Hydrogen Sulfide as a Toxic Product in the Small-Large Intestine Axis and its Role in IBD Development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31330956
PubMed Central
PMC6679076
DOI
10.3390/jcm8071054
PII: jcm8071054
Knihovny.cz E-zdroje
- Klíčová slova
- Desulfovibrio, bowel disease, colitis, hydrogen sulfide, small–large intestine axis,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The small-large intestine axis in hydrogen sulfide accumulation and testing of sulfate and lactate in the gut-gut axis of the intestinal environment has not been well described. Sulfate reducing bacteria (SRB) of the Desulfovibrio genus reduce sulfate to hydrogen sulfide and can be involved in ulcerative colitis development. The background of the research was to find correlations between hydrogen sulfide production under the effect of an electron acceptor (sulfate) and donor (lactate) at different concentrations and Desulfovibrio piger Vib-7 growth, as well as their dissimilatory sulfate reduction in the intestinal small-large intestinal environment. METHODS: Microbiological, biochemical, and biophysical methods, and statistical processing of the results (principal component and cross-correlation analyses) were used. RESULTS: D. piger Vib-7 showed increased intensity of bacterial growth and hydrogen sulfide production under the following concentrations of sulfate and lactate: 17.4 mM and 35.6 mM, respectively. The study showed in what kind of intestinal environment D. piger Vib-7 grows at the highest level and produces the highest amount of hydrogen sulfide. CONCLUSIONS: The optimum intestinal environment of D. piger Vib-7 can serve as a good indicator of the occurrence of inflammatory bowel diseases; meaning that these findings can be broadly used in medicine practice dealing with the monitoring and diagnosis of intestinal ailments.
Zobrazit více v PubMed
Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents of health subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 1991;86:103–112. doi: 10.1111/j.1574-6968.1991.tb04799.x. DOI
Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol. 1993;12:117–125. doi: 10.1111/j.1574-6941.1993.tb00023.x. DOI
Cummings J.H., Macfarlane G.T., Macfarlane S. Intestinal Bacteria and Ulcerative Colitis. Curr. Issues Intest. Microbiol. 2003;4:9–20. PubMed
Barton L.L., Hamilton W.A. Sulphate-Reducing Bacteria Environmental and Engineered Systems. Cambridge University Press; Cambridge, UK: 2017.
Loubinoux J., Bronowicji J.P., Pereira I.A. Sulphate-reducing bacteria in human feces and their association with inflammatory diseases. FEMS Microbiol. Ecol. 2002;40:107–112. doi: 10.1111/j.1574-6941.2002.tb00942.x. PubMed DOI
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Kushkevych I., Fafula R., Parak T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. PubMed
Loubinoux J., Mory F., Pereira I.A., Le Faou A.E. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol. 2000;38:931–934. PubMed PMC
Pitcher M.C., Cummings J.H. Hydrogen sulphide: A bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4. doi: 10.1136/gut.39.1.1. PubMed DOI PMC
Florin T.H., Neale G., Goretski S. Sulfate in food and beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC
Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampilek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:1–9. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol. Lett. 2015;36:106–113. PubMed
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline- 2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Loubinoux J., Valente F.M.A., Pereira I.A.C. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol. 2002;52:1305–1308. PubMed
Postgate J.R. The Sulfate Reducing Bacteria. Cambridge University Press; Cambridge, UK: 1984.
Rowan F.E., Docherty N.G., Coffey J.C., O’Connell P.R. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br. J. Surg. 2009;96:151–158. doi: 10.1002/bjs.6454. PubMed DOI
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI
Kushkevych I., Vítězová M., Vítěz T., Kovac J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates. Energies. 2018;11:3270.
Kováč J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; Proceedings of the International PhD Students Conference MendelNet; Brno, Czechia. 6–7 November 2019; pp. 702–707.
Kolmert A., Wikstrom P., Hallberg K.B. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J. Microbiol. Methods. 2000;41:179–184. doi: 10.1016/S0167-7012(00)00154-8. PubMed DOI
Cline J.D. Spectrophotometric determination of hydrogen sulfide in natural water. Limnol. Oceanogr. 1969;14:454–458. doi: 10.4319/lo.1969.14.3.0454. DOI
Bailey T.S., Pluth M.D. Chemiluminescent detection of enzymatically produced hydrogen sulfide: Substrate hydrogen bonding influences selectivity for H2S over biological thiols. J. Am. Chem. Soc. 2013;135:16697–16704. doi: 10.1021/ja408909h. PubMed DOI PMC
Bailey N.T.J. Statistical Methods in Biology. Cambridge University Press; Cambridge, UK: 1995.
Attene-Ramos M.S., Wagner E.D., Plewa M.J., Gaskins H.R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 2006;4:9–14. doi: 10.1158/1541-7786.MCR-05-0126. PubMed DOI
Beauchamp R.O., Bus J.S., Popp J.A., Boreiko C.J., Andjelkovich D.A., Leber P. A critical review of the literature on hydrogen sulfide toxicity. CRC Crit. Rev. Toxicol. 1984;13:25–97. doi: 10.3109/10408448409029321. PubMed DOI
Blachier F., Davila A.M., Mimoun S. Luminal sulfide and large intestine mucosa: Friend or foe? Amino Acids. 2010;39:335–347. doi: 10.1007/s00726-009-0445-2. PubMed DOI
Grieshaber M.K., Völkel S. Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu. Rev. Physiol. 1998;60:33–53. doi: 10.1146/annurev.physiol.60.1.33. PubMed DOI
NADH and NADPH peroxidases as antioxidant defense mechanisms in intestinal sulfate-reducing bacteria
Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria
Microscopic Methods for Identification of Sulfate-Reducing Bacteria from Various Habitats
Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis-Recent Advances
The Characterization of Enterococcus Genus: Resistance Mechanisms and Inflammatory Bowel Disease
Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria