• This record comes from PubMed

Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies

. 2023 Apr ; 9 (4) : e15452. [epub] 20230413

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article, Scoping Review

Links

PubMed 37123936
PubMed Central PMC10130226
DOI 10.1016/j.heliyon.2023.e15452
PII: S2405-8440(23)02659-2
Knihovny.cz E-resources

Sulfur is a vital element that all living things require, being a component of proteins and other bio-organic substances. The various kinds and varieties of microbes in nature allow for the transformation of this element. It also should be emphasized that volatile sulfur compounds are typically present in food in trace amounts. Life cannot exist without sulfur, yet it also poses a potential health risk. The colon's sulfur metabolism, which is managed by eukaryotic cells, is much better understood than the S metabolism in gastrointestinal bacteria. Numerous additional microbial processes are anticipated to have an impact on the content and availability of sulfated compounds, as well as intestinal S metabolism. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in relation to colonic health, but it is still unclear whether it is beneficial or harmful. Several lines of evidence suggest that sulfate-reducing bacteria or exogenous hydrogen sulfide may be the root cause of intestinal ailments, including inflammatory bowel diseases and colon cancer. Taurine serves a variety of biological and physiological purposes, including roles in inflammation and protection, additionally, low levels of taurine can be found in bodily fluids, and taurine is the primary sulfur component present in muscle tissue (serum and urine). The aim of this scoping review was to compile data from the most pertinent scientific works about S compounds' existence in food and their metabolic processes. The importance of S compounds in various food products and how these compounds can impact metabolic processes are both stressed in this paper.

See more in PubMed

Brosnan J.T., Brosnan M.E. The sulfur-containing amino acids: an overview. J. Nutr. 2006;136:1636S–1640S. doi: 10.1093/jn/136.6.1636S. PubMed DOI

Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC

Fernandes R., Amador P., Prudêncio C. β-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev. Med. Microbiol. 2013;24:7–17. doi: 10.1097/MRM.0b013e3283587727. DOI

Henry R.J. The mode of action of sulfonamides. Bacteriol. Rev. 1943;7:175–262. doi: 10.1128/br.7.4.175-262.1943. PubMed DOI PMC

Borlinghaus J., Albrecht F., Gruhlke M., Nwachukwu I., Slusarenko A. Allicin: chemistry and biological properties. Molecules. 2014;19:12591–12618. doi: 10.3390/molecules190812591. PubMed DOI PMC

Alanazi A.M., Mostafa G.A.E., Al-Badr A.A. Elsevier; 2015. Glutathione; pp. 43–158. (Profiles of Drug Substances, Excipients and Related Methodology). PubMed DOI

Thomas R., Shoemaker C.B., Eriks K. The molecular and crystal structure of dimethyl sulfoxide, (H 3 C) 2 SO. Acta Crystallogr. 1966;21:12–20. doi: 10.1107/S0365110X66002263. DOI

Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Phcog. Rev. 2010;4:118. doi: 10.4103/0973-7847.70902. PubMed DOI PMC

Chapter 1. Introduction to sulfur chemical biology. Royal Society of Chemistry; Cambridge: 2020. pp. 5–22. (Chemical Biology,). DOI

Liu S., Li L., Guo L., Jin H., Kou J., Li G. Sulfur transformation characteristics and mechanisms during hydrogen production by coal gasification in supercritical water. Energy Fuels. 2017;31:12046–12053. doi: 10.1021/acs.energyfuels.7b02505. DOI

Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI

Kushkevych I., Dordević D., Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J. Adv. Res. 2021;27:71–78. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC

Kotrsova V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res. Appl. Chem. 2019;9:4066–4069. doi: 10.33263/BRIAC94.066069. DOI

Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The sulfate-reducing microbial communities and meta-analysis of their occurrence during diseases of small–large intestine Axis. JCM. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC

Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI

Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI

Kushkevych I., Coufalová M., Vítězová M., Rittmann S.K.-M.R. Sulfate-reducing bacteria of the oral cavity and their relation with periodontitis—recent advances. JCM. 2020;9:2347. doi: 10.3390/jcm9082347. PubMed DOI PMC

Struk M., Kushkevych I. Perspectives of application of phototrophic sulfur bacteria in hydrogen sulfide utilization. MendelNet. 2018:537–541.

Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC

Kushkevych I.V. Kinetic properties of pyruvate ferredoxin oxidoreductase of intestinal sulfate-reducing bacteria Desulfovibrio piger vib-7 and Desulfomicrobium sp. rod-9. Pol. J. Microbiol. 2015;64:107–114. PubMed

Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI

Kushkevych I. In: Microorganisms. Blumenberg M., Shaaban M., Elgaml A., editors. IntechOpen; 2020. Isolation and purification of sulfate-reducing bacteria. DOI

Kushkevych I. Identification of sulfate-reducing bacteria strains of human large intestine. Biol. Stud. 2013;7:115–132. doi: 10.30970/sbi.0703.312. DOI

Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen sulfide as a toxic product in the small–large intestine Axis and its role in IBD development. JCM. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC

Kushkevych I., Castro Sangrador J., Dordević D., Rozehnalová M., Černý M., Fafula R., Vítězová M., Rittmann S.K.-M.R. Evaluation of physiological parameters of intestinal sulfate-reducing bacteria isolated from patients suffering from IBD and healthy people. JCM. 2020;9:1920. doi: 10.3390/jcm9061920. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M., Rittmann S.K.-M.R. Environmental impact of sulfate-reducing bacteria, their role in intestinal bowel diseases, and possible control by bacteriophages. Appl. Sci. 2021;11:735. doi: 10.3390/app11020735. DOI

Kushkevych I., Vítězová M., Kos J., Kollár P., Jampílek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI

Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI

Kushkevych I., Abdulina D., Dordević D., Rozehnalová M., Vítězová M., Černý M., Svoboda P., Rittmann S.K.-M.R. Basic bioelement contents in anaerobic intestinal sulfate-reducing bacteria. Appl. Sci. 2021;11:1152. doi: 10.3390/app11031152. DOI

Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3 Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI

Kushkevych I., Dordević D., Kollár P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2019;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC

Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M. Bergey's Manual of Systematic Bacteriology. second ed. Springer; Boston, MA, USA: 2005. The proteobacteria, Part C: the alpha-, beta-, delta-, and epsilonproteobacteria; p. 1388.

Růžičková M., Vítězová M., Kushkevych I. The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Med. 2020;15:211–224. doi: 10.1515/med-2020-0032. PubMed DOI PMC

Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC

Shankaranarayana M.L., Raghavan B., Abraham K.O., Natarajan C.P., Brodnitz H.H. Volatile sulfur compounds in food flavors. CRC Crit. Rev. Food Technol. 1974;4:395–435. doi: 10.1080/10408397409527163. DOI

Parcell S. Sulfur in human nutrition and applications in medicine. Alternative Med. Rev. 2002;7:22–44. PubMed

Roberts A.C., McWEENY D.J. The uses of sulphur dioxide in the food industry: a review. Int. J. Food Sci. Technol. 2007;7:221–238. doi: 10.1111/j.1365-2621.1972.tb01658.x. DOI

Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP-hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI

Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI

Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol. Lett. 2015;36(Suppl 1):106–113. PubMed

Kushkevych I., Abdulina D., Kováč J., Dordević D., Vítězová M., Iutynska G., Rittmann S.K.-M.R. Adenosine-5′-phosphosulfate- and sulfite reductases activities of sulfate-reducing bacteria from various environments. Biomolecules. 2020;10:921. doi: 10.3390/biom10060921. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC

Schwimmer S., Friedman M. Genesis of volatile sulfur-containing food flavors. Flavour Ind. 1972;1972

Raab A., Feldmann J. Biological sulphur-containing compounds – analytical challenges. Anal. Chim. Acta. 2019;1079:20–29. doi: 10.1016/j.aca.2019.05.064. PubMed DOI

Rappel C., Schaumlöffel D. The role of sulfur and sulfur isotope dilution analysis in quantitative protein analysis. Anal. Bioanal. Chem. 2008;390:605–615. doi: 10.1007/s00216-007-1607-2. PubMed DOI

Rampler E., Dalik T., Stingeder G., Hann S., Koellensperger G. Sulfur containing amino acids – challenge of accurate quantification. J. Anal. At. Spectrom. 2012;27:1018. doi: 10.1039/c2ja10377j. DOI

Necas J., Bartosikova L. Carrageenan: a review. Vet. Med. 2013;2013:187–205.

Gorman J.J., Wallis T.P., Pitt J.J. Protein disulfide bond determination by mass spectrometry. Mass Spectrom. Rev. 2002;21:183–216. doi: 10.1002/mas.10025. PubMed DOI

Mussinan C.J., Keelan M.E., editors. Sulfur Compounds in Foods. American Chemical Society; Washington, DC: 1994. DOI

Sreekumar R., Al-Attabi Z., Deeth H.C., Turner M.S. Volatile sulfur compounds produced by probiotic bacteria in the presence of cysteine or methionine. Lett. Appl. Microbiol. 2009 doi: 10.1111/j.1472-765X.2009.02610.x. PubMed DOI

Carrete R., Vidal M.T., Bordons A., Constanti M. Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 2002;211:155–159. doi: 10.1111/j.1574-6968.2002.tb11218.x. PubMed DOI

Yamada I., Shibuya H., Matsubara O., Umehara I., Makino T., Numano F., Suzuki S. Pulmonary artery disease in Takayasu's arteritis: angiographic findings. Am. J. Roentgenol. 1992;159:263–269. doi: 10.2214/ajr.159.2.1352939. PubMed DOI

Restaino S., Mereu L., Finelli A., Spina M.R., Marini G., Catena U., Turco L.C., Moroni R., Milani M., Cela V., Scambia G., Fanfani F. Robotic surgery vs laparoscopic surgery in patients with diagnosis of endometriosis: a systematic review and meta-analysis. J. Robotic Surg. 2020;14:687–694. doi: 10.1007/s11701-020-01061-y. PubMed DOI

Kelly K.K., Meadows S.M., Cripps R.M. Drosophila MEF2 is a direct regulator of Actin57B transcription in cardiac, skeletal, and visceral muscle lineages. Mech. Dev. 2002;110:39–50. doi: 10.1016/S0925-4773(01)00586-X. PubMed DOI

Esparza I., Martínez-Inda B., Cimminelli M.J., Jimeno-Mendoza M.C., Moler J.A., Jiménez-Moreno N., Ancín-Azpilicueta C. Reducing SO2 doses in red wines by using grape stem extracts as antioxidants. Biomolecules. 2020;10:1369. doi: 10.3390/biom10101369. PubMed DOI PMC

Mandrile L., Cagnasso I., Berta L., Giovannozzi A.M., Petrozziello M., Pellegrino F., Asproudi A., Durbiano F., Rossi A.M. Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy. Food Chem. 2020;326 doi: 10.1016/j.foodchem.2020.127009. PubMed DOI

Boelens M.H., Van Gemert L.J. Volatile character-impact sulfur compounds and their sensory properties. Perfum. Flavor. 1993;1993:29–39.

Block E. Biological activity of Allium compounds: recent results. Acta Hortic. 2005:41–58. doi: 10.17660/ActaHortic.2005.688.4. DOI

Cannon R.J., Ho C.-T. Volatile sulfur compounds in tropical fruits. J. Food Drug Anal. 2018;26:445–468. doi: 10.1016/j.jfda.2018.01.014. PubMed DOI PMC

Du X., Whitaker V., Rouseff R. Changes in strawberry volatile sulfur compounds due to genotype, fruit maturity and sample preparation: Florida strawberry sulfur volatiles. Flavour Fragrance J. 2012;27:398–404. doi: 10.1002/ffj.3107. DOI

Cecatto A.P., Calvete E.O., Nienow A.A., da Costa R.C., Mendonça H.F.C., Pazzinato A.C. Culture systems in the production and quality of strawberry cultivars. Acta Sci. Agron. 2013;35:471–478. doi: 10.4025/actasciagron.v35i4.16552. DOI

Fei M.L., Tong L., Wei L., De Yang L. Changes in antioxidant capacity, levels of soluble sugar, total polyphenol, organosulfur compound and constituents in garlic clove during storage. Ind. Crop. Prod. 2015;69:137–142. doi: 10.1016/j.indcrop.2015.02.021. DOI

Ariga T., Seki T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors. 2006;26:93–103. doi: 10.1002/biof.5520260201. PubMed DOI

Nicastro H.L., Ross S.A., Milner J.A. Garlic and onions: their cancer prevention properties. Cancer Prev. Res. 2015;8:181–189. doi: 10.1158/1940-6207.CAPR-14-0172. PubMed DOI PMC

Pétel C., Onno B., Prost C. Sourdough volatile compounds and their contribution to bread: a review. Trends Food Sci. Technol. 2017;59:105–123. doi: 10.1016/j.tifs.2016.10.015. DOI

Ruiz J.A., Quilez J., Mestres M., Guasch J. Solid-phase microextraction method for headspace analysis of volatile compounds in bread crumb. Cereal Chem. J. 2003;80:255–259. doi: 10.1094/CCHEM.2003.80.3.255. DOI

Ruiz M.A., Pincus A.L., Dickinson K.A. NEO PI-R predictors of alcohol use and alcohol-related problems. J. Pers. Assess. 2003;81:226–236. doi: 10.1207/S15327752JPA8103_05. PubMed DOI

Pu D., Zhang H., Zhang Y., Sun B., Ren F., Chen H. Characterization of the key aroma compounds in white bread by aroma extract dilution analysis, quantitation, and sensory evaluation experiments. J. Food Process. Preserv. 2019;43 doi: 10.1111/jfpp.13933. DOI

Parliment T.H., Morello M.J., McGorrin R.J., editors. Thermally Generated Flavors: Maillard, Microwave, and Extrusion Processes. American Chemical Society; Washington, DC: 1993. DOI

Mottram D.S. Flavour formation in meat and meat products: a review. Food Chem. 1998;62:415–424. doi: 10.1016/S0308-8146(98)00076-4. DOI

Kosowska M., Majcher M.A., Fortuna T. Volatile compounds in meat and meat products. Food Sci. Technol. 2017;37:1–7. doi: 10.1590/1678-457x.08416. DOI

Vazquez-Landaverde P.A., Torres J.A., Qian M.C. Quantification of trace volatile sulfur compounds in milk by solid-phase microextraction and gas chromatography–pulsed flame photometric detection. J. Dairy Sci. 2006;89:2919–2927. doi: 10.3168/jds.S0022-0302(06)72564-4. PubMed DOI

Spinnler H.E., Berger C., Lapadatescu C., Bonnarme P. Production of sulfur compounds by several yeasts of technological interest for cheese ripening. Int. Dairy J. 2001;11:245–252. doi: 10.1016/S0958-6946(01)00054-1. DOI

Mestres M., Busto O., Guasch J. Analysis of organic sulfur compounds in wine aroma. J. Chromatogr. A. 2000;881:569–581. doi: 10.1016/S0021-9673(00)00220-X. PubMed DOI

Vally H., Thompson P. Allergic and asthmatic reactions to alcoholic drinks. Addiction Biol. 2003;8:3–11. doi: 10.1080/1355621031000069828. PubMed DOI

Health Canada Legislation and guidelines—food and nutrition. 2017. http://www.hc-sc.gc.ca/fn-an/legislation/index-eng.php

U.S. Food and Drug Administration . vol. 182. 2014. Sulfur Dioxide; p. 3862.http://www.gpo.gov/fdsys/granule/CFR-2012-title21-vol3/CFR-2012-title21-vol3-sec182-3862 (Food and Drug Title 21: Code of Federal Regulations). [Accessed 15 August 15]

Irwin S.V., Fisher P., Graham E., Malek A., Robidoux A. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLoS One. 2017;12 doi: 10.1371/journal.pone.0186629. PubMed DOI PMC

Hannuksela M., Haahtela T. Hypersensitivity reactions to food additives. Allergy. 1987;42:561–575. doi: 10.1111/j.1398-9995.1987.tb00386.x. PubMed DOI

Zhang X., Zhang L., Liu S., Zhu X., Zhou P., Cheng X., Zhang R., Zhang L., Chen L. Insight into sulfur dioxide and its derivatives metabolism in living system with visualized evidences via ultra-sensitive fluorescent probe. J. Hazard Mater. 2022;423 doi: 10.1016/j.jhazmat.2021.127179. PubMed DOI

