ATPase Activity of the Subcellular Fractions of Colorectal Cancer Samples under the Action of Nicotinic Acid Adenine Dinucleotide Phosphate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1425/2020
Masaryk University
PubMed
34944620
PubMed Central
PMC8698369
DOI
10.3390/biomedicines9121805
PII: biomedicines9121805
Knihovny.cz E-zdroje
- Klíčová slova
- ATPase, Ca2+, Ca2+ ATPase, Ca2+ ATPase PM, EPR, NAADP, Na+/K+ ATPase, acidic store, autophagy, basal ATPase activity, cancer,
- Publikační typ
- časopisecké články MeSH
In tumor cells with defects in apoptosis, autophagy allows prolonged survival. Autophagy leads to an accumulation of damaged mitochondria by autophagosomes. An acidic environment is maintained in compartments of cells, such as autophagosomes, late endosomes, and lysosomes; these organelles belong to the "acid store" of the cells. Nicotinic acid adenine dinucleotide phosphate (NAADP) may affect the release of Ca2+ from these organelles and affect the activity of Ca2+ ATPases and other ion transport proteins. Recently, a growing amount of evidence has shown that the variations in the expression of calcium channels or pumps are associated with the occurrence, disease-presentation, and the prognosis of colorectal cancer. We hypothesized that activity of ATPases in cancer tissue is higher because of intensive energy metabolism of tumor cells. The aim of our study was to ascertain the effect of NAADP on ATPase activity on tissue samples of colorectal cancer patients' and healthy individuals. We tested the effect of NAADP on the activity of Na+/K+ ATPase; Ca2+ ATPase of endoplasmic reticulum (EPR) and plasma membrane (PM) and basal ATPase activity. Patients' colon mucus cancer samples were obtained during endoscopy from cancer and healthy areas (control) of colorectal mucosa of the same patients. Results. The mean activity of Na+/K+ pump in samples of colorectal cancer patients (n = 5) was 4.66 ± 1.20 μmol Pi/mg of protein per hour, while in control samples from healthy tissues of the same patient (n = 5) this value was 3.88 ± 2.03 μmol Pi/mg of protein per hour. The activity of Ca2+ ATPase PM in control samples was 6.42 ± 0.63 μmol Pi/mg of protein per hour and in cancer -8.50 ± 1.40 μmol Pi/mg of protein per hour (n = 5 pts). The mean activity of Ca2+ ATPase of EPR in control samples was 7.59 ± 1.21 μmol Pi/mg versus 7.76 ± 0.24 μmol Pi/mg in cancer (n = 5 pts). Basal ATPase activity was 3.19 ± 0.87 in control samples versus 4.79 ± 1.86 μmol Pi/mg in cancer (n = 5 pts). In cancer samples, NAADP reduced the activity of Na+/K+ ATPase by 9-times (p < 0.01) and the activity of Ca2+ ATPase EPR about 2-times (p < 0.05). NAADP caused a tendency to decrease the activity of Ca2+ ATPase of PM, but increased basal ATPase activity by 2-fold vs. the mean of this index in cancer samples without the addition of NAADP. In control samples NAADP caused only a tendency to decrease the activities of Na+/K+ ATPase and Ca2+ ATPase EPR, but statistically decreased the activity of Ca2+ ATPase of PM (p < 0.05). In addition, NAADP caused a strong increase in basal ATPase activity in control samples (p < 0.01). Conclusions: We found that the activity of Na+/K+ pump, Ca2+ ATPase of PM and basal ATPase activity in cancer tissues had a strong tendency to be higher than in the controls. NAADP caused a decrease in the activities of Na+/K+ ATPase and Ca2+ ATPase EPR in cancer samples and increased basal ATPase activity. In control samples, NAADP decreased Ca2+ ATPase of PM and increased basal ATPase activity. These data confirmed different roles of NAADP-sensitive "acidic store" (autophagosomes, late endosomes, and lysosomes) in control and cancer tissue, which hypothetically may be connected with autophagy role in cancer development. The effect of NAADP on decreasing the activity of Na+/K+ pump in cancer samples was the most pronounced, both numerically and statistically. Our data shows promising possibilities for the modulation of ion-transport through the membrane of cancer cells by influence on the "acidic store" (autophagosomes, late endosomes and lysosomes) as a new approach to the treatment of colorectal cancer.
Zobrazit více v PubMed
Rawla P., Sunkara T., Barsouk A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Prz. Gastroenterol. 2019;14:89–103. doi: 10.5114/pg.2018.81072. PubMed DOI PMC
Cummings J.H., Macfarlane G.T., Macfarlane S. Intestinal Bacteria and Ulcerative Colitis. Curr. Issues Intest. Microbiol. 2003;4:9–20. PubMed
Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC
Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small–Large Intestine Axis. JCM. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC
Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and Activities of Sulphate-Reducing Bacteria in Gut Contents of Healthy Subjects and Patients with Ulcerative Colitis. FEMS Microbiol. Lett. 1991;86:103–112. doi: 10.1111/j.1574-6968.1991.tb04799.x. DOI
Kushkevych I., Dordević D., Kollár P. Analysis of Physiological Parameters of Desulfovibrio Strains from Individuals with Colitis. Open Life Sci. 2019;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen Sulfide Toxicity in the Gut Environment: Meta-Analysis of Sulfate-Reducing and Lactic Acid Bacteria in Inflammatory Processes. J. Adv. Res. 2020;27:55–69. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Possible Synergy Effect of Hydrogen Sulfide and Acetate Produced by Sulfate-Reducing Bacteria on Inflammatory Bowel Disease Development. J. Adv. Res. 2020;27:71–78. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC
Yun C., Lee S. The Roles of Autophagy in Cancer. Int. J. Mol. Sci. 2018;19:3466. doi: 10.3390/ijms19113466. PubMed DOI PMC
Yim W.W.-Y., Mizushima N. Lysosome Biology in Autophagy. Cell Discov. 2020;6:6. doi: 10.1038/s41421-020-0141-7. PubMed DOI PMC
Alevizopoulos K., Calogeropoulou T., Lang F., Stournaras C. Na+/K+ ATPase Inhibitors in Cancer. Curr. Drug Targets. 2014;15:988–1000. doi: 10.2174/1389450115666140908125025. PubMed DOI
Lee H.C. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Mediated Calcium Signaling. J. Biol. Chem. 2005;280:33693–33696. doi: 10.1074/jbc.R500012200. PubMed DOI
Axelrad J.E., Lichtiger S., Yajnik V. Inflammatory Bowel Disease and Cancer: The Role of Inflammation, Immunosuppression, and Cancer Treatment. World J. Gastroentero. 2016;22:4794. doi: 10.3748/wjg.v22.i20.4794. PubMed DOI PMC
Curry M.C., Roberts-Thomson S.J., Monteith G.R. Plasma Membrane Calcium ATPases and Cancer. BioFactors. 2011;37:132–138. doi: 10.1002/biof.146. PubMed DOI
Prasad V., Okunade G.W., Miller M.L., Shull G.E. Phenotypes of SERCA and PMCA Knockout Mice. Biochem. Biophys. Res. Commun. 2004;322:1192–1203. doi: 10.1016/j.bbrc.2004.07.156. PubMed DOI
Mijatovic T., Dufrasne F., Kiss R. Na+ /K+ -ATPase and Cancer. Pharm. Pat. Anal. 2012;1:91–106. doi: 10.4155/ppa.12.3. PubMed DOI
Ferents I.M., Bychkova S.V., Bychkov M.A. Peculiarities of the Effects of Bile Acids on Atpase Activity of the Colon Mucosa in Patients with Overweight and Irritable Bowel Syndrome. Wiad. Lek. 2020;73:574–577. doi: 10.36740/WLek202003133. PubMed DOI
Hreniukh V., Bychkova S., Kulachkovsky O., Babsky A. Effect of Bafilomycin and NAADP on Membrane-Associated ATPases and Respiration of Isolated Mitochondria of the Murine Nemeth-Kellner Lymphoma: Mitochondria and ATPase Activities in Lymphoma. Cell Biochem. Funct. 2016;34:579–587. doi: 10.1002/cbf.3231. PubMed DOI
Chemaly E.R., Troncone L., Lebeche D. SERCA Control of Cell Death and Survival. Cell Calcium. 2018;69:46–61. doi: 10.1016/j.ceca.2017.07.001. PubMed DOI PMC
Khajah M.A., Mathew P.M., Luqmani Y.A. Na+/K+ ATPase Activity Promotes Invasion of Endocrine Resistant Breast Cancer Cells. PLoS ONE. 2018;13:e0193779. doi: 10.1371/journal.pone.0193779. PubMed DOI PMC
Huang W., Zhang Y., Xu Y., Yang S., Li B., Huang L., Lou G. Comprehensive Analysis of the Expression of Sodium/Potassium-ATPase α Subunits and Prognosis of Ovarian Serous Cystadenocarcinoma. Cancer Cell Int. 2020;20:309. doi: 10.1186/s12935-020-01414-5. PubMed DOI PMC
Baker Bechmann M., Rotoli D., Morales M., del Maeso M.C., del García M.P., Ávila J., Mobasheri A., Martín-Vasallo P. Na,K-ATPase Isozymes in Colorectal Cancer and Liver Metastases. Front. Physiol. 2016;7:9. doi: 10.3389/fphys.2016.00009. PubMed DOI PMC
Bychkova S. Influence of NAADP and Bafilomycine A1 on Activity of ATPase in Liver Postmitochondrial Fraction. Biol. Stud. 2015;9:31–40. doi: 10.30970/sbi.0903.445. DOI
Brown A.M., Lew V.L. The Effect of Intracellular Calcium on the Sodium Pump of Human Red Cells. J. Physiol. 1983;343:455–493. doi: 10.1113/jphysiol.1983.sp014904. PubMed DOI PMC
Morgan A.J., Davis L.C., Wagner S.K.T.Y., Lewis A.M., Parrington J., Churchill G.C., Galione A. Bidirectional Ca2+ Signaling Occurs between the Endoplasmic Reticulum and Acidic Organelles. J. Cell Biol. 2013;200:789–805. doi: 10.1083/jcb.201204078. PubMed DOI PMC
Kosterin S.O., Veklich T.O., Pryluts’kyi I. Kinetic interpretation of the original pH-dependence of enzymatic activity of „basal” Mg2+ ATPase of the smooth muscle sarcolemma. Ukr. Biokhim. Zh. 2005;2005:37–45. PubMed
Song Y., Lee S.-Y., Kim S., Choi I., Kim S.-H., Shum D., Heo J., Kim A.-R., Kim K.M., Seo H.R. Inhibitors of Na+/K+ ATPase Exhibit Antitumor Effects on Multicellular Tumor Spheroids of Hepatocellular Carcinoma. Sci. Rep. 2020;10:5318. doi: 10.1038/s41598-020-62134-4. PubMed DOI PMC
Trenti A., Grumati P., Cusinato F., Orso G., Bonaldo P., Trevisi L. Cardiac Glycoside Ouabain Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells via a JNK-Dependent Decrease of Bcl-2. Biochem. Pharmacol. 2014;89:197–209. doi: 10.1016/j.bcp.2014.02.021. PubMed DOI
Varga K., Hollósi A., Pászty K., Hegedűs L., Szakács G., Tímár J., Papp B., Enyedi Á., Padányi R. Expression of Calcium Pumps Is Differentially Regulated by Histone Deacetylase Inhibitors and Estrogen Receptor Alpha in Breast Cancer Cells. BMC Cancer. 2018;18:1029. doi: 10.1186/s12885-018-4945-x. PubMed DOI PMC
Prevarskaya N., Skryma R., Shuba Y. Targeting Ca2+ Transport in Cancer: Close Reality or Long Perspective? Expert Opin. Ther. Targets. 2013;17:225–241. doi: 10.1517/14728222.2013.741594. PubMed DOI
Ribiczey P., Tordai A., Andrikovics H., Filoteo A.G., Penniston J.T., Enouf J., Enyedi Á., Papp B., Kovács T. Isoform-Specific up-Regulation of Plasma Membrane Ca2+ ATPase Expression during Colon and Gastric Cancer Cell Differentiation. Cell Calcium. 2007;42:590–605. doi: 10.1016/j.ceca.2007.02.003. PubMed DOI PMC
Aung C.S., Ye W., Plowman G., Peters A.A., Monteith G.R., Roberts-Thomson S.J. Plasma Membrane Calcium ATPase 4 and the Remodeling of Calcium Homeostasis in Human Colon Cancer Cells. Carcinogenesis. 2009;30:1962–1969. doi: 10.1093/carcin/bgp223. PubMed DOI
Faris P., Pellavio G., Ferulli F., Di Nezza F., Shekha M., Lim D., Maestri M., Guerra G., Ambrosone L., Pedrazzoli P., et al. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Induces Intracellular Ca2+ Release through the Two-Pore Channel TPC1 in Metastatic Colorectal Cancer Cells. Cancers. 2019;11:542. doi: 10.3390/cancers11040542. PubMed DOI PMC