ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes

. 2020 Feb ; 10 (2) : 55. [epub] 20200122

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32015951

Sulfate-reducing bacteria (SRB) are widespread in various ecotopes despite their growth and enzymatic features not compared. In this study, the enzymatic parameters of ATP sulfurylase in cell-free extracts of sulfate-reducing bacteria isolated from various ecotopes such as soils, corrosion products and human large intestine were determined. Comparative analysis of both enzyme characteristics and growth parameters were carried out and similar research has not been reported yet. The initial and maximum rates of enzymatic reaction catalyzed by ATP sulfurylase were significantly different (p < 0.05) in the bacterial strains isolated from various environmental ecotopes. The specific activity of this enzyme in sulfate-reducing bacteria was determined for corrosive and intestinal strains 0.98-1.56 and 0.98-2.26 U × mg-1 protein, respectively. The Michaelis constants were 1.55-2.29 mM for corrosive and 2.93-3.13 mM for intestinal strains and the affinity range were demonstrated. Based on cluster analysis, the parameters of physiological and biochemical characteristics of sulfate-reducing bacteria from different ecotopes are divided into 3 clusters corresponding to the location of their isolation (soils, heating systems and human intestine). Understanding the enzymatic parameters of the initial stages of sulfate consumption in the process of dissimilatory sulfate reduction will allow the development of effective methods for controlling the production of toxic metabolites, including hydrogen sulfide.

Zobrazit více v PubMed

Akagi JM. Biology of Inorganic Nitrogen and Sulfur. New-York: Springer-Verlag; 1981. Dissimilatory sulfate reduction, mechanistic aspects; pp. 178–187.

Asaulenko LH, Abdulina DR, Purish LM. Taxonomic position of certain representatives of sulphate-reducing corrosive microbial community. Mikrobiol Zhurn. 2010;72(4):3–10. PubMed

Bailey NTJ. Statistical methods in biology. Cambridge, UK: Cambridge University Press; 1995.

Barton LL, Hamilton WA. Sulphate-Reducing Bacteria. Environmental and Engineered Systems: Cambridge University Press; 2010. p. 553.

Černý M, Vítězová M, Vítěz T, Bartoš M, Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11(12):3270.

Coutinho CMLM, Coutinho-Silva R, Zinkevich V, Pearce CB, Ojcius DM, Beech I. Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb Pathog. 2017;112:126–134. PubMed

Dowd JE, Riggs DS. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J Biol Chem. 1965;240(2):863–869. PubMed

Gavel OY, Bursakov SA, Calvete JJ. ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing Cobalt and Zinc. Biochemistry. 1998;37:16225–16232. PubMed

Herrmann JI, Ravilious GE, McKinney SE. Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem. 2014;289(15):10919–10929. PubMed PMC

Itoh T, Okabe S, Satoh H. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol. 2002;68(3):1392–1402. PubMed PMC

Iutynska GA., Purish LM, Abdulina DR (2014) Corrosive-relevant sulfidogenic microbial communities of man-caused ecotopes. Lambert Academic Publishing, 173 p

Keleti T (1988) Basic enzyme kinetics. Akademiai Kiado, 422 p

Kováč J, Kushkevych I (2017) New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria. In: Proceeding of international PhD students conference MendelNet, pp 702–707

Kováč J, Vítězová M, Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC

Kramer M, Cypionka H. Sulfate formation via ATP sulfyrylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol. 1989;151:232–237.

Kushkevych IV. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochemica Polonica. 2015;62:1037–1108. PubMed

Kushkevych IV. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Polish J Microbiol. 2015;64:107–114. PubMed

Kushkevych I, Kollar P, Suchy P, Parak K, Pauk K, Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed

Kushkevych I, Fafula R, Parak T, Bartos M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. 2015;84:3–12.

Kushkevych I, Kollar P, Ferreira AL, Palma D. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J Appl Biomed. 2016;14:125–130.

Kushkevych I, Vítězová M, Fedrová M, Vochyanová Z, Paráková L, Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411.

Kushkevych I, Vítězová M, Vítěz T, Bartoš M. Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91.

Kushkevych I, Dordević D, Vítězová M, Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143.

Kushkevych I, Vítězová M, Vítěz T, Kováč J, Kaucká P, Jesionek W, Bartos M, Barton L. A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. PubMed PMC

Kushkevych I, Kos J, Kollar P, Kralova K, Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med Chem Res. 2018;27:278–284.

Kushkevych I, Kováč J, Vítězová M, Vítěz T, Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch Microbiol. 2018;200:945–950. PubMed

Kushkevych I, Vítězová M, Kos J, Kollár P, Jampílek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J App Biomed. 2018;16:241–246.

Kushkevych I, Dordević D, Kollár P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13(1):481–488. PubMed PMC

Kushkevych I, Dordević D, Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14(1):66–74. PubMed PMC

Kushkevych I, Dordević D, Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch Microbiol. 2019;201(3):389–397. PubMed

Linder T. ATP Sulfurylase is Essential for the utilization of sulfamate as a sulfur source in the yeast Komagataella pastoris (syn. Pichia pastoris) Curr Microbiol. 2017;74(9):1021–1025. PubMed PMC

Mander GJ, Duin EC, Linder D. Purification and characterization of a membrane-bound enzyme complex from the sulphate-reducing archaeon Archaeglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur J Biochem. 2002;269:1895–1904. PubMed

Ming Y, Leyh TS. Altering the reaction coordinate of the ATP Sulfurylase-GTPase reaction. Biochemistry. 1997;36(11):3270–3277. PubMed

Osslund T, Chandler C, Segel I. ATP Sulfurylase from higher plants: purification and preliminary kinetics studies on the cabbage leaf enzyme. Plant Physiol. 1982;70(1):39–45. PubMed PMC

Parey K, Demmer U, Warkentin E. Structural biochemical and genetic characterization of dissimilatory ATP sulfurylase from Allochromatium vinosum. PLoS ONE. 2013 doi: 10.1371/annotation/fab66ad6-bdfa-4f76-9c39-08f28a92494d. PubMed DOI PMC

Patron N, Durnford D, Kopriva S. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol. 2008;8:39. PubMed PMC

Phartiyal P, Kim W, Cahoon R. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch Biochem Biophys. 2006;450:20–29. PubMed

Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta. 2003;1605:67–82. PubMed

Postgate JR. The sulphate-reducing bacteria. 2. New York: Cambridge University Press; 1984.

Postgate JR, Campbell LL. Classification of Desulfovibrio species, the non-sporulating sulfate-reducing bacteria. Bacteriol Rev. 1966;30:732–738. PubMed PMC

Purish LM, Asaulenko LG, Abdulina DR, Iutinskaia GA. Biodiversity of sulfate-reducing bacteria growing on objects of heating systems. Mikrobiol Zhurn. 2014;76(3):11–17. PubMed

Ramos AR, Keller KL, Wall JD, Pereira IA. The membrane QmoABC complex interacts directly with the dissimilatory adenosine 59-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol. 2012;3:137. PubMed PMC

Ravilious GE, Herrmann J, Lee SG, Westfall CS, Jez JM. Kinetic mechanism of the dimeric ATP sulfurylase from plants. Biosci Rep. 2013;33(4):585–591. PubMed PMC

Resonto F, Schultz T, Re E. Comparative stability and catalytic and chemical properties of the sulfate-activating enzymes from Penicillium chrysogenum (mesophile) and Penicillium duponti (thermophile) J Bacteriology. 1985;164:674–683. PubMed PMC

Resonto F, Patel HC, Martin RL, Thomassian C, Zimmerman G, Segel IH. ATP sulfurylase from higher plants: kinetic and structural characterisation of the chloroplast and cytosol enzymes from spinach leaf. Arch Biochem Biophys. 1993;307:272–285. PubMed

Sakoda M, Hiromi K. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion. J Biochem. 1976;80(3):547–555. PubMed

Sperling D, Kappler U, Wynen A. Dissimilatory ATP sulfurylase from the hyperthermopholic sulphate reducer Archaeglobus fulgidus belongs to the group of homooligomeric ATP sulfurylases. FEMS Microbiol Lett. 1998;162:257–264. PubMed

Widdel F. Theory and Measurement of bacterial growth. Grundpraktikum Mikrobiologie, Universität Bremen. 2010;4:1–11.

Woordow G. The Genus Desulfovibrio: the centennial. Appl Environ Microbiol. 1995;61(8):2813–2819. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Advances in gut microbiota functions in inflammatory bowel disease: Dysbiosis, management, cytotoxicity assessment, and therapeutic perspectives

. 2025 ; 27 () : 851-868. [epub] 20250225

Comparison of microbial communities and the profile of sulfate-reducing bacteria in patients with ulcerative colitis and their association with bowel diseases: a pilot study

. 2024 ; 11 () : 79-89. [epub] 20240314

NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria

. 2023 Aug 25 ; 13 (1) : 13922. [epub] 20230825

Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies

. 2023 Apr ; 9 (4) : e15452. [epub] 20230413

Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats

. 2021 Apr 13 ; 22 (8) : . [epub] 20210413

Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies

. 2021 Jan 26 ; 10 (3) : . [epub] 20210126

Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes

. 2021 Jan ; 27 () : 55-69. [epub] 20200317

Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances

. 2020 Jul 23 ; 9 (8) : . [epub] 20200723

Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People

. 2020 Jun 19 ; 9 (6) : . [epub] 20200619

Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments

. 2020 Jun 17 ; 10 (6) : . [epub] 20200617

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...