Molecular Physiology of Anaerobic Phototrophic Purple and Green Sulfur Bacteria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Grant Agency of Masaryk University (MUNI/A/1425/2020)
Masarykova Univerzita
János Bolyai Research Scholarship (BO/00144/20/5) of the Hungarian Academy of Sciences
Magyar Tudományos Akadémia
ÚNKP-20-5-SZTE-330 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund
Emberi Eroforrások Minisztériuma
PubMed
34203823
PubMed Central
PMC8232776
DOI
10.3390/ijms22126398
PII: ijms22126398
Knihovny.cz E-zdroje
- Klíčová slova
- anaerobes, anoxygenic bacteria, detoxification, hydrogen sulfide, molecular mechanisms of photosynthesis, water environment,
- MeSH
- anaerobióza MeSH
- Chlorobi klasifikace genetika fyziologie MeSH
- Chromatiaceae klasifikace genetika fyziologie MeSH
- fototrofní procesy genetika MeSH
- fylogeneze MeSH
- síra metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- síra MeSH
There are two main types of bacterial photosynthesis: oxygenic (cyanobacteria) and anoxygenic (sulfur and non-sulfur phototrophs). Molecular mechanisms of photosynthesis in the phototrophic microorganisms can differ and depend on their location and pigments in the cells. This paper describes bacteria capable of molecular oxidizing hydrogen sulfide, specifically the families Chromatiaceae and Chlorobiaceae, also known as purple and green sulfur bacteria in the process of anoxygenic photosynthesis. Further, it analyzes certain important physiological processes, especially those which are characteristic for these bacterial families. Primarily, the molecular metabolism of sulfur, which oxidizes hydrogen sulfide to elementary molecular sulfur, as well as photosynthetic processes taking place inside of cells are presented. Particular attention is paid to the description of the molecular structure of the photosynthetic apparatus in these two families of phototrophs. Moreover, some of their molecular biotechnological perspectives are discussed.
Zobrazit více v PubMed
Overmann J., van Gemerden H. Microbial Interactions Involving Sulfur Bacteria: Implications for the Ecology and Evolution of Bacterial Communities. FEMS Microbiol. Rev. 2000;24:591–599. doi: 10.1111/j.1574-6976.2000.tb00560.x. PubMed DOI
Overmann J. The Family Chlorobiaceae. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., editors. The Prokaryotes. Springer; New York, NY, USA: 2006. pp. 359–378.
Pfennig N. Green sulfur bacteria: Archaeobacteria, Cyanobacteria, and Remaining Gram-Negative Bacteria. In: Staley J.T., Bryant M.P., Pfennig N., Holt J.C., editors. Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins; Baltimore, MD, USA: 1989. pp. 1682–1697.
Imhoff J.F. Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria. In: Blankenship R.E., Madigan M.T., Bauer C.E., editors. Anoxygenic Photosynthetic Bacteria. Volume 2. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2004. pp. 1–15. (Advances in Photosynthesis and Respiration).
Overmann J., Tuschak C. Phylogeny and Molecular Fingerprinting of Green Sulfur Bacteria. Arch. Microbiol. 1997;167:302–309. doi: 10.1007/s002030050448. PubMed DOI
Dahl C., Engels S., Pott-Sperling A.S., Schulte A., Sander J., Lübbe Y., Deuster O., Brune D.C. Novel Genes of the Dsr Gene Cluster and Evidence for Close Interaction of Dsr Proteins during Sulfur Oxidation in the Phototrophic Sulfur Bacterium Allochromatium vinosum. J. Bacteriol. 2005;187:1392–1404. doi: 10.1128/JB.187.4.1392-1404.2005. PubMed DOI PMC
Molisch H., Royal College of Physicians of Edinburgh . Die Purpurbakterien: Nach Neuen Untersuchungen. Fischer; Jena, Germany: 1907. (Eine Mikrobiologische Studie).
Imhoff J.F. Reassignment of the Genus Ectothiorhodospira Pelsh 1936 to a New Family, Ectothiorhodospiraceae Fam. Nov., and Emended Description of the Chromatiaceae Bavendamm 1924. Int. J. Syst. Bacteriol. 1984;34:338–339. doi: 10.1099/00207713-34-3-338. DOI
Gajdács M., Spengler G., Urbán E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Antibiotics. 2017;6:25. doi: 10.3390/antibiotics6040025. PubMed DOI PMC
Imhoff J.F. The Family Chromatiaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F., editors. The Prokaryotes. Springer; Berlin/Heidelberg, Germany: 2014. pp. 151–178.
Kushkevych I.V., Hnatush S.O. The Anoxygenic Photosynthetic Purple Bacteria. Biol. Stud. 2010;4:137–154. doi: 10.30970/sbi.0403.116. DOI
Bodor A., Bounedjoum N., Vincze G.E., Erdeiné Kis Á., Laczi K., Bende G., Szilágyi Á., Kovács T., Perei K., Rákhely G. Challenges of Unculturable Bacteria: Environmental Perspectives. Rev. Environ. Sci. Biotechnol. 2020;19:1–22. doi: 10.1007/s11157-020-09522-4. DOI
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The Diversity of Sulfate-Reducing Bacteria in the Seven Bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and Its Role in IBD Development. J. Clin. Med. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698. PubMed DOI PMC
Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+/K+-Activated Mg2+-Dependent ATP-Hydrolase in the Cell-Free Extracts of the Sulfate-Reducing Bacteria Desulfovibrio Piger Vib-7 and Desulfomicrobium Sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Ehrenberg C.G. Die Infusionsthierchen Als Vollkommene Organismen: Ein Blick in das Tiefere Organische Leben der Natur. L. Voss; Leipzig, Germany: 1838.
Cohn F. Untersuchungen Über Bakterien. Beitr. Biol. Pflanz. 1875;1:147–207.
Winogradsky S. Beiträge zur Morphologie und Physiologie der Bakterien: Heft 1, zur Morphologie und Physiologie der Schwefelbakterien. Arthur Felix; Leipzig, Germany: 1888. pp. 1–120.
Miyoshi M. Studien Über Die Schwefelrasenbildung Und Die Schwefelbakterien Der Thermen von Yumoto Bei Nikko. Zent. Bakteriol. Parasitenkd. Infekt. 1897;3:526–527.
Holm H.W., Vennes J.W. Occurrence of Purple Sulfur Bacteria in a Sewage Treatment Lagoon. Appl. Microbiol. 1970;19:988–996. doi: 10.1128/am.19.6.988-996.1970. PubMed DOI PMC
Caumette P. Distribution and Characterization of Phototrophic Bacteria Isolated from the Water of Bietri Bay (Ebrie Lagoon, Ivory Coast) Can. J. Microbiol. 1984;30:273–284. doi: 10.1139/m84-042. DOI
Nicholson J.A.M., Stolz J.F., Pierson B.K. Structure of a Microbiol Mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol. Lett. 1987;45:343–364. doi: 10.1111/j.1574-6968.1987.tb02411.x. DOI
Madigan M.T. Chromatium tepidum Sp. Nov., a Thermophilic Photosynthetic Bacterium of the Family Chromatiaceae. Int. J. Syst. Bacteriol. 1986;36:222–227. doi: 10.1099/00207713-36-2-222. DOI
Petri R., Imhoff J.F. Genetic Analysis of Sea-Ice Bacterial Communities of the Western Baltic Sea Using an Improved Double Gradient Method. Polar Biol. 2001;24:252–257. doi: 10.1007/s003000000205. DOI
Wahlund T.M., Woese C.R., Castenholz R.W., Madigan M.T. A Thermophilic Green Sulfur Bacterium from New Zealand Hot Springs, Chlorobium tepidum Sp. Nov. Arch. Microbiol. 1991;156:81–90. doi: 10.1007/BF00290978. DOI
Veldhuis M.J.W., Gemerden H. Competition between Purple and Brown Phototrophic Bacteria in Stratified Lakes: Sulfide, Acetate, and Light as Limiting Factors. FEMS Microbiol. Lett. 1986;38:31–38. doi: 10.1111/j.1574-6968.1986.tb01936.x. DOI
Van Gemerden H., Mas J. Ecology of Phototrophic Sulfur Bacteria. In: Blankenship R.E., Madigan M.T., Bauer C.E., editors. Anoxygenic Photosynthetic Bacteria. Volume 2. Springer; Dordrecht, The Netherlands: 1995. pp. 49–85. (Advances in Photosynthesis and Respiration).
Bavendamm W. Die Farblosen und Roten Schwefelbakterien des Süß-Und Salzwassers. G. Fischer; Schaffhausen, Switzerland: 1924.
Guyoneaud R., Suling J., Petri R., Matheron R., Caumette P., Pfennig N., Imhoff J.F. Taxonomic Rearrangements of the Genera Thiocapsa and Amoebobacter on the Basis of 16S RDNA Sequence Analyses, and Description of Thiolamprovum Gen. Nov. Int. J. Syst. Bacteriol. 1998;48:957–964. doi: 10.1099/00207713-48-3-957. PubMed DOI
Imhoff J.F., Kushner D.J., Kushwaha S.C., Kates M. Polar Lipids in Phototrophic Bacteria of the Rhodospirillaceae and Chromatiaceae Families. J. Bacteriol. 1982;150:1192–1201. doi: 10.1128/jb.150.3.1192-1201.1982. PubMed DOI PMC
Imhoff J.F. Polar Lipids and Fatty Acids in the Genus Rhodobacter. Syst. Appl. Microbiol. 1991;14:228–234. doi: 10.1016/S0723-2020(11)80373-5. DOI
Imhoff J.F., Bias-lmhoff U. Lipids, Quinones and Fatty Acids of Anoxygenic Phototrophic Bacteria. In: Blankenship R.E., Madigan M.T., Bauer C.E., editors. Anoxygenic Photosynthetic Bacteria. Volume 2. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2004. pp. 179–205. (Advances in Photosynthesis and Respiration).
Gibson J., Stackebrandt E., Zablen L.B., Gupta R., Woese C.R. A Phylogenetic Analysis of the Purple Photosynthetic Bacteria. Curr. Microbiol. 1979;3:59–64. doi: 10.1007/BF02603136. DOI
Fowler V.J., Pfennig N., Schubert W., Stackebrandt E. Towards a Phylogeny of Phototrophic Purple Sulfur Bacteria?16S RRNA Oligonucleotide Cataloguing of 11 Species of Chromatiaceae. Arch. Microbiol. 1984;139:382–387. doi: 10.1007/BF00408384. DOI
Imhoff J.F., Caumette P. Recommended Standards for the Description of New Species of Anoxygenic Phototrophic Bacteria. Int. J. Syst. Evol. Microbiol. 2004;54:1415–1421. doi: 10.1099/ijs.0.03002-0. PubMed DOI
Tank M., Thiel V. Phylogenetic Relationship of Phototrophic Purple Sulfur Bacteria According to PufL and PufM Genes. Int. Microbiol. 2009:175–185. doi: 10.2436/20.1501.01.96. PubMed DOI
Imhoff J.F. Taxonomy, Phylogeny, and General Ecology of Anoxygenic Phototrophic Bacteria. In: Mann N.H., Carr N.G., editors. Photosynthetic Prokaryotes. Springer; Boston, MA, USA: 1992. pp. 53–92.
Pfennig N., Overmann J., Genus I. Chlorobium. The Archaea and the deeply branching and phototrophic Bacteria. In: Boone D.R., Castenholz R.W., editors. Bergey’s Manual of Systematic Bacteriology. Volume 1. Springer; New York, NY, USA: 2001. pp. 605–610.
Figueras J.B., Garcia-Gil L.J., Abella C.A. Phylogeny of the Genus Chlorobium Based on 16S RDNA Sequence. FEMS Microbiol. Lett. 2006;152:31–36. doi: 10.1111/j.1574-6968.1997.tb10405.x. PubMed DOI
Gibson J., Ludwig W., Stackebrandt E., Woese C.R. The Phylogeny of the Green Photosynthetic Bacteria: Absence of a Close Relationship Between Chlorobium and Chloroflexus. Syst. Appl. Microbiol. 1985;6:152–156. doi: 10.1016/S0723-2020(85)80048-5. DOI
Woese C.R., Stackebrandt E., Macke T.J., Fox G.E. A Phylogenetic Definition of the Major Eubacterial Taxa. Syst. Appl. Microbiol. 1985;6:143–151. doi: 10.1016/S0723-2020(85)80047-3. PubMed DOI
Alexander B., Andersen J., Cox R., Imhoff J. Phylogeny of Green Sulfur Bacteria on the Basis of Gene Sequences of 16S RRNA and of the Fenna-Matthews-Olson Protein. Arch. Microbiol. 2002;178:131–140. doi: 10.1007/s00203-002-0432-4. PubMed DOI
Imhoff J.F. Phylogenetic Taxonomy of the Family Chlorobiaceae on the Basis of 16S RRNA and Fmo (Fenna-Matthews-Olson Protein) Gene Sequences. Int. J. Syst. Evol. Microbiol. 2003;53:941–951. doi: 10.1099/ijs.0.02403-0. PubMed DOI
Keppen O.I., Tourova T.P., Ivanovsky R.N., Lebedeva N.V., Baslerov R.V., Berg I.A. Phylogenetic Position of Three Strains of Green Sulfur Bacteria. Microbiology. 2008;77:243–246. doi: 10.1134/S0026261708020203. PubMed DOI
Frigaard N.-U., Dahl C. Advances in Microbial Physiology. Volume 54. Elsevier; Amsterdam, The Netherlands: 2008. Sulfur Metabolism in Phototrophic Sulfur Bacteria; pp. 103–200. PubMed
Davidson M.W., Gray G.O., Knaff D.B. Interaction of Chromatium vinosum Flavocytochrome c-552 with Cytochromes c Studied by Affinity Chromatography. FEBS Lett. 1985;187:155–159. doi: 10.1016/0014-5793(85)81233-3. DOI
Brune D.C. Sulfur Compounds as Photosynthetic Electron Donors. In: Blankenship R.E., Madigan M.T., Bauer C.E., editors. Anoxygenic Photosynthetic Bacteria. Volume 2. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2004. pp. 847–870. Advances in Photosynthesis and Respiration.
Steinmetz M.A., Fischer U. Cytochromes of the Green Sulfur Bacterium Chlorobium vibrioforme f. thiosulfatophilum. Purification, Characterization and Sulfur Metabolism. Arch. Microbiol. 1982;131:19–26. doi: 10.1007/BF00451493. DOI
Griesbeck C., Hauska G., Schütz M. Biological Sulfide-Oxidation: Sulfide-Quinone Reductase (SQR), the Primary Reaction. Recent Res. Dev. Microbiol. 2000;4:179–203.
Theissen U. Single Eubacterial Origin of Eukaryotic Sulfide: Quinone Oxidoreductase, a Mitochondrial Enzyme Conserved from the Early Evolution of Eukaryotes during Anoxic and Sulfidic Times. Mol. Biol. Evol. 2003;20:1564–1574. doi: 10.1093/molbev/msg174. PubMed DOI
Shahak Y., Arieli B., Padan E., Hauska G. Sulfide Quinone Reductase (SQR) Activity in Chlorobium. FEBS Lett. 1992;299:127–130. doi: 10.1016/0014-5793(92)80230-E. PubMed DOI
Reinartz M., Tschäpe J., Brüser T., Trüper H.G., Dahl C. Sulfide Oxidation in the Phototrophic Sulfur Bacterium Chromatium vinosum. Arch. Microbiol. 1998;170:59–68. doi: 10.1007/s002030050615. PubMed DOI
Griesbeck C., Schütz M., Schödl T., Bathe S., Nausch L., Mederer N., Vielreicher M., Hauska G. Mechanism of Sulfide-Quinone Reductase Investigated Using Site-Directed Mutagenesis and Sulfur Analysis †,‡. Biochemistry. 2002;41:11552–11565. doi: 10.1021/bi026032b. PubMed DOI
Steudel R. Mechanism for the Formation of Elemental Sulfur from Aqueous Sulfide in Chemical and Microbiological Desulfurization Processes. Ind. Eng. Chem. Res. 1996;35:1417–1423. doi: 10.1021/ie950558t. DOI
Schedel M., Vanselow M., Trüper H.G. Siroheme Sulfite Reductase Isolated from Chromatium vinosum. Purification and Investigation of Some of Its Molecular and Catalytic Properties. Arch. Microbiol. 1979;121:29–36. doi: 10.1007/BF00409202. DOI
Pott A.S., Dahl C. Sirohaem Sulfite Reductase and Other Proteins Encoded by Genes at the Dsr Locus of Chromatium vinosum Are Involved in the Oxidation of Intracellular Sulfur. Microbiology. 1998;144:1881–1894. doi: 10.1099/00221287-144-7-1881. PubMed DOI
Van Gemerden H. Ecology of Photosynthetic Prokaryotes with Special Reference to Meromictic Lakes and Coastal Lagoons, Proceedings of the International Seminar, Tvärminne Zoological Station, Helsinki, Finland, 17–20 October 1985. Acta Academiae Aboensis, Åbo Academy Press; Åbo, Finland: 1987. Competition between purple sulfur bacteria and green sulfur bacteria: Role of sulfide, sulfur and polysulfides; pp. 13–27.
Steudel R., Holdt G., Visscher P.T., van Gemerden H. Search for Polythionates in Cultures of Chromatium vinosum after Sulfide Incubation. Arch. Microbiol. 1990;153:432–437. doi: 10.1007/BF00248423. DOI
Visscher P.T., Nijburg J.W., van Gemerden H. Polysulfide Utilization by Thiocapsa roseopersicina. Arch. Microbiol. 1990;155:75–81. doi: 10.1007/BF00291278. DOI
Prange A., Arzberger I., Engemann C., Modrow H., Schumann O., Trüper H.G., Steudel R., Dahl C., Hormes J. In Situ Analysis of Sulfur in the Sulfur Globules of Phototrophic Sulfur Bacteria by X-Ray Absorption near Edge Spectroscopy. Biochim. Biophys. Acta BBA Gen. Subj. 1999;1428:446–454. doi: 10.1016/S0304-4165(99)00095-1. PubMed DOI
Prange A., Chauvistré R., Modrow H., Hormes J., Trüper H.G., Dahl C. Quantitative Speciation of Sulfur in Bacterial Sulfur Globules: X-Ray Absorption Spectroscopy Reveals at Least Three Different Species of Sulfur. Microbiology. 2002;148:267–276. doi: 10.1099/00221287-148-1-267. PubMed DOI
Steudel R., Eckert B. Solid Sulfur Allotropes Sulfur Allotropes. In: Steudel R., editor. Elemental Sulfur and Sulfur-Rich Compounds I. Volume 230. Springer; Berlin/Heidelberg, Germany: 2003. pp. 1–80. Topics in Current Chemistry.
Steudel R. Autotrophic Bacteria. Springer; Berlin/Heidelberg, Germany: 1989. On the nature of the “elemental sulfur” (S0) produced by sulfur-oxidizing bacteria—A model for S0 globules; pp. 289–303.
Myers J.M., Myers C.R. Role for Outer Membrane Cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in Reduction of Manganese Dioxide. Appl. Environ. Microbiol. 2001;67:260–269. doi: 10.1128/AEM.67.1.260-269.2001. PubMed DOI PMC
Dahl C. Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria. In: Hell R., Dahl C., Knaff D., Leustek T., editors. Sulfur Metabolism in Phototrophic Organisms. Volume 27. Springer; Dordrecht, The Netherlands: 2008. pp. 289–317. Advances in Photosynthesis and Respiration.
Gehrke T., Telegdi J., Thierry D., Sand W. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching. Appl. Environ. Microbiol. 1998;64:2743–2747. doi: 10.1128/AEM.64.7.2743-2747.1998. PubMed DOI PMC
Franz B., Lichtenberg H., Hormes J., Modrow H., Dahl C., Prange A. Utilization of Solid ‘Elemental’ Sulfur by the Phototrophic Purple Sulfur Bacterium Allochromatium vinosum: A Sulfur K-Edge X-Ray Absorption Spectroscopy Study. Microbiology. 2007;153:1268–1274. doi: 10.1099/mic.0.2006/003954-0. PubMed DOI
Pibernat I.V., Abella C.A. Sulfide Pulsing as the Controlling Factor of Spinae Production in Chlorobium limicola Strain UdG 6038. Arch. Microbiol. 1996;165:272–278. doi: 10.1007/s002030050326. PubMed DOI
Rohwerder T., Sand W. The Sulfane Sulfur of Persulfides Is the Actual Substrate of the Sulfur-Oxidizing Enzymes from Acidithiobacillus and Acidiphilium Spp. Microbiology. 2003;149:1699–1710. doi: 10.1099/mic.0.26212-0. PubMed DOI
Hanson T.E., Tabita F.R. A Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO)-like Protein from Chlorobium tepidum That Is Involved with Sulfur Metabolism and the Response to Oxidative Stress. Proc. Natl. Acad. Sci. USA. 2001;98:4397–4402. doi: 10.1073/pnas.081610398. PubMed DOI PMC
Ikeuchi Y., Shigi N., Kato J., Nishimura A., Suzuki T. Mechanistic Insights into Sulfur Relay by Multiple Sulfur Mediators Involved in Thiouridine Biosynthesis at TRNA Wobble Positions. Mol. Cell. 2006;21:97–108. doi: 10.1016/j.molcel.2005.11.001. PubMed DOI
Numata T., Fukai S., Ikeuchi Y., Suzuki T., Nureki O. Structural Basis for Sulfur Relay to RNA Mediated by Heterohexameric TusBCD Complex. Structure. 2006;14:357–366. doi: 10.1016/j.str.2005.11.009. PubMed DOI
Hedderich R., Hamann N., Bennati M. Heterodisulfide Reductase from Methanogenic Archaea: A New Catalytic Role for an Iron-Sulfur Cluster. Biol. Chem. 2005;386 doi: 10.1515/BC.2005.112. PubMed DOI
Dahl C., Rákhely G., Pott-Sperling A.S., Fodor B., Takács M., Tóth A., Kraeling M., Győrfi K., Kovács Á., Tusz J., et al. Genes Involved in Hydrogen and Sulfur Metabolism in Phototrophic Sulfur Bacteria. FEMS Microbiol. Lett. 1999;180:317–324. doi: 10.1111/j.1574-6968.1999.tb08812.x. PubMed DOI
Kappler U., Dahl C. Enzymology and Molecular Biology of Prokaryotic Sulfite Oxidation. FEMS Microbiol. Lett. 2001;203:1–9. doi: 10.1111/j.1574-6968.2001.tb10813.x. PubMed DOI
Truper H.G., Fischer U. Anaerobic Oxidation of Sulphur Compounds as Electron Donors for Bacterial Photosynthesis. Philos. Trans. R. Soc. Lond. B. 1982;298:529–542. doi: 10.1098/rstb.1982.0095. DOI
Myers J.D., Kelly D.J. A Sulphite Respiration System in the Chemoheterotrophic Human Pathogen Campylobacter jejuni. Microbiology. 2005;151:233–242. doi: 10.1099/mic.0.27573-0. PubMed DOI
Brüser T., Selmer T., Dahl C. “ADP Sulfurylase” from Thiobacillus denitrificans Is an Adenylylsulfate: Phosphate Adenylyltransferase and Belongs to a New Family of Nucleotidyltransferases. J. Biol. Chem. 2000;275:1691–1698. doi: 10.1074/jbc.275.3.1691. PubMed DOI
Frigaard N.-U., Bryant D.A. Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria. In: Hell R., Dahl C., Knaff D., Leustek T., editors. Sulfur Metabolism in Phototrophic Organisms. Volume 27. Springer; Dordrecht, The Netherlands: 2008. pp. 337–355. Advances in Photosynthesis and Respiration.
Frigaard N.-U., Bryant D.A. Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria. In: Dahl C., Friedrich C.G., editors. Microbial Sulfur Metabolism. Springer; Berlin/Heidelberg, Germany: 2008. pp. 60–76.
Smith A.J., Lascelles J. Thiosulphate Metabolism and Rhodanese in Chromatium Sp. Strain D. J. Gen. Microbiol. 1966;42:357–370. doi: 10.1099/00221287-42-3-357. PubMed DOI
Fukumori Y., Yamanaka T. A High-Potential Nonheme Iron Protein (HiPIP)-Linked, Thiosulfate-Oxidizing Enzyme Derived From Chromatium vinosum. Curr. Microbiol. 1979;3:117–120. doi: 10.1007/BF02602443. DOI
Hensen D., Sperling D., Trüper H.G., Brune D.C., Dahl C. Thiosulphate Oxidation in the Phototrophic Sulphur Bacterium Allochromatium vinosum. Mol. Microbiol. 2006;62:794–810. doi: 10.1111/j.1365-2958.2006.05408.x. PubMed DOI
Dahl C., Franz B., Hensen D., Kesselheim A., Zigann R. Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: Identification of SoeABC as a major player and relevance of SoxYZ in the process. Microbiology. 2013;159:2626–2638. doi: 10.1099/mic.0.071019-0. PubMed DOI
Solov’ev A.A., Erokhin Y.E. Distribution of Bacteriochlorophyll between the Pigment-Protein Complexes of the Sulfur Photosynthetic Bacterium Allochromatium minutissimum Depending on Light Intensity at Different Temperatures. Microbiology. 2008;77:534–540. doi: 10.1134/S0026261708050044. PubMed DOI
Magdaong N.M., LaFountain A.M., Hacking K., Niedzwiedzki D.M., Gibson G.N., Cogdell R.J., Frank H.A. Spectral Heterogeneity and Carotenoid-to-Bacteriochlorophyll Energy Transfer in LH2 Light-Harvesting Complexes from Allochromatium vinosum. Photosynth. Res. 2016;127:171–187. doi: 10.1007/s11120-015-0165-2. PubMed DOI
Drews G., Golecki J.R. Structure, Molecular Organization, and Biosynthesis of Membranes of Purple Bacteria. In: Blankenship R.E., Madigan M.T., Bauer C.E., editors. Anoxygenic Photosynthetic Bacteria. Volume 2. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2004. pp. 231–257. (Advances in Photosynthesis and Respiration).
Feher G. Three Decades of Research in Bacterial Photosynthesis and the Road Leading to It: A Personal Account. Photosynth. Res. 1998;55:1–40. doi: 10.1023/A:1005985019447. DOI
Blankenship R.E. Molecular Mechanisms of Photosynthesis. 2nd ed. Wiley/Blackwell; Chichester, UK: 2014.
Dostál J. Ph.D. Thesis. Matematicko-Fyzikální Fakulta, Univerzita Karlova; Prague, Czech Republic: 2014. Photosynthetic Apparatus of Green Sulfur Bacteria Studied by Coherent Twodimensional Electronic Spectroscopy.
Hauska G., Schoedl T., Remigy H., Tsiotis G. The Reaction Center of Green Sulfur Bacteria1Dedicated to the Memory of Jan Amesz.1. Biochim. Biophys. Acta BBA Bioenerg. 2001;1507:260–277. doi: 10.1016/S0005-2728(01)00200-6. PubMed DOI