Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article, Scoping Review
PubMed
37123936
PubMed Central
PMC10130226
DOI
10.1016/j.heliyon.2023.e15452
PII: S2405-8440(23)02659-2
Knihovny.cz E-resources
- Keywords
- Gut microbiome, Hydrogen sulfide, Sulfate-reducing bacteria, Sulfur assimilation, Sulfur metabolism, Toxicity,
- Publication type
- Journal Article MeSH
- Scoping Review MeSH
Sulfur is a vital element that all living things require, being a component of proteins and other bio-organic substances. The various kinds and varieties of microbes in nature allow for the transformation of this element. It also should be emphasized that volatile sulfur compounds are typically present in food in trace amounts. Life cannot exist without sulfur, yet it also poses a potential health risk. The colon's sulfur metabolism, which is managed by eukaryotic cells, is much better understood than the S metabolism in gastrointestinal bacteria. Numerous additional microbial processes are anticipated to have an impact on the content and availability of sulfated compounds, as well as intestinal S metabolism. Hydrogen sulfide is the sulfur derivative that has attracted the most attention in relation to colonic health, but it is still unclear whether it is beneficial or harmful. Several lines of evidence suggest that sulfate-reducing bacteria or exogenous hydrogen sulfide may be the root cause of intestinal ailments, including inflammatory bowel diseases and colon cancer. Taurine serves a variety of biological and physiological purposes, including roles in inflammation and protection, additionally, low levels of taurine can be found in bodily fluids, and taurine is the primary sulfur component present in muscle tissue (serum and urine). The aim of this scoping review was to compile data from the most pertinent scientific works about S compounds' existence in food and their metabolic processes. The importance of S compounds in various food products and how these compounds can impact metabolic processes are both stressed in this paper.
See more in PubMed
Brosnan J.T., Brosnan M.E. The sulfur-containing amino acids: an overview. J. Nutr. 2006;136:1636S–1640S. doi: 10.1093/jn/136.6.1636S. PubMed DOI
Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent advances in metabolic pathways of sulfate reduction in intestinal bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC
Fernandes R., Amador P., Prudêncio C. β-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev. Med. Microbiol. 2013;24:7–17. doi: 10.1097/MRM.0b013e3283587727. DOI
Henry R.J. The mode of action of sulfonamides. Bacteriol. Rev. 1943;7:175–262. doi: 10.1128/br.7.4.175-262.1943. PubMed DOI PMC
Borlinghaus J., Albrecht F., Gruhlke M., Nwachukwu I., Slusarenko A. Allicin: chemistry and biological properties. Molecules. 2014;19:12591–12618. doi: 10.3390/molecules190812591. PubMed DOI PMC
Alanazi A.M., Mostafa G.A.E., Al-Badr A.A. Elsevier; 2015. Glutathione; pp. 43–158. (Profiles of Drug Substances, Excipients and Related Methodology). PubMed DOI
Thomas R., Shoemaker C.B., Eriks K. The molecular and crystal structure of dimethyl sulfoxide, (H 3 C) 2 SO. Acta Crystallogr. 1966;21:12–20. doi: 10.1107/S0365110X66002263. DOI
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Phcog. Rev. 2010;4:118. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Chapter 1. Introduction to sulfur chemical biology. Royal Society of Chemistry; Cambridge: 2020. pp. 5–22. (Chemical Biology,). DOI
Liu S., Li L., Guo L., Jin H., Kou J., Li G. Sulfur transformation characteristics and mechanisms during hydrogen production by coal gasification in supercritical water. Energy Fuels. 2017;31:12046–12053. doi: 10.1021/acs.energyfuels.7b02505. DOI
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI
Kushkevych I., Dordević D., Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J. Adv. Res. 2021;27:71–78. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC
Kotrsova V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Biointerface Res. Appl. Chem. 2019;9:4066–4069. doi: 10.33263/BRIAC94.066069. DOI
Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The sulfate-reducing microbial communities and meta-analysis of their occurrence during diseases of small–large intestine Axis. JCM. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kushkevych I., Coufalová M., Vítězová M., Rittmann S.K.-M.R. Sulfate-reducing bacteria of the oral cavity and their relation with periodontitis—recent advances. JCM. 2020;9:2347. doi: 10.3390/jcm9082347. PubMed DOI PMC
Struk M., Kushkevych I. Perspectives of application of phototrophic sulfur bacteria in hydrogen sulfide utilization. MendelNet. 2018:537–541.
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC
Kushkevych I.V. Kinetic properties of pyruvate ferredoxin oxidoreductase of intestinal sulfate-reducing bacteria Desulfovibrio piger vib-7 and Desulfomicrobium sp. rod-9. Pol. J. Microbiol. 2015;64:107–114. PubMed
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Kushkevych I. In: Microorganisms. Blumenberg M., Shaaban M., Elgaml A., editors. IntechOpen; 2020. Isolation and purification of sulfate-reducing bacteria. DOI
Kushkevych I. Identification of sulfate-reducing bacteria strains of human large intestine. Biol. Stud. 2013;7:115–132. doi: 10.30970/sbi.0703.312. DOI
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen sulfide as a toxic product in the small–large intestine Axis and its role in IBD development. JCM. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Kushkevych I., Castro Sangrador J., Dordević D., Rozehnalová M., Černý M., Fafula R., Vítězová M., Rittmann S.K.-M.R. Evaluation of physiological parameters of intestinal sulfate-reducing bacteria isolated from patients suffering from IBD and healthy people. JCM. 2020;9:1920. doi: 10.3390/jcm9061920. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M., Rittmann S.K.-M.R. Environmental impact of sulfate-reducing bacteria, their role in intestinal bowel diseases, and possible control by bacteriophages. Appl. Sci. 2021;11:735. doi: 10.3390/app11020735. DOI
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampílek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
Kushkevych I., Abdulina D., Dordević D., Rozehnalová M., Vítězová M., Černý M., Svoboda P., Rittmann S.K.-M.R. Basic bioelement contents in anaerobic intestinal sulfate-reducing bacteria. Appl. Sci. 2021;11:1152. doi: 10.3390/app11031152. DOI
Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3 Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Kushkevych I., Dordević D., Kollár P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2019;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M. Bergey's Manual of Systematic Bacteriology. second ed. Springer; Boston, MA, USA: 2005. The proteobacteria, Part C: the alpha-, beta-, delta-, and epsilonproteobacteria; p. 1388.
Růžičková M., Vítězová M., Kushkevych I. The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Med. 2020;15:211–224. doi: 10.1515/med-2020-0032. PubMed DOI PMC
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen sulfide effects on the survival of lactobacilli with emphasis on the development of inflammatory bowel diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC
Shankaranarayana M.L., Raghavan B., Abraham K.O., Natarajan C.P., Brodnitz H.H. Volatile sulfur compounds in food flavors. CRC Crit. Rev. Food Technol. 1974;4:395–435. doi: 10.1080/10408397409527163. DOI
Parcell S. Sulfur in human nutrition and applications in medicine. Alternative Med. Rev. 2002;7:22–44. PubMed
Roberts A.C., McWEENY D.J. The uses of sulphur dioxide in the food industry: a review. Int. J. Food Sci. Technol. 2007;7:221–238. doi: 10.1111/j.1365-2621.1972.tb01658.x. DOI
Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP-hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol. Lett. 2015;36(Suppl 1):106–113. PubMed
Kushkevych I., Abdulina D., Kováč J., Dordević D., Vítězová M., Iutynska G., Rittmann S.K.-M.R. Adenosine-5′-phosphosulfate- and sulfite reductases activities of sulfate-reducing bacteria from various environments. Biomolecules. 2020;10:921. doi: 10.3390/biom10060921. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC
Schwimmer S., Friedman M. Genesis of volatile sulfur-containing food flavors. Flavour Ind. 1972;1972
Raab A., Feldmann J. Biological sulphur-containing compounds – analytical challenges. Anal. Chim. Acta. 2019;1079:20–29. doi: 10.1016/j.aca.2019.05.064. PubMed DOI
Rappel C., Schaumlöffel D. The role of sulfur and sulfur isotope dilution analysis in quantitative protein analysis. Anal. Bioanal. Chem. 2008;390:605–615. doi: 10.1007/s00216-007-1607-2. PubMed DOI
Rampler E., Dalik T., Stingeder G., Hann S., Koellensperger G. Sulfur containing amino acids – challenge of accurate quantification. J. Anal. At. Spectrom. 2012;27:1018. doi: 10.1039/c2ja10377j. DOI
Necas J., Bartosikova L. Carrageenan: a review. Vet. Med. 2013;2013:187–205.
Gorman J.J., Wallis T.P., Pitt J.J. Protein disulfide bond determination by mass spectrometry. Mass Spectrom. Rev. 2002;21:183–216. doi: 10.1002/mas.10025. PubMed DOI
Mussinan C.J., Keelan M.E., editors. Sulfur Compounds in Foods. American Chemical Society; Washington, DC: 1994. DOI
Sreekumar R., Al-Attabi Z., Deeth H.C., Turner M.S. Volatile sulfur compounds produced by probiotic bacteria in the presence of cysteine or methionine. Lett. Appl. Microbiol. 2009 doi: 10.1111/j.1472-765X.2009.02610.x. PubMed DOI
Carrete R., Vidal M.T., Bordons A., Constanti M. Inhibitory effect of sulfur dioxide and other stress compounds in wine on the ATPase activity of Oenococcus oeni. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 2002;211:155–159. doi: 10.1111/j.1574-6968.2002.tb11218.x. PubMed DOI
Yamada I., Shibuya H., Matsubara O., Umehara I., Makino T., Numano F., Suzuki S. Pulmonary artery disease in Takayasu's arteritis: angiographic findings. Am. J. Roentgenol. 1992;159:263–269. doi: 10.2214/ajr.159.2.1352939. PubMed DOI
Restaino S., Mereu L., Finelli A., Spina M.R., Marini G., Catena U., Turco L.C., Moroni R., Milani M., Cela V., Scambia G., Fanfani F. Robotic surgery vs laparoscopic surgery in patients with diagnosis of endometriosis: a systematic review and meta-analysis. J. Robotic Surg. 2020;14:687–694. doi: 10.1007/s11701-020-01061-y. PubMed DOI
Kelly K.K., Meadows S.M., Cripps R.M. Drosophila MEF2 is a direct regulator of Actin57B transcription in cardiac, skeletal, and visceral muscle lineages. Mech. Dev. 2002;110:39–50. doi: 10.1016/S0925-4773(01)00586-X. PubMed DOI
Esparza I., Martínez-Inda B., Cimminelli M.J., Jimeno-Mendoza M.C., Moler J.A., Jiménez-Moreno N., Ancín-Azpilicueta C. Reducing SO2 doses in red wines by using grape stem extracts as antioxidants. Biomolecules. 2020;10:1369. doi: 10.3390/biom10101369. PubMed DOI PMC
Mandrile L., Cagnasso I., Berta L., Giovannozzi A.M., Petrozziello M., Pellegrino F., Asproudi A., Durbiano F., Rossi A.M. Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy. Food Chem. 2020;326 doi: 10.1016/j.foodchem.2020.127009. PubMed DOI
Boelens M.H., Van Gemert L.J. Volatile character-impact sulfur compounds and their sensory properties. Perfum. Flavor. 1993;1993:29–39.
Block E. Biological activity of Allium compounds: recent results. Acta Hortic. 2005:41–58. doi: 10.17660/ActaHortic.2005.688.4. DOI
Cannon R.J., Ho C.-T. Volatile sulfur compounds in tropical fruits. J. Food Drug Anal. 2018;26:445–468. doi: 10.1016/j.jfda.2018.01.014. PubMed DOI PMC
Du X., Whitaker V., Rouseff R. Changes in strawberry volatile sulfur compounds due to genotype, fruit maturity and sample preparation: Florida strawberry sulfur volatiles. Flavour Fragrance J. 2012;27:398–404. doi: 10.1002/ffj.3107. DOI
Cecatto A.P., Calvete E.O., Nienow A.A., da Costa R.C., Mendonça H.F.C., Pazzinato A.C. Culture systems in the production and quality of strawberry cultivars. Acta Sci. Agron. 2013;35:471–478. doi: 10.4025/actasciagron.v35i4.16552. DOI
Fei M.L., Tong L., Wei L., De Yang L. Changes in antioxidant capacity, levels of soluble sugar, total polyphenol, organosulfur compound and constituents in garlic clove during storage. Ind. Crop. Prod. 2015;69:137–142. doi: 10.1016/j.indcrop.2015.02.021. DOI
Ariga T., Seki T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors. 2006;26:93–103. doi: 10.1002/biof.5520260201. PubMed DOI
Nicastro H.L., Ross S.A., Milner J.A. Garlic and onions: their cancer prevention properties. Cancer Prev. Res. 2015;8:181–189. doi: 10.1158/1940-6207.CAPR-14-0172. PubMed DOI PMC
Pétel C., Onno B., Prost C. Sourdough volatile compounds and their contribution to bread: a review. Trends Food Sci. Technol. 2017;59:105–123. doi: 10.1016/j.tifs.2016.10.015. DOI
Ruiz J.A., Quilez J., Mestres M., Guasch J. Solid-phase microextraction method for headspace analysis of volatile compounds in bread crumb. Cereal Chem. J. 2003;80:255–259. doi: 10.1094/CCHEM.2003.80.3.255. DOI
Ruiz M.A., Pincus A.L., Dickinson K.A. NEO PI-R predictors of alcohol use and alcohol-related problems. J. Pers. Assess. 2003;81:226–236. doi: 10.1207/S15327752JPA8103_05. PubMed DOI
Pu D., Zhang H., Zhang Y., Sun B., Ren F., Chen H. Characterization of the key aroma compounds in white bread by aroma extract dilution analysis, quantitation, and sensory evaluation experiments. J. Food Process. Preserv. 2019;43 doi: 10.1111/jfpp.13933. DOI
Parliment T.H., Morello M.J., McGorrin R.J., editors. Thermally Generated Flavors: Maillard, Microwave, and Extrusion Processes. American Chemical Society; Washington, DC: 1993. DOI
Mottram D.S. Flavour formation in meat and meat products: a review. Food Chem. 1998;62:415–424. doi: 10.1016/S0308-8146(98)00076-4. DOI
Kosowska M., Majcher M.A., Fortuna T. Volatile compounds in meat and meat products. Food Sci. Technol. 2017;37:1–7. doi: 10.1590/1678-457x.08416. DOI
Vazquez-Landaverde P.A., Torres J.A., Qian M.C. Quantification of trace volatile sulfur compounds in milk by solid-phase microextraction and gas chromatography–pulsed flame photometric detection. J. Dairy Sci. 2006;89:2919–2927. doi: 10.3168/jds.S0022-0302(06)72564-4. PubMed DOI
Spinnler H.E., Berger C., Lapadatescu C., Bonnarme P. Production of sulfur compounds by several yeasts of technological interest for cheese ripening. Int. Dairy J. 2001;11:245–252. doi: 10.1016/S0958-6946(01)00054-1. DOI
Mestres M., Busto O., Guasch J. Analysis of organic sulfur compounds in wine aroma. J. Chromatogr. A. 2000;881:569–581. doi: 10.1016/S0021-9673(00)00220-X. PubMed DOI
Vally H., Thompson P. Allergic and asthmatic reactions to alcoholic drinks. Addiction Biol. 2003;8:3–11. doi: 10.1080/1355621031000069828. PubMed DOI
Health Canada Legislation and guidelines—food and nutrition. 2017. http://www.hc-sc.gc.ca/fn-an/legislation/index-eng.php
U.S. Food and Drug Administration . vol. 182. 2014. Sulfur Dioxide; p. 3862.http://www.gpo.gov/fdsys/granule/CFR-2012-title21-vol3/CFR-2012-title21-vol3-sec182-3862 (Food and Drug Title 21: Code of Federal Regulations). [Accessed 15 August 15]
Irwin S.V., Fisher P., Graham E., Malek A., Robidoux A. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLoS One. 2017;12 doi: 10.1371/journal.pone.0186629. PubMed DOI PMC
Hannuksela M., Haahtela T. Hypersensitivity reactions to food additives. Allergy. 1987;42:561–575. doi: 10.1111/j.1398-9995.1987.tb00386.x. PubMed DOI
Zhang X., Zhang L., Liu S., Zhu X., Zhou P., Cheng X., Zhang R., Zhang L., Chen L. Insight into sulfur dioxide and its derivatives metabolism in living system with visualized evidences via ultra-sensitive fluorescent probe. J. Hazard Mater. 2022;423 doi: 10.1016/j.jhazmat.2021.127179. PubMed DOI
Zhao Y., Ma Y., Lin W. A near-infrared and two-photon ratiometric fluorescent probe with a large Stokes shift for sulfur dioxide derivatives detection and its applications in vitro and in vivo. Sensor. Actuator. B Chem. 2019;288:519–526. doi: 10.1016/j.snb.2019.01.170. DOI
Pundir C.S., Rawal R. Determination of sulfite with emphasis on biosensing methods: a review. Anal. Bioanal. Chem. 2013;405:3049–3062. doi: 10.1007/s00216-013-6753-0. PubMed DOI
Silva K.R.B., Raimundo I.M., Gimenez I.F., Alves O.L. Optical sensor for sulfur dioxide determination in wines. J. Agric. Food Chem. 2006;54:8697–8701. doi: 10.1021/jf061553h. PubMed DOI
Olson K.R. H2S and polysulfide metabolism: conventional and unconventional pathways. Biochem. Pharmacol. 2018;149:77–90. doi: 10.1016/j.bcp.2017.12.010. PubMed DOI
Yang B., Xu J., Zhu H.-L. Recent progress in the small-molecule fluorescent probes for the detection of sulfur dioxide derivatives (HSO3−/SO32−) Free Radic. Biol. Med. 2019;145:42–60. doi: 10.1016/j.freeradbiomed.2019.09.007. PubMed DOI
Yang Q., Lan T., He W. Recent progress in reaction-based fluorescent probes for active sulfur small molecules. Dyes Pigments. 2021;186 doi: 10.1016/j.dyepig.2020.108997. DOI
Banerjee S., Ghosh S., Sinha K., Chowdhury S., Sil P.C. Sulphur dioxide ameliorates colitis related pathophysiology and inflammation. Toxicology. 2019;412:63–78. doi: 10.1016/j.tox.2018.11.010. PubMed DOI
Shah U.A., Pintado M.M. The effect of sulphur dioxide on probiotic and pathogenic bacteria of the human gastrointestinal tract. 2019. https://repositorio.ucp.pt/bitstream/10400.14/31510/1/Tese%20Completo%20Usman%20final%20version%20%20%28Oct%202019%29%20%281%29.pdf
Iammarino M., Di Taranto A., Muscarella M. Investigation on the presence of sulphites in fresh meat preparations: estimation of an allowable maximum limit. Meat Sci. 2012;90:304–308. doi: 10.1016/j.meatsci.2011.07.015. PubMed DOI
Stohs S.J., Miller M.J.S. A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides. Food Chem. Toxicol. 2014;63:240–243. doi: 10.1016/j.fct.2013.11.008. PubMed DOI
Stockley C.S., Johnson D.L. Adverse food reactions from consuming wine: adverse food reactions from consuming wine. Aust. J. Grape Wine Res. 2015;21:568–581. doi: 10.1111/ajgw.12171. DOI
Lück E., Jager M. Springer Berlin Heidelberg; Berlin, Heidelberg: 1997. Antimicrobial Food Additives. DOI
Fitzhugh O.G., Woodard G. The toxicities of compounds related to 2,3-dimercaptopropanol (BAL) with a note on their relative therapeutic efficiency. J. Pharmacol. Exp. Therapeut. 1946;87:23–27. PubMed
Barić I., Ćuk M., Fumić K., Vugrek O., Allen R.H., Glenn B., Maradin M., Pažanin L., Pogribny I., Radoš M., Sarnavka V., Schulze A., Stabler S., Wagner C., Zeisel S.H., Mudd S.H. S ‐Adenosylhomocysteine hydrolase deficiency: a second patient, the younger brother of the index patient, and outcomes during therapy. J. Inherit. Metab. Dis. 2005;28:885–902. doi: 10.1007/s10545-005-0192-9. PubMed DOI PMC
Paul R., Borah A. L-DOPA-induced hyperhomocysteinemia in Parkinson's disease: elephant in the room. Biochim. Biophys. Acta Gen. Subj. 2016;1860:1989–1997. doi: 10.1016/j.bbagen.2016.06.018. PubMed DOI
Miller J.W., Selhub J., Nadeau M.R., Thomas C.A., Feldman R.G., Wolf P.A. Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology. 2003;60:1125–1129. doi: 10.1212/01.WNL.0000055899.24594.8E. PubMed DOI
Stipanuk M.H. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J. Nutr. 2020;150:S2494–S2505. doi: 10.1093/jn/nxaa094. PubMed DOI
Bauchart-Thevret C., Stoll B., Burrin D.G. Intestinal metabolism of sulfur amino acids. Nutr. Res. Rev. 2009;22:175–187. doi: 10.1017/S0954422409990138. PubMed DOI
Patai S., editor. Sulphinic Acids, Esters and Derivatives. John Wiley & Sons, Inc.; Chichester, UK: 1990. DOI
Schubart R. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, editor. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2000. Sulfinic acids and derivatives. a25_461. DOI
Kalir A., Kalir H.H. In: Sulphinic Acids, Esters and Derivatives (1990) Patai S., editor. John Wiley & Sons, Inc.; Chichester, UK: 1990. Biological activity of sulfinic acid derivatives; pp. 665–676. DOI
Jacobsen J.G., Smith L.H. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 1968;48:424–511. doi: 10.1152/physrev.1968.48.2.424. PubMed DOI
Wollmann H., Raether G. Efficacy testing of stabilizing agents in epinephrine model solutions. 19: stability of drugs and preparations. Pharmazie. 1983;38:37–42. PubMed
Watanabe T., Snell E.E. The interaction of Escherichia coli tryptophanase with various amino acids and their analogs. J. Biochem. 1977;82:733–745. doi: 10.1093/oxfordjournals.jbchem.a131750. PubMed DOI
Huxtable R.J. Physiological actions of taurine. Physiol. Rev. 1992;72:101–163. doi: 10.1152/physrev.1992.72.1.101. PubMed DOI
Wen C., Li F., Zhang L., Duan Y., Guo Q., Wang W., He S., Li J., Yin Y. Taurine is involved in energy metabolism in muscles, adipose tissue, and the liver. Mol. Nutr. Food Res. 2019;63 doi: 10.1002/mnfr.201800536. PubMed DOI
Marcinkiewicz J., Kontny E. Taurine and inflammatory diseases. Amino Acids. 2014;46:7–20. doi: 10.1007/s00726-012-1361-4. PubMed DOI PMC
Huxtable R.J., Lippincott S.E. Relative contribution of diet and biosynthesis to the taurine content of the adult rat. Drug-Nutr Interact. 1982;1:153–168. PubMed
Sukhotnik I., Aranovich I., Ben Shahar Y., Bitterman N., Pollak Y., Berkowitz D., Chepurov D., Coran A.G., Bitterman A. Effect of taurine on intestinal recovery following intestinal ischemia-reperfusion injury in a rat. Pediatr. Surg. Int. 2016;32:161–168. doi: 10.1007/s00383-015-3828-3. PubMed DOI
Xiao A., Xu C., Lin Y., Ni H., Zhu Y., Cai H. Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. Electron. J. Biotechnol. 2016;19:1–7. doi: 10.1016/j.ejbt.2015.10.001. DOI
Shimizu M., Zhao Z., Ishimoto Y., Satsu H. In: Azuma J., Schaffer S.W., Ito T., editors. Springer New York; New York, NY: 2009. Dietary taurine attenuates dextran sulfate sodium (DSS)-induced experimental colitis in mice; pp. 265–271. (Taurine 7). PubMed DOI
Ahmad M.K., Khan A.A., Ali S.N., Mahmood R. Chemoprotective effect of taurine on potassium bromate-induced DNA damage, DNA-protein cross-linking and oxidative stress in rat intestine. PLoS One. 2015;10 doi: 10.1371/journal.pone.0119137. PubMed DOI PMC
Yuan J.M., Wang Zh. Effect of taurine on intestinal morphology and utilisation of soy oil in chickens. Br. Poultry Sci. 2010;51:540–545. doi: 10.1080/00071668.2010.506984. PubMed DOI
Huang C., Guo Y., Yuan J. Dietary taurine impairs intestinal growth and mucosal structure of broiler chickens by increasing toxic bile acid concentrations in the intestine. Poultry Sci. 2014;93:1475–1483. doi: 10.3382/ps.2013-03533. PubMed DOI
Linden D.R. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxidants Redox Signal. 2014;20:818–830. doi: 10.1089/ars.2013.5312. PubMed DOI PMC
Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen sulfide toxicity in the gut environment: meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2021;27:55–69. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC
Jones D.P., Coates R.J., Flagg E.W., Eley J.W., Block G., Greenberg R.S., Gunter E.W., Jackson B. Glutathione in foods listed in the national cancer institute's health habits and history food frequency questionnaire. Nutr. Cancer. 1992;17:57–75. doi: 10.1080/01635589209514173. PubMed DOI
Chang I.S., Kim B.H., Shin P.K. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl. Environ. Microbiol. 1997;63:1–6. doi: 10.1128/aem.63.1.1-6.1997. PubMed DOI PMC
LeBlanc J.G., Milani C., de Giori G.S., Sesma F., van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005. PubMed DOI
Neta P., Huie R.E. Free-radical chemistry of sulfite. Environ. Health Perspect. 1985;64:209–217. doi: 10.1289/ehp.8564209. PubMed DOI PMC
Kerns J.C., Arundel C., Chawla L.S. Thiamin deficiency in people with obesity. Adv. Nutr. 2015;6:147–153. doi: 10.3945/an.114.007526. PubMed DOI PMC
Jiang X., Du B., Zheng J. Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat. Nanotechnol. 2019;14:874–882. doi: 10.1038/s41565-019-0499-6. PubMed DOI PMC
Sugio K., Inoda D., Masuda M., Azumaya I., Sasaki S., Shimono K., Ganapathy V., Miyauchi S. Transport of 2,4-dichloro phenoxyacetic acid by human Na+-coupled monocarboxylate transporter 1 (hSMCT1, SLC5A8) Drug Metabol. Pharmacokinet. 2019;34:95–103. doi: 10.1016/j.dmpk.2018.10.004. PubMed DOI
Bemrah N., Vin K., Sirot V., Aguilar F., Ladrat A.-C., Ducasse C., Gey J.-L., Rétho C., Nougadere A., Leblanc J.-C. Assessment of dietary exposure to annatto (E160b), nitrites (E249-250), sulphites (E220-228) and tartaric acid (E334) in the French population: the second French total diet study. Food Addit. Contam. 2012;29:875–885. doi: 10.1080/19440049.2012.658525. PubMed DOI
Walker R. Sulphiting agents in foods: some risk/benefit considerations. Food Addit. Contam. 1985;2:5–24. doi: 10.1080/02652038509373522. PubMed DOI
Leclercq C., Molinaro M.G., Piccinelli R., Baldini M., Arcella D., Stacchini P. Dietary intake exposure to sulphites in Italy - analytical determination of sulphite-containing foods and their combination into standard meals for adults and children. Food Addit. Contam. 2000;17:979–989. doi: 10.1080/02652030010014402. PubMed DOI
Kimura H. Hydrogen sulfide and polysulfides as signaling molecules. Proc. Jpn. Acad. B Phys. Biol. Sci. 2015;91:131–159. doi: 10.2183/pjab.91.131. PubMed DOI PMC
Ishigami M., Hiraki K., Umemura K., Ogasawara Y., Ishii K., Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxidants Redox Signal. 2009;11:205–214. doi: 10.1089/ars.2008.2132. PubMed DOI
Ogasawara Y., Isoda S., Tanabe S. Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol. Pharm. Bull. 1994;17:1535–1542. doi: 10.1248/bpb.17.1535. PubMed DOI
Toohey J.I. Sulfur signaling: is the agent sulfide or sulfane? Anal. Biochem. 2011;413:1–7. doi: 10.1016/j.ab.2011.01.044. PubMed DOI
Mikami Y., Shibuya N., Kimura Y., Nagahara N., Ogasawara Y., Kimura H. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem. J. 2011;439:479–485. doi: 10.1042/BJ20110841. PubMed DOI
Brookes N., Turner R.J. K(+)-induced alkalinization in mouse cerebral astrocytes mediated by reversal of electrogenic Na(+)-HCO3- cotransport. Am. J. Physiol. Cell Physiol. 1994;267:C1633–C1640. doi: 10.1152/ajpcell.1994.267.6.C1633. PubMed DOI
Whitfield N.L., Kreimier E.L., Verdial F.C., Skovgaard N., Olson K.R. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;294:R1930–R1937. doi: 10.1152/ajpregu.00025.2008. PubMed DOI
Chauhan P.S., Saxena A. Bacterial carrageenases: an overview of production and biotechnological applications. 3 Biotech. 2016;6:146. doi: 10.1007/s13205-016-0461-3. PubMed DOI PMC
Chauhan P.S., Gupta N. Insight into microbial mannosidases: a review. Crit. Rev. Biotechnol. 2017;37:190–201. doi: 10.3109/07388551.2015.1128878. PubMed DOI
Sokolova E.V., Kravchenko A.O., Sergeeva N.V., Davydova V.N., Bogdanovich L.N., Yermak I.M. Effect of carrageenans on some lipid metabolism components in vitro. Carbohydr. Polym. 2020;230 doi: 10.1016/j.carbpol.2019.115629. PubMed DOI
De Ruiter G.A., Rudolph B. Carrageenan biotechnology. Trends Food Sci. Technol. 1997;8:389–395. doi: 10.1016/S0924-2244(97)01091-1. DOI
Yao Z., Wu H., Zhang S., Du Y. Enzymatic preparation of κ-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohydr. Polym. 2014;101:359–367. doi: 10.1016/j.carbpol.2013.09.055. PubMed DOI
Rhein-Knudsen N., Ale M., Meyer A. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar. Drugs. 2015;13:3340–3359. doi: 10.3390/md13063340. PubMed DOI PMC
Rhein-Knudsen N., Ale M.T., Ajalloueian F., Yu L., Meyer A.S. Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloids. 2017;63:50–58. doi: 10.1016/j.foodhyd.2016.08.023. DOI
Li J., Hu Q., Seswita-Zilda D. Purification and characterization of a thermostable λ-carrageenase from a hot spring bacterium, Bacillus sp. Biotechnol. Lett. 2014;36:1669–1674. doi: 10.1007/s10529-014-1520-7. PubMed DOI
van de Velde F., Lourenço N.D., Pinheiro H.M., Bakker M. Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv. Synth. Catal. 2002;344:815–835. doi: 10.1002/1615-4169(200209)344:8<815::AID-ADSC815>3.0.CO;2-H. DOI
Hilliou L., Larotonda F.D.S., Abreu P., Ramos A.M., Sereno A.M., Gonçalves M.P. Effect of extraction parameters on the chemical structure and gel properties of κ/ι-hybrid carrageenans obtained from Mastocarpus stellatus. Biomol. Eng. 2006;23:201–208. doi: 10.1016/j.bioeng.2006.04.003. PubMed DOI
Michel G., Helbert W., Kahn R., Dideberg O., Kloareg B. The structural bases of the processive degradation of ι-carrageenan, a main cell wall polysaccharide of red algae. J. Mol. Biol. 2003;334:421–433. doi: 10.1016/j.jmb.2003.09.056. PubMed DOI
Michel A.-S., Mestdagh M.M., Axelos M.A.V. Physico-chemical properties of carrageenan gels in presence of various cations. Int. J. Biol. Macromol. 1997;21:195–200. doi: 10.1016/S0141-8130(97)00061-5. PubMed DOI
Campo V.L., Kawano D.F., da Silva D.B., Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis – a review. Carbohydr. Polym. 2009;77:167–180. doi: 10.1016/j.carbpol.2009.01.020. DOI
Barbeyron T., Michel G., Potin P., Henrissat B., Kloareg B. ι-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of κ-carrageenases. J. Biol. Chem. 2000;275:35499–35505. doi: 10.1074/jbc.M003404200. PubMed DOI
Michel G., Chantalat L., Fanchon E., Henrissat B., Kloareg B., Dideberg O. The ι-Carrageenase of Alteromonas fortis. J. Biol. Chem. 2001;276:40202–40209. doi: 10.1074/jbc.M100670200. PubMed DOI
Lemoine M., Nyvall Collén P., Helbert W. Physical state of κ-carrageenan modulates the mode of action of κ-carrageenase from Pseudoalteromonas carrageenovora. Biochem. J. 2009;419:545–553. doi: 10.1042/BJ20080619. PubMed DOI