1:451–459. doi: 10.1128/AAC.1.6.451. PubMed DOI PMC

Sträuber H., Müller S. Viability states of bacteria—Specific mechanisms of selected probes. Cytom A. 2010;77A:623–634. doi: 10.1002/cyto.a.20920. PubMed DOI

Futoma-Kołoch B., Godlewska U., Guz-Regner K., Dorotkiewicz-Jach A., Klausa E., Rybka J., et al. Presumable role of outer membrane proteins of Salmonella containing sialylated lipopolysaccharides serovar Ngozi, sv. Isaszeg and subspecies arizonae in determining susceptibility to human serum. Gut Pathog. 2015;7:18. doi: 10.1186/s13099-015-0066-0. PubMed DOI PMC

Futoma-Kołoch B., Książczyk M., Korzekwa K., Migdał I., Pawlak A., Jankowska M., et al. Selection and electrophoretic characterization of Salmonella enterica subsp. enterica biocide variants resistant to antibiotics. Pol J Vet Sci. 2015;18:725–732. doi: 10.1515/pjvs-2015-0094. PubMed DOI

Futoma-Kołoch B., Dudek B., Kapczyńska K., Krzyżewska E., Wańczyk M., Korzekwa K., et al. Relationship of triamine-biocide tolerance of salmonella enterica serovar senftenberg to antimicrobial susceptibility, serum resistance and outer membrane proteins. Int J Mol Sci. 2017;18:1459. doi: 10.3390/ijms18071459. PubMed DOI PMC

Futoma-Kołoch B., Małaszczuk M., Korzekwa K., Steczkiewicz M., Gamian A., Bugla-Płoskońska G. The prolonged treatment of salmonella enterica strains with human serum effects in phenotype related to virulence. Int J Mol Sci. 2023;24:883. doi: 10.3390/ijms24010883. PubMed DOI PMC

Do J., Zafar H., Saier M.H. Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains. Micro Pathog. 2017;107:106–115. doi: 10.1016/j.micpath.2017.03.022. PubMed DOI PMC

Mydock-McGrane L.K., Hannan T.J., Janetka J.W. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn’s disease. Expert Opin Drug Discov. 2017;12:711–731. doi: 10.1080/17460441.2017.1331216. PubMed DOI PMC

Schwechheimer C., Kuehn M.J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol. 2015;13:605–619. doi: 10.1038/nrmicro3525. PubMed DOI PMC

Nadalian B., Nadalian B., Zali M.R., Yadegar A. Outer membrane vesicles derived from adherent-invasive Escherichia coli induce inflammatory response and alter the gene expression of junction-associated proteins in human intestinal epithelial cells. Can J Infect Dis Med Microbiol. 2024;2024:1–11. doi: 10.1155/2024/2701675. PubMed DOI PMC

Gul L., Modos D., Fonseca S., Madgwick M., Thomas J.P., Sudhakar P., et al. Extracellular vesicles produced by the human commensal gut bacterium Bacteroides thetaiotaomicron affect host immune pathways in a cell-type specific manner that are altered in inflammatory bowel disease. J Extra Vesicles. 2022;11 doi: 10.1002/jev2.12189. PubMed DOI PMC

Wang L., Tang L., Feng Y., Zhao S., Han M., Zhang C., et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut. 2020;69:1988–1997. doi: 10.1136/gutjnl-2019-320105. PubMed DOI PMC

Candelli M., Franza L., Pignataro G., Ojetti V., Covino M., Piccioni A., et al. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int J Mol Sci. 2021;22:6242. doi: 10.3390/ijms22126242. PubMed DOI PMC

Nighot M., Al-Sadi R., Guo S., Rawat M., Nighot P., Watterson M.D., et al. Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) activation of myosin light chain kinase expression. Am J Pathol. 2017;187:2698–2710. doi: 10.1016/j.ajpath.2017.08.005. PubMed DOI PMC

Stephens M., von der Weid P.-Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes. 2020;11:421–432. doi: 10.1080/19490976.2019.1629235. PubMed DOI PMC

Stephens M., Von Der Weid P.-Y. Lipopolysaccharides modulate intestinal epithelial permeability and inflammation in a species-specific manner. Gut Microbes. 2020;11:421–432. doi: 10.1080/19490976.2019.1629235. PubMed DOI PMC

Steimle A., Michaelis L., Di Lorenzo F., Kliem T., Münzner T., Maerz J.K., et al. Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Mol Ther. 2019;27:1974–1991. doi: 10.1016/j.ymthe.2019.07.007. PubMed DOI PMC

Roussel C., Galia W., Leriche F., Chalancon S., Denis S., Van De Wiele T., et al. Comparison of conventional plating, PMA-qPCR, and flow cytometry for the determination of viable enterotoxigenic Escherichia coli along a gastrointestinal in vitro model. Appl Microbiol Biotechnol. 2018;102:9793–9802. doi: 10.1007/s00253-018-9380-z. PubMed DOI

Gatti M., Bernini V., Lazzi C., Neviani E. Fluorescence microscopy for studying the viability of micro-organisms in natural whey starters. Lett Appl Microbiol. 2006;42:338–343. doi: 10.1111/j.1472-765X.2006.01859.x. PubMed DOI

Franke J.D., Braverman A.L., Cunningham A.M., Eberhard E.E., Perry G.A. Erythrosin B: A Versatile Colorimetric and Fluorescent Vital Dye for Bacteria. BioTechniques. 2020;68:7–13. doi: 10.2144/btn-2019-0066. PubMed DOI

LIVE/DEAD BacLight Bacterial Viability Kits n.d.

Patakova P., Linhova M., Vykydalova P., Branska B., Rychtera M., Melzoch K. Use of fluorescent staining and flow cytometry for monitoring physiological changes in solventogenic clostridia. Anaerobe. 2014;29:113–117. doi: 10.1016/j.anaerobe.2013.10.006. PubMed DOI

Constante C.K., Rodríguez J., Sonnenholzner S., Domínguez-Borbor C. Adaptation of the methyl thiazole tetrazolium (MTT) reduction assay to measure cell viability in Vibrio spp. Aquaculture. 2022;560 doi: 10.1016/j.aquaculture.2022.738568. DOI

Wang H., Cheng H., Wang F., Wei D., Wang X. An improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010;82(3):330. doi: 10.1016/j.mimet.2010.06.014. PubMed DOI

Cypionka H. Oxygen Respiration by Desulfovibrio Species. Annu Rev Microbiol. 2000;54:827–848. doi: 10.1146/annurev.micro.54.1.827. PubMed DOI

Kint N., Morvan C., Martin-Verstraete I. Oxygen response and tolerance mechanisms in Clostridioides difficile. Curr Opin Microbiol. 2022;65:175–182. doi: 10.1016/j.mib.2021.11.009. PubMed DOI

Ngamwongsatit P., Banada P.P., Panbangred W., Bhunia A.K. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods. 2008;73:211–215. doi: 10.1016/j.mimet.2008.03.002. PubMed DOI

Dojindo Molecular Technologies Inc Microbial Viability Assay Kit (100 TESTS) is a colorimetric microplate assay with a wide variety of microorganism detection (No harvesting or washing required). n.d. 〈https://www.fishersci.com/shop/products/microbial-viab-assay-kit-100/NC1463469〉 (accessed December 29, 2024).

Chamchoy K., Pakotiprapha D., Pumirat P., Leartsakulpanich U., Boonyuen U. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC Biochem. 2019;20:4. doi: 10.1186/s12858-019-0108-1. PubMed DOI PMC

Walsh S., Lappin-Scott H.M., Stockdale H., Herbert B.N. An assessment of the metabolic activity of starved and vegetative bacteria using two redox dyes. J Microbiol Methods. 1995;24:1–9. doi: 10.1016/0167-7012(95)00046-1. DOI

Créach V., Baudoux A.-C., Bertru G., Rouzic B.L. Direct estimate of active bacteria: CTC use and limitations. J Microbiol Methods. 2003;52:19–28. doi: 10.1016/S0167-7012(02)00128-8. PubMed DOI

Benov L. Improved Formazan Dissolution for Bacterial MTT Assay. Microbiol Spectr n.d.;9:e01637-21. 10.1128/spectrum.01637-21. PubMed DOI PMC

Bartosch S., Mansch R., Knötzsch K., Bock E. CTC staining and counting of actively respiring bacteria in natural stone using confocal laser scanning microscopy. J Microbiol Methods. 2003;52:75–84. doi: 10.1016/S0167-7012(02)00133-1. PubMed DOI

BacLight Bacterial Membrane Potential Kit n.d. .

BacLight RedoxSensor Green Vitality Kit n.d. .

Jeckelmann J.-M., Erni B. Transporters of glucose and other carbohydrates in bacteria. PflüG Arch Eur J Physiol. 2020;472:1129–1153. doi: 10.1007/s00424-020-02379-0. PubMed DOI

Kramer B., Thielmann J. Monitoring the live to dead transition of bacteria during thermal stress by a multi-method approach. J Microbiol Methods. 2016;123:24–30. doi: 10.1016/j.mimet.2016.02.009. PubMed DOI

Do J.S., Weigel K.M., Meschke J.S., Cangelosi G.A. Biosynthetic Enhancement of the Detection of Bacteria by the Polymerase Chain Reaction. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0086433. PubMed DOI PMC

Weigel K.M., Nguyen F.K., Kearney M.R., Meschke J.S., Cangelosi G.A. Molecular viability testing of UV-inactivated bacteria. Appl Environ Microbiol. 2017;83 doi: 10.1128/AEM.00331-17. PubMed DOI PMC

Wadhawan T., McEvoy J., Prüβ B.M., Khan E. Assessing tetrazolium and ATP assays for rapid in situ viability quantification of bacterial cells entrapped in hydrogel beads. Enzym Micro Technol. 2010;47:166–173. doi: 10.1016/j.enzmictec.2010.05.003. DOI

BacTiter-GloTM Microbial Cell Viability Assay Protocol n.d. 〈https://worldwide.promega.com/resources/protocols/technical-bulletins/101/bactiter-glo-microbial-cell-viability-assay-protocol/〉 (accessed December 29, 2024).

Jarrad A.M., Blaskovich M.A.T., Prasetyoputri A., Karoli T., Hansford K.A., Cooper M.A. Detection and investigation of eagle effect resistance to vancomycin in clostridium difficile with an atp-bioluminescence assay. Front Microbiol. 2018;9:1420. doi: 10.3389/fmicb.2018.01420. PubMed DOI PMC

Gao S.-H., Ho J.Y., Fan L., Richardson D.J., Yuan Z., Bond P.L. Antimicrobial effects of free nitrous acid on desulfovibrio vulgaris: implications for sulfide-induced corrosion of concrete. Appl Environ Microbiol. 2016;82:5563–5575. doi: 10.1128/AEM.01655-16. PubMed DOI PMC

Wagner A.O., Markt R., Mutschlechner M., Lackner N., Prem E.M., Praeg N., et al. Medium preparation for the cultivation of microorganisms under strictly anaerobic/anoxic conditions. J Vis Exp. 2019:60155. doi: 10.3791/60155-v. PubMed DOI PMC

Brook I. Spectrum and treatment of anaerobic infections. J Infect Chemother. 2016;22:1–13. doi: 10.1016/j.jiac.2015.10.010. PubMed DOI

Reissier S., Penven M., Guérin F., Cattoir V. Recent trends in antimicrobial resistance among anaerobic clinical isolates. Microorganisms. 2023;11:1474. doi: 10.3390/microorganisms11061474. PubMed DOI PMC

Sood A., Ray P., Angrup A. Antimicrobial susceptibility testing of anaerobic bacteria: in routine and research. Anaerobe. 2022;75 doi: 10.1016/j.anaerobe.2022.102559. PubMed DOI

Kullberg R.F.J., Haak B.W., Chanderraj R., Prescott H.C., Dickson R.P., Wiersinga W.J. Empirical antibiotic therapy for sepsis: save the anaerobic microbiota. Lancet Respir Med. 2025;13:92–100. doi: 10.1016/S2213-2600(24)00257-1. PubMed DOI

Schuetz A.N. Antimicrobial resistance and susceptibility testing of anaerobic bacteria. Clin Infect Dis. 2014;59:698–705. doi: 10.1093/cid/ciu395. PubMed DOI

Boyanova L., Kolarov R., Mitov I. Antimicrobial resistance and the management of anaerobic infections. Expert Rev Anti Infect Ther. 2007;5:685–701. doi: 10.1586/14787210.5.4.685. PubMed DOI

Perencevich M., Burakoff R. Use of antibiotics in the treatment of inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:651–664. doi: 10.1097/01.MIB.0000225330.38119.c7. PubMed DOI

Nitzan O. Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol. 2016;22:1078. doi: 10.3748/wjg.v22.i3.1078. PubMed DOI PMC

Venditto V.J., Haydar D., Abdel-Latif A., Gensel J.C., Anstead M.I., Pitts M.G., et al. Immunomodulatory effects of azithromycin revisited: potential applications to COVID-19. Front Immunol. 2021;12 doi: 10.3389/fimmu.2021.574425. PubMed DOI PMC

Banjanac M., Munić Kos V., Nujić K., Vrančić M., Belamarić D., Crnković S., et al. Anti-inflammatory mechanism of action of azithromycin in LPS-stimulated J774A.1 cells. Pharm Res. 2012;66:357–362. doi: 10.1016/j.phrs.2012.06.011. PubMed DOI

Levine A., Turner D. Combined azithromycin and metronidazole therapy is effective in inducing remission in pediatric Crohn’s disease. J Crohns Colitis. 2011;5:222–226. doi: 10.1016/j.crohns.2011.01.006. PubMed DOI

Levine A., Kori M., Kierkus J., Sigall Boneh R., Sladek M., Escher J.C., et al. Azithromycin and metronidazole versus metronidazole-based therapy for the induction of remission in mild to moderate paediatric Crohn’s disease: a randomised controlled trial. Gut. 2019;68:239–247. doi: 10.1136/gutjnl-2017-315199. PubMed DOI

Patel S., Preuss C.V., Bernice F. StatPearls Publishing; FL: 2025. Vancomycin. StatPearls, Treasure Island. PubMed

Abarbanel D.N., Seki S.M., Davies Y., Marlen N., Benavides J.A., Cox K., et al. Immunomodulatory effect of vancomycin on treg in pediatric inflammatory bowel disease and primary sclerosing cholangitis. J Clin Immunol. 2013;33:397–406. doi: 10.1007/s10875-012-9801-1. PubMed DOI PMC

Ayers T.D., Leonard-Puppa E., Kader H.A., Waddell J., Watkins R.D., Blanchard S.S., et al. Oral vancomycin as an adjuvant treatment in IBD. Crohns Colitis 360. 2019;1 doi: 10.1093/crocol/otz015. DOI

Lev-Tzion R., Ledder O., Shteyer E., Tan M.L.N., Uhlig H.H., Turner D. Oral Vancomycin and gentamicin for treatment of very early onset inflammatory bowel disease. Digestion. 2017;95:310–313. doi: 10.1159/000475660. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...