A quantitative analysis of 3D-cell distribution in regenerating muscle-skeletal system with synchrotron X-ray computed microtomography
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports) - International
MEYS CR, 2016-2019
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports) - International
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports) - International
MEYS CR, 2016-2019
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports) - International
FSI-S-17-4506
Vysoké Učení Technické v Brně (Brno University of Technology) - International
PubMed
30237460
PubMed Central
PMC6148031
DOI
10.1038/s41598-018-32459-2
PII: 10.1038/s41598-018-32459-2
Knihovny.cz E-zdroje
- MeSH
- kosterní svaly diagnostické zobrazování MeSH
- regenerace fyziologie MeSH
- rentgenová mikrotomografie metody MeSH
- synchrotrony * MeSH
- Urodela MeSH
- vývoj svalů fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
One of the greatest enigmas of modern biology is how the geometry of muscular and skeletal structures are created and how their development is controlled during growth and regeneration. Scaling and shaping of vertebrate muscles and skeletal elements has always been enigmatic and required an advanced technical level in order to analyse the cell distribution in 3D. In this work, synchrotron X-ray computed microtomography (µCT) and chemical contrasting has been exploited for a quantitative analysis of the 3D-cell distribution in tissues of a developing salamander (Pleurodeles waltl) limb - a key model organism for vertebrate regeneration studies. We mapped the limb muscles, their size and shape as well as the number and density of cells within the extracellular matrix of the developing cartilage. By using tomographic approach, we explored the polarity of the cells in 3D, in relation to the structure of developing joints. We found that the polarity of chondrocytes correlates with the planes in joint surfaces and also changes along the length of the cartilaginous elements. Our approach generates data for the precise computer simulations of muscle-skeletal regeneration using cell dynamics models, which is necessary for the understanding how anisotropic growth results in the precise shapes of skeletal structures.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Cellular and Molecular Biology Karolinska Institutet Solna 171777 Stockholm Sweden
Department of Molecular Neurosciences Medical University Vienna Vienna Austria
Department of Orthopaedics Xiangya Hospital Central South University Changsha Hunan Province China
Department of Physiology and Pharmacology Karolinska Institutet Solna 171777 Stockholm Sweden
Zobrazit více v PubMed
Graf BW, Boppart SA. Imaging and Analysis of Three-Dimensional Cell Culture Models. Methods Mol Biol. 2010;591:211–227. doi: 10.1007/978-1-60761-404-3_13. PubMed DOI PMC
Hedlund H, Brismar H, Widholm M, Svensson O. Studies of cell columns of articular cartilage using UV-Confocal scanning laser microscopy and 3D image processing. J. Musculoskelet. Res. 1994;3:93–98.
Artym Vira V., Matsumoto Kazue. Imaging Cells in Three-Dimensional Collagen Matrix. Current Protocols in Cell Biology. 2010;48(1):10.18.1-10.18.20. doi: 10.1002/0471143030.cb1018s48. PubMed DOI PMC
Morgan F, Barbarese E, Carson JH. Visualizing cells in three dimensions using confocal microscopy, image reconstruction and isosurface rendering: application to glial cells in mouse central nervous system. Scanning Microsc. 1992;6:345–56. PubMed
Pawley, J. Handbook of Biological Confocal Microscopy. (Springer, 1995).
Reihani SNS, Oddershede LB. Confocal microscopy of thick specimens. J Biomed. Opt. 2009;14:030513. doi: 10.1117/1.3156813. PubMed DOI
Ewald AJ, Mcbride H, Reddington M, Fraser SE, Kerschmann R. Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev Dyn. 2002;225:369–375. doi: 10.1002/dvdy.10169. PubMed DOI
Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat. Methods. 2005;2:932–940. doi: 10.1038/nmeth818. PubMed DOI
Ustione A, Piston DW. A simple introduction to multiphoton microscopy: A simple introduction to multiphoton microscopy. J Microsc. 2011;243:221–226. doi: 10.1111/j.1365-2818.2011.03532.x. PubMed DOI
Schmitt JM. Optical coherence tomography (OCT): a review. IEEE J. Quantum Electron. 1999;5:1205–1215. doi: 10.1109/2944.796348. DOI
Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Rep.Prog. Phys. 2003;66:239. doi: 10.1088/0034-4885/66/2/204. DOI
Campbell JP, et al. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci. Rep. 2017;7:42201. doi: 10.1038/srep42201. PubMed DOI PMC
Le Gros MA, McDermott G, Larabell CA. X-ray tomography of whole cells. Curr Opin Struct Biol. 2005;15:593–600. doi: 10.1016/j.sbi.2005.08.008. PubMed DOI
Larabell CA, Nugent KA. Imaging cellular architecture with X-rays. Curr Opin Struct Biol. 2010;20:623–631. doi: 10.1016/j.sbi.2010.08.008. PubMed DOI PMC
Langer, M. et al. Assessment of imaging quality in magnified phase CT of human bone tissue at the nanoscale. Proc.SPIE. 10391, 10.1117/12.2272561 (SPIE, 2017).
Attwood, D. T. Soft X-rays and extreme ultraviolet radiation: Principles and application. (Cambridge University press, 1999).
Krenkel M, et al. Phase-contrast zoom tomography reveals precise locations of macrophages in mouse lungs. Sci. Rep. 2015;5:9973. doi: 10.1038/srep09973. PubMed DOI PMC
Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I. On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation. Rev. Sci. Instrum. 1995;66:5486–5492. doi: 10.1063/1.1146073. DOI
Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW. Phase-contrast imaging using polychromatic hard X-rays. Nature. 1996;384:335. doi: 10.1038/384335a0. DOI
Baruchel, J., Buffiére, J. Y., Maire, E., Merle, P. & Peix, G. X-ray tomography in material science, general principles. (Hermes Science Publications, 2000).
Cloetens P, Barrett R, Baruchel J, Guigay JP, Schlenker M. Phase objects in synchrotron radiation hard X-ray imaging. J PhysD Appl Phys. 1996;29:133–146. doi: 10.1088/0022-3727/29/1/023. DOI
Kaiser J, et al. Investigation of the microstructure and mineralogical composition of urinary calculi fragments by synchrotron radiation X-ray microtomography: a feasibility study. Urol Res. 2011;39:259–267. doi: 10.1007/s00240-010-0343-9. PubMed DOI
Astolfo A, et al. In vivo visualization of gold-loaded cells in mice using x-ray computed tomography. Nanomedicine. 2013;9:284–292. doi: 10.1016/j.nano.2012.06.004. PubMed DOI
Larsson, D. H., Vågberg, W., Yaroshenko, A., Yildirim, A. Ö. & Hertz, H. M. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography. Sci. Rep. 6, 10.1038/srep39074 (2016). PubMed PMC
Dullin C, et al. μCT of ex-vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry. PloS one. 2017;12:e0170597. doi: 10.1371/journal.pone. PubMed DOI PMC
Saccomano Mara, Albers Jonas, Tromba Giuliana, Dobrivojević Radmilović Marina, Gajović Srećko, Alves Frauke, Dullin Christian. Synchrotron inline phase contrast µCT enables detailed virtual histology of embedded soft-tissue samples with and without staining. Journal of Synchrotron Radiation. 2018;25(4):1153–1161. doi: 10.1107/S1600577518005489. PubMed DOI
Albers J., Pacilé S., Markus M. A., Wiart M., Vande Velde G., Tromba G., Dullin C. X-ray-Based 3D Virtual Histology—Adding the Next Dimension to Histological Analysis. Molecular Imaging and Biology. 2018;20(5):732–741. doi: 10.1007/s11307-018-1246-3. PubMed DOI
Albers J. et al. X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis. Sci. Rep. 8, 10.1038/s41598-018-26086-0 (2018). PubMed PMC
Momose, A., Takeda, T., Itaj, Y. & Hirano, K. Phase−contrast X−ray computed tomography for observing biological soft tissues. Nat. Med