Zhao Y., Ma Y., Lin W. A near-infrared and two-photon ratiometric fluorescent probe with a large Stokes shift for sulfur dioxide derivatives detection and its applications in vitro and in vivo. Sensor. Actuator. B Chem. 2019;288:519–526. doi: 10.1016/j.snb.2019.01.170. DOI

Pundir C.S., Rawal R. Determination of sulfite with emphasis on biosensing methods: a review. Anal. Bioanal. Chem. 2013;405:3049–3062. doi: 10.1007/s00216-013-6753-0. PubMed DOI

Silva K.R.B., Raimundo I.M., Gimenez I.F., Alves O.L. Optical sensor for sulfur dioxide determination in wines. J. Agric. Food Chem. 2006;54:8697–8701. doi: 10.1021/jf061553h. PubMed DOI

Olson K.R. H2S and polysulfide metabolism: conventional and unconventional pathways. Biochem. Pharmacol. 2018;149:77–90. doi: 10.1016/j.bcp.2017.12.010. PubMed DOI

Yang B., Xu J., Zhu H.-L. Recent progress in the small-molecule fluorescent probes for the detection of sulfur dioxide derivatives (HSO3−/SO32−) Free Radic. Biol. Med. 2019;145:42–60. doi: 10.1016/j.freeradbiomed.2019.09.007. PubMed DOI

Yang Q., Lan T., He W. Recent progress in reaction-based fluorescent probes for active sulfur small molecules. Dyes Pigments. 2021;186 doi: 10.1016/j.dyepig.2020.108997. DOI

Banerjee S., Ghosh S., Sinha K., Chowdhury S., Sil P.C. Sulphur dioxide ameliorates colitis related pathophysiology and inflammation. Toxicology. 2019;412:63–78. doi: 10.1016/j.tox.2018.11.010. PubMed DOI

Shah U.A., Pintado M.M. The effect of sulphur dioxide on probiotic and pathogenic bacteria of the human gastrointestinal tract. 2019. https://repositorio.ucp.pt/bitstream/10400.14/31510/1/Tese%20Completo%20Usman%20final%20version%20%20%28Oct%202019%29%20%281%29.pdf

Iammarino M., Di Taranto A., Muscarella M. Investigation on the presence of sulphites in fresh meat preparations: estimation of an allowable maximum limit. Meat Sci. 2012;90:304–308. doi: 10.1016/j.meatsci.2011.07.015. PubMed DOI

Stohs S.J., Miller M.J.S. A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides. Food Chem. Toxicol. 2014;63:240–243. doi: 10.1016/j.fct.2013.11.008. PubMed DOI

Stockley C.S., Johnson D.L. Adverse food reactions from consuming wine: adverse food reactions from consuming wine. Aust. J. Grape Wine Res. 2015;21:568–581. doi: 10.1111/ajgw.12171. DOI

Lück E., Jager M. Springer Berlin Heidelberg; Berlin, Heidelberg: 1997. Antimicrobial Food Additives. DOI

Fitzhugh O.G., Woodard G. The toxicities of compounds related to 2,3-dimercaptopropanol (BAL) with a note on their relative therapeutic efficiency. J. Pharmacol. Exp. Therapeut. 1946;87:23–27. PubMed

Barić I., Ćuk M., Fumić K., Vugrek O., Allen R.H., Glenn B., Maradin M., Pažanin L., Pogribny I., Radoš M., Sarnavka V., Schulze A., Stabler S., Wagner C., Zeisel S.H., Mudd S.H. S ‐Adenosylhomocysteine hydrolase deficiency: a second patient, the younger brother of the index patient, and outcomes during therapy. J. Inherit. Metab. Dis. 2005;28:885–902. doi: 10.1007/s10545-005-0192-9. PubMed DOI PMC

Paul R., Borah A. L-DOPA-induced hyperhomocysteinemia in Parkinson's disease: elephant in the room. Biochim. Biophys. Acta Gen. Subj. 2016;1860:1989–1997. doi: 10.1016/j.bbagen.2016.06.018. PubMed DOI

Miller J.W., Selhub J., Nadeau M.R., Thomas C.A., Feldman R.G., Wolf P.A. Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology. 2003;60:1125–1129. doi: 10.1212/01.WNL.0000055899.24594.8E. PubMed DOI

Stipanuk M.H. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J. Nutr. 2020;150:S2494–S2505. doi: 10.1093/jn/nxaa094. PubMed DOI

Bauchart-Thevret C., Stoll B., Burrin D.G. Intestinal metabolism of sulfur amino acids. Nutr. Res. Rev. 2009;22:175–187. doi: 10.1017/S0954422409990138. PubMed DOI

Patai S., editor. Sulphinic Acids, Esters and Derivatives. John Wiley & Sons, Inc.; Chichester, UK: 1990. DOI

Schubart R. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, editor. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2000. Sulfinic acids and derivatives. a25_461. DOI

Kalir A., Kalir H.H. In: Sulphinic Acids, Esters and Derivatives (1990) Patai S., editor. John Wiley & Sons, Inc.; Chichester, UK: 1990. Biological activity of sulfinic acid derivatives; pp. 665–676. DOI

Jacobsen J.G., Smith L.H. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 1968;48:424–511. doi: 10.1152/physrev.1968.48.2.424. PubMed DOI

Wollmann H., Raether G. Efficacy testing of stabilizing agents in epinephrine model solutions. 19: stability of drugs and preparations. Pharmazie. 1983;38:37–42. PubMed

Watanabe T., Snell E.E. The interaction of Escherichia coli tryptophanase with various amino acids and their analogs. J. Biochem. 1977;82:733–745. doi: 10.1093/oxfordjournals.jbchem.a131750. PubMed DOI

Huxtable R.J. Physiological actions of taurine. Physiol. Rev. 1992;72:101–163. doi: 10.1152/physrev.1992.72.1.101. PubMed DOI

Wen C., Li F., Zhang L., Duan Y., Guo Q., Wang W., He S., Li J., Yin Y. Taurine is involved in energy metabolism in muscles, adipose tissue, and the liver. Mol. Nutr. Food Res. 2019;63 doi: 10.1002/mnfr.201800536. PubMed DOI

Marcinkiewicz J., Kontny E. Taurine and inflammatory diseases. Amino Acids. 2014;46:7–20. doi: 10.1007/s00726-012-1361-4. PubMed DOI PMC

Huxtable R.J., Lippincott S.E. Relative contribution of diet and biosynthesis to the taurine content of the adult rat. Drug-Nutr Interact. 1982;1:153–168. PubMed

Sukhotnik I., Aranovich I., Ben Shahar Y., Bitterman N., Pollak Y., Berkowitz D., Chepurov D., Coran A.G., Bitterman A. Effect of taurine on intestinal recovery following intestinal ischemia-reperfusion injury in a rat. Pediatr. Surg. Int. 2016;32:161–168. doi: 10.1007/s00383-015-3828-3. PubMed DOI

Xiao A., Xu C., Lin Y., Ni H., Zhu Y., Cai H. Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. Electron. J. Biotechnol. 2016;19:1–7. doi: 10.1016/j.ejbt.2015.10.001. DOI

Shimizu M., Zhao Z., Ishimoto Y., Satsu H. In: Azuma J., Schaffer S.W., Ito T., editors. Springer New York; New York, NY: 2009. Dietary taurine attenuates dextran sulfate sodium (DSS)-induced experimental colitis in mice; pp. 265–271. (Taurine 7). PubMed DOI

Ahmad M.K., Khan A.A., Ali S.N., Mahmood R. Chemoprotective effect of taurine on potassium bromate-induced DNA damage, DNA-protein cross-linking and oxidative stress in rat intestine. PLoS One. 2015;10 doi: 10.1371/journal.pone.0119137. PubMed DOI PMC

Yuan J.M., Wang Zh. Effect of taurine on intestinal morphology and utilisation of soy oil in chickens. Br. Poultry Sci. 2010;51:540–545. doi: 10.1080/00071668.2010.506984. PubMed DOI

Huang C., Guo Y., Yuan J. Dietary taurine impairs intestinal growth and mucosal structure of broiler chickens by increasing toxic bile acid concentrations in the intestine. Poultry Sci. 2014;93:1475–1483. doi: 10.3382/ps.2013-03533. PubMed DOI

Linden D.R. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxidants Redox Signal. 2014;20:818–830. doi: 10.1089/ars.2013.5312. PubMed DOI PMC

Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen sulfide toxicity in the gut environment: meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2021;27:55–69. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC

Jones D.P., Coates R.J., Flagg E.W., Eley J.W., Block G., Greenberg R.S., Gunter E.W., Jackson B. Glutathione in foods listed in the national cancer institute's health habits and history food frequency questionnaire. Nutr. Cancer. 1992;17:57–75. doi: 10.1080/01635589209514173. PubMed DOI

Chang I.S., Kim B.H., Shin P.K. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl. Environ. Microbiol. 1997;63:1–6. doi: 10.1128/aem.63.1.1-6.1997. PubMed DOI PMC

LeBlanc J.G., Milani C., de Giori G.S., Sesma F., van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005. PubMed DOI

Neta P., Huie R.E. Free-radical chemistry of sulfite. Environ. Health Perspect. 1985;64:209–217. doi: 10.1289/ehp.8564209. PubMed DOI PMC

Kerns J.C., Arundel C., Chawla L.S. Thiamin deficiency in people with obesity. Adv. Nutr. 2015;6:147–153. doi: 10.3945/an.114.007526. PubMed DOI PMC

Jiang X., Du B., Zheng J. Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat. Nanotechnol. 2019;14:874–882. doi: 10.1038/s41565-019-0499-6. PubMed DOI PMC

Sugio K., Inoda D., Masuda M., Azumaya I., Sasaki S., Shimono K., Ganapathy V., Miyauchi S. Transport of 2,4-dichloro phenoxyacetic acid by human Na+-coupled monocarboxylate transporter 1 (hSMCT1, SLC5A8) Drug Metabol. Pharmacokinet. 2019;34:95–103. doi: 10.1016/j.dmpk.2018.10.004. PubMed DOI

Bemrah N., Vin K., Sirot V., Aguilar F., Ladrat A.-C., Ducasse C., Gey J.-L., Rétho C., Nougadere A., Leblanc J.-C. Assessment of dietary exposure to annatto (E160b), nitrites (E249-250), sulphites (E220-228) and tartaric acid (E334) in the French population: the second French total diet study. Food Addit. Contam. 2012;29:875–885. doi: 10.1080/19440049.2012.658525. PubMed DOI

Walker R. Sulphiting agents in foods: some risk/benefit considerations. Food Addit. Contam. 1985;2:5–24. doi: 10.1080/02652038509373522. PubMed DOI

Leclercq C., Molinaro M.G., Piccinelli R., Baldini M., Arcella D., Stacchini P. Dietary intake exposure to sulphites in Italy - analytical determination of sulphite-containing foods and their combination into standard meals for adults and children. Food Addit. Contam. 2000;17:979–989. doi: 10.1080/02652030010014402. PubMed DOI

Kimura H. Hydrogen sulfide and polysulfides as signaling molecules. Proc. Jpn. Acad. B Phys. Biol. Sci. 2015;91:131–159. doi: 10.2183/pjab.91.131. PubMed DOI PMC

Ishigami M., Hiraki K., Umemura K., Ogasawara Y., Ishii K., Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxidants Redox Signal. 2009;11:205–214. doi: 10.1089/ars.2008.2132. PubMed DOI

Ogasawara Y., Isoda S., Tanabe S. Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol. Pharm. Bull. 1994;17:1535–1542. doi: 10.1248/bpb.17.1535. PubMed DOI

Toohey J.I. Sulfur signaling: is the agent sulfide or sulfane? Anal. Biochem. 2011;413:1–7. doi: 10.1016/j.ab.2011.01.044. PubMed DOI

Mikami Y., Shibuya N., Kimura Y., Nagahara N., Ogasawara Y., Kimura H. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem. J. 2011;439:479–485. doi: 10.1042/BJ20110841. PubMed DOI

Brookes N., Turner R.J. K(+)-induced alkalinization in mouse cerebral astrocytes mediated by reversal of electrogenic Na(+)-HCO3- cotransport. Am. J. Physiol. Cell Physiol. 1994;267:C1633–C1640. doi: 10.1152/ajpcell.1994.267.6.C1633. PubMed DOI

Whitfield N.L., Kreimier E.L., Verdial F.C., Skovgaard N., Olson K.R. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;294:R1930–R1937. doi: 10.1152/ajpregu.00025.2008. PubMed DOI

Chauhan P.S., Saxena A. Bacterial carrageenases: an overview of production and biotechnological applications. 3 Biotech. 2016;6:146. doi: 10.1007/s13205-016-0461-3. PubMed DOI PMC

Chauhan P.S., Gupta N. Insight into microbial mannosidases: a review. Crit. Rev. Biotechnol. 2017;37:190–201. doi: 10.3109/07388551.2015.1128878. PubMed DOI

Sokolova E.V., Kravchenko A.O., Sergeeva N.V., Davydova V.N., Bogdanovich L.N., Yermak I.M. Effect of carrageenans on some lipid metabolism components in vitro. Carbohydr. Polym. 2020;230 doi: 10.1016/j.carbpol.2019.115629. PubMed DOI

De Ruiter G.A., Rudolph B. Carrageenan biotechnology. Trends Food Sci. Technol. 1997;8:389–395. doi: 10.1016/S0924-2244(97)01091-1. DOI

Yao Z., Wu H., Zhang S., Du Y. Enzymatic preparation of κ-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohydr. Polym. 2014;101:359–367. doi: 10.1016/j.carbpol.2013.09.055. PubMed DOI

Rhein-Knudsen N., Ale M., Meyer A. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar. Drugs. 2015;13:3340–3359. doi: 10.3390/md13063340. PubMed DOI PMC

Rhein-Knudsen N., Ale M.T., Ajalloueian F., Yu L., Meyer A.S. Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids. 2017;63:50–58. doi: 10.1016/j.foodhyd.2016.08.023. DOI

Li J., Hu Q., Seswita-Zilda D. Purification and characterization of a thermostable λ-carrageenase from a hot spring bacterium, Bacillus sp. Biotechnol. Lett. 2014;36:1669–1674. doi: 10.1007/s10529-014-1520-7. PubMed DOI

van de Velde F., Lourenço N.D., Pinheiro H.M., Bakker M. Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv. Synth. Catal. 2002;344:815–835. doi: 10.1002/1615-4169(200209)344:8<815::AID-ADSC815>3.0.CO;2-H. DOI

Hilliou L., Larotonda F.D.S., Abreu P., Ramos A.M., Sereno A.M., Gonçalves M.P. Effect of extraction parameters on the chemical structure and gel properties of κ/ι-hybrid carrageenans obtained from Mastocarpus stellatus. Biomol. Eng. 2006;23:201–208. doi: 10.1016/j.bioeng.2006.04.003. PubMed DOI

Michel G., Helbert W., Kahn R., Dideberg O., Kloareg B. The structural bases of the processive degradation of ι-carrageenan, a main cell wall polysaccharide of red algae. J. Mol. Biol. 2003;334:421–433. doi: 10.1016/j.jmb.2003.09.056. PubMed DOI

Michel A.-S., Mestdagh M.M., Axelos M.A.V. Physico-chemical properties of carrageenan gels in presence of various cations. Int. J. Biol. Macromol. 1997;21:195–200. doi: 10.1016/S0141-8130(97)00061-5. PubMed DOI

Campo V.L., Kawano D.F., da Silva D.B., Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis – a review. Carbohydr. Polym. 2009;77:167–180. doi: 10.1016/j.carbpol.2009.01.020. DOI

Barbeyron T., Michel G., Potin P., Henrissat B., Kloareg B. ι-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of κ-carrageenases. J. Biol. Chem. 2000;275:35499–35505. doi: 10.1074/jbc.M003404200. PubMed DOI

Michel G., Chantalat L., Fanchon E., Henrissat B., Kloareg B., Dideberg O. The ι-Carrageenase of Alteromonas fortis. J. Biol. Chem. 2001;276:40202–40209. doi: 10.1074/jbc.M100670200. PubMed DOI

Lemoine M., Nyvall Collén P., Helbert W. Physical state of κ-carrageenan modulates the mode of action of κ-carrageenase from Pseudoalteromonas carrageenovora. Biochem. J. 2009;419:545–553. doi: 10.1042/BJ20080619. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...