ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32015951
PubMed Central
PMC6975723
DOI
10.1007/s13205-019-2041-9
PII: 2041
Knihovny.cz E-zdroje
- Klíčová slova
- ATP sulfurylase, Cell-free extracts, Ecotopes, Sulfate-reducing bacteria,
- Publikační typ
- časopisecké články MeSH
Sulfate-reducing bacteria (SRB) are widespread in various ecotopes despite their growth and enzymatic features not compared. In this study, the enzymatic parameters of ATP sulfurylase in cell-free extracts of sulfate-reducing bacteria isolated from various ecotopes such as soils, corrosion products and human large intestine were determined. Comparative analysis of both enzyme characteristics and growth parameters were carried out and similar research has not been reported yet. The initial and maximum rates of enzymatic reaction catalyzed by ATP sulfurylase were significantly different (p < 0.05) in the bacterial strains isolated from various environmental ecotopes. The specific activity of this enzyme in sulfate-reducing bacteria was determined for corrosive and intestinal strains 0.98-1.56 and 0.98-2.26 U × mg-1 protein, respectively. The Michaelis constants were 1.55-2.29 mM for corrosive and 2.93-3.13 mM for intestinal strains and the affinity range were demonstrated. Based on cluster analysis, the parameters of physiological and biochemical characteristics of sulfate-reducing bacteria from different ecotopes are divided into 3 clusters corresponding to the location of their isolation (soils, heating systems and human intestine). Understanding the enzymatic parameters of the initial stages of sulfate consumption in the process of dissimilatory sulfate reduction will allow the development of effective methods for controlling the production of toxic metabolites, including hydrogen sulfide.
Zobrazit více v PubMed
Akagi JM. Biology of Inorganic Nitrogen and Sulfur. New-York: Springer-Verlag; 1981. Dissimilatory sulfate reduction, mechanistic aspects; pp. 178–187.
Asaulenko LH, Abdulina DR, Purish LM. Taxonomic position of certain representatives of sulphate-reducing corrosive microbial community. Mikrobiol Zhurn. 2010;72(4):3–10. PubMed
Bailey NTJ. Statistical methods in biology. Cambridge, UK: Cambridge University Press; 1995.
Barton LL, Hamilton WA. Sulphate-Reducing Bacteria. Environmental and Engineered Systems: Cambridge University Press; 2010. p. 553.
Černý M, Vítězová M, Vítěz T, Bartoš M, Kushkevych I. Variation in the distribution of hydrogen producers from the clostridiales order in biogas reactors depending on different input substrates. Energies. 2018;11(12):3270.
Coutinho CMLM, Coutinho-Silva R, Zinkevich V, Pearce CB, Ojcius DM, Beech I. Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb Pathog. 2017;112:126–134. PubMed
Dowd JE, Riggs DS. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J Biol Chem. 1965;240(2):863–869. PubMed
Gavel OY, Bursakov SA, Calvete JJ. ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metalloprotein containing Cobalt and Zinc. Biochemistry. 1998;37:16225–16232. PubMed
Herrmann JI, Ravilious GE, McKinney SE. Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem. 2014;289(15):10919–10929. PubMed PMC
Itoh T, Okabe S, Satoh H. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol. 2002;68(3):1392–1402. PubMed PMC
Iutynska GA., Purish LM, Abdulina DR (2014) Corrosive-relevant sulfidogenic microbial communities of man-caused ecotopes. Lambert Academic Publishing, 173 p
Keleti T (1988) Basic enzyme kinetics. Akademiai Kiado, 422 p
Kováč J, Kushkevych I (2017) New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria. In: Proceeding of international PhD students conference MendelNet, pp 702–707
Kováč J, Vítězová M, Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC
Kramer M, Cypionka H. Sulfate formation via ATP sulfyrylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol. 1989;151:232–237.
Kushkevych IV. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochemica Polonica. 2015;62:1037–1108. PubMed
Kushkevych IV. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Polish J Microbiol. 2015;64:107–114. PubMed
Kushkevych I, Kollar P, Suchy P, Parak K, Pauk K, Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed
Kushkevych I, Fafula R, Parak T, Bartos M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet Brno. 2015;84:3–12.
Kushkevych I, Kollar P, Ferreira AL, Palma D. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J Appl Biomed. 2016;14:125–130.
Kushkevych I, Vítězová M, Fedrová M, Vochyanová Z, Paráková L, Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411.
Kushkevych I, Vítězová M, Vítěz T, Bartoš M. Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91.
Kushkevych I, Dordević D, Vítězová M, Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143.
Kushkevych I, Vítězová M, Vítěz T, Kováč J, Kaucká P, Jesionek W, Bartos M, Barton L. A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. PubMed PMC
Kushkevych I, Kos J, Kollar P, Kralova K, Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med Chem Res. 2018;27:278–284.
Kushkevych I, Kováč J, Vítězová M, Vítěz T, Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch Microbiol. 2018;200:945–950. PubMed
Kushkevych I, Vítězová M, Kos J, Kollár P, Jampílek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J App Biomed. 2018;16:241–246.
Kushkevych I, Dordević D, Kollár P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13(1):481–488. PubMed PMC
Kushkevych I, Dordević D, Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14(1):66–74. PubMed PMC
Kushkevych I, Dordević D, Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch Microbiol. 2019;201(3):389–397. PubMed
Linder T. ATP Sulfurylase is Essential for the utilization of sulfamate as a sulfur source in the yeast Komagataella pastoris (syn. Pichia pastoris) Curr Microbiol. 2017;74(9):1021–1025. PubMed PMC
Mander GJ, Duin EC, Linder D. Purification and characterization of a membrane-bound enzyme complex from the sulphate-reducing archaeon Archaeglobus fulgidus related to heterodisulfide reductase from methanogenic archaea. Eur J Biochem. 2002;269:1895–1904. PubMed
Ming Y, Leyh TS. Altering the reaction coordinate of the ATP Sulfurylase-GTPase reaction. Biochemistry. 1997;36(11):3270–3277. PubMed
Osslund T, Chandler C, Segel I. ATP Sulfurylase from higher plants: purification and preliminary kinetics studies on the cabbage leaf enzyme. Plant Physiol. 1982;70(1):39–45. PubMed PMC
Parey K, Demmer U, Warkentin E. Structural biochemical and genetic characterization of dissimilatory ATP sulfurylase from Allochromatium vinosum. PLoS ONE. 2013 doi: 10.1371/annotation/fab66ad6-bdfa-4f76-9c39-08f28a92494d. PubMed DOI PMC
Patron N, Durnford D, Kopriva S. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol. 2008;8:39. PubMed PMC
Phartiyal P, Kim W, Cahoon R. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch Biochem Biophys. 2006;450:20–29. PubMed
Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV. A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta. 2003;1605:67–82. PubMed
Postgate JR. The sulphate-reducing bacteria. 2. New York: Cambridge University Press; 1984.
Postgate JR, Campbell LL. Classification of Desulfovibrio species, the non-sporulating sulfate-reducing bacteria. Bacteriol Rev. 1966;30:732–738. PubMed PMC
Purish LM, Asaulenko LG, Abdulina DR, Iutinskaia GA. Biodiversity of sulfate-reducing bacteria growing on objects of heating systems. Mikrobiol Zhurn. 2014;76(3):11–17. PubMed
Ramos AR, Keller KL, Wall JD, Pereira IA. The membrane QmoABC complex interacts directly with the dissimilatory adenosine 59-phosphosulfate reductase in sulfate reducing bacteria. Front Microbiol. 2012;3:137. PubMed PMC
Ravilious GE, Herrmann J, Lee SG, Westfall CS, Jez JM. Kinetic mechanism of the dimeric ATP sulfurylase from plants. Biosci Rep. 2013;33(4):585–591. PubMed PMC
Resonto F, Schultz T, Re E. Comparative stability and catalytic and chemical properties of the sulfate-activating enzymes from Penicillium chrysogenum (mesophile) and Penicillium duponti (thermophile) J Bacteriology. 1985;164:674–683. PubMed PMC
Resonto F, Patel HC, Martin RL, Thomassian C, Zimmerman G, Segel IH. ATP sulfurylase from higher plants: kinetic and structural characterisation of the chloroplast and cytosol enzymes from spinach leaf. Arch Biochem Biophys. 1993;307:272–285. PubMed
Sakoda M, Hiromi K. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion. J Biochem. 1976;80(3):547–555. PubMed
Sperling D, Kappler U, Wynen A. Dissimilatory ATP sulfurylase from the hyperthermopholic sulphate reducer Archaeglobus fulgidus belongs to the group of homooligomeric ATP sulfurylases. FEMS Microbiol Lett. 1998;162:257–264. PubMed
Widdel F. Theory and Measurement of bacterial growth. Grundpraktikum Mikrobiologie, Universität Bremen. 2010;4:1–11.
Woordow G. The Genus Desulfovibrio: the centennial. Appl Environ Microbiol. 1995;61(8):2813–2819. PubMed PMC
NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria
Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats
Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances