Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development
Status PubMed-not-MEDLINE Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33318867
PubMed Central
PMC7728581
DOI
10.1016/j.jare.2020.03.007
PII: S2090-1232(20)30056-4
Knihovny.cz E-zdroje
- Klíčová slova
- Dissimilatory sulfate reduction, Hydrogen sulfide, Sulfate-reducing bacteria, Toxicity, Ulcerative colitis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
INTRODUCTION: Increased numbers of sulfate-reducing bacteria (SRB) are often found in the feces of people and animals with inflammatory bowel disease. The final products of their metabolism are hydrogen sulfide and acetate, which are produced during dissimilatory sulfate reduction process. OBJECTIVES: The aim of the study was to monitor processes concerning sulfate reduction microbial metabolisms, including: the main microbial genera monitoring and their hydrogen sulfide production in the intestines of healthy and not healthy individuals, phylogenetic analysis of SRB isolates, cluster analysis of SRB physiological and biochemical parameters, SRB growth kinetic parameters calculation, same as the application of the two-factor dispersion analysis for finding relationship between SRB biomass accumulation, temperature and pH. Feces samples from healthy people and patients with colitis were used for isolation of sulfate-reducing microbial communities. METHODS: Microbiological, biochemical, biophysical, molecular biology methods, and statistical processing of the results have been used for making an evaluation of gained results. RESULTS: Two dominant SRB morphotypes differed in colony size and quantitative ratio in the feces of healthy and colitis patients were observed and identified. In the feces of healthy people, 93% of SRB of morphotype I prevailed (Desulfovibrio) while morphotype II made only 7% (Desulfomicrobium); in the feces of patients with colitis, the ratio of these morphotypes was 99:1, respectively. Hydrogen sulfide concentrations are also higher in the feces of people with colitis and certain synergy effects exist among acetate produced by SRB. CONCLUSIONS: The study results brought important findings concerning colony environments with developed colitis and these findings can lead to the development of possible risk indicators of ulcerative colitis prevalence.
Zobrazit více v PubMed
Loubinoux J., Bronowicji J.P., Pereira I.A. Sulphate-reducing bacteria in human feces and their association with inflammatory diseases. FEMS Microbiol Ecol. 2002;40:107–112. PubMed
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411.
Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents of health subjects and patients with ulcerative colitis. FEMS Microbiol Ecol. 1991;86:103–112.
McDougall R., Robson J., Paterson D., Tee W. Bacteremia caused by a recently described novel Desulfovibrio species. J Clin Microbiol. 1997;35:1805–1808. PubMed PMC
Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J Clin Microbiol. 2000;38:931–934. PubMed PMC
Rowan F.E., Docherty N.G., Coffey J.C., O’Connell P.R. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg. 2009;96:151–158. PubMed
Pitcher M.C., Cummings J.H. Hydrogen sulphide: A bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4. PubMed PMC
Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 Acta Vet Brno. 2015;84:3–12.
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem Pol. 2015;62:1037–1108. PubMed
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol J Microbiol. 2015;64:107–114. PubMed
Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol Ecol. 1993;12:117–125.
Cummings J.H., Macfarlane G.T., Macfarlane S. Intestinal bacteria and ulcerative colitis. Curr Issues Intest Microbiol. 2003;4:9–20. PubMed
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143.
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. PubMed PMC
Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. PubMed PMC
Brenner DJ., Krieg NR, Staley JT, Garrity GM. Bergey’s manual of Systematic Bacteriology. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Second Edition. Printed in the United States of America, 2005; 2: 1388 p.
Attene-Ramos M.S., Wagner E.D., Plewa M.J., Gaskins H.R. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res. 2006;4:9–14. PubMed
Beauchamp R.O., Bus J.S., Popp J.A., Boreiko C.J., Andjelkovich D.A., Leber P. A critical review of the literature on hydrogen sulfide toxicity. CRC Crit Rev Toxicol. 1984;13:25–97. PubMed
Blachier F., Davila A.M., Mimoun S. Luminal sulfide and large intestine mucosa: Friend or foe? Amino Acids. 2010;39:335–347. PubMed
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch Microbiol. 2019;201:389–397. PubMed
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen sulfide as a toxic product in the small-large intestine axis and its role in IBD development. J Clin Med. 2019;8:1054. PubMed PMC
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J Appl Biomed. 2018;16:241–246.
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J Appl Biomed. 2016;14:125–130.
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med Chem Res. 2018;27:278–284.
Macfarlane S., Dillon J.F. Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol. 2007;102:1187–1196. PubMed
Macfarlane S., Hopkins M.J., Macfarlane G.T. Bacterial growth and metabolism on surfaces in the large intestine. Microb Ecol Health Dis. 2000;2:64–72.
Beauchamp R.O., Bus J.S., Popp J.A. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol. 1984;13:25–97. PubMed
Kováč J., Kushkevych I. Proceedings of the International PhD Students Conference MendelNet, Brno, Czech Republic, 6–7 November 2017. 2017. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; pp. 702–707.
Postgate J.R. Cambridge University Press; Cambridge, UK: 1984. The Sulfate Reducing Bacteria.
Kushkevych I. Isolation and Purification of Sulfate-Reducing Bacteria. In: Microorganisms edited by: Dr. Miroslav Blumenberg. IntechOpen, London, UK.
Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703. PubMed PMC
Persing D.H. second ed. ASM Press; Publisher: 2011. Molecular Microbiology: Diagnostic Principles and Practice; p. 960.
Cline J.D. Spectrophotometric determination of hydrogen sulfide in natural water. Limnol Oceanogr. 1969;14:454–458.
Bailey N.T.J. Cambridge University Press; Cambridge, UK: 1995. Statistical Methods in Biology.
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11:3270.
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91.
Roediger W.E.W., Duncan A., Kapaniris O., Millard S. Reducing sulfur compounds of colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology. 1993;104:802–809. PubMed
Levitt M.D., Furne J., Springfield J., Suarez F., DeMaster E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J Clin Investing. 1999;104:1107–1114. PubMed PMC
Ohge H. The effect of antibiotics and bismuth on fecal hydrogen sulfide and sulfate-reducing bacteria in the rat. In: Ohge H., Furne J.K., Springfield J., editors. Vol. 228. 2003. pp. 137–142. (FEMS Microbiol Lett). PubMed
Willis Caroline L., Cummings John H., Neale Graham, Gibson Glenn R. Nutritional aspects of dissimilatory sulfate reduction in the human large intestine. Curr Microbiol. 1997;35(5):294–298. doi: 10.1007/s002849900257. PubMed DOI
Levine Jimmy, Ellis Carol J, Furne Julie K, Springfield John, Levitt Michael D. Fecal hydrogen sulfide production in ulcerative colitis. Am J Gastroenterol. 1998;93(1):83–87. doi: 10.1111/j.1572-0241.1998.083_c.x. PubMed DOI
Loubinoux J., Valente F.M.A., Pereira I.A.C. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int J Syst Evol Microbiol. 2002;52:1305–1308. PubMed
Moore W.E. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species of the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium and Ruminococcus. In: Moore W.E., Johnson J.L., Holdeman L.V., editors. Vol. 26. 1976. pp. 238–252. (Int J Syst Bact).
Langendijk P.S. Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. In: Langendijk P.S., Kulik E.M., Sandmeier H., editors. Vol. 51. 2001. pp. 1035–1044. (Int J Syst Evol Microbiol). PubMed
Florin T.H., Neale G., Goretski S. Sulfate in food and beverages. J Food Compos Anal. 1993;6:140–151.
Kushkevych I., Vítězová M., Vítěz T., Kovac J., Kaucká P., Jesionek W. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. PubMed PMC
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch Microbiol. 2018;200:945–950. PubMed
NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria
Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats
Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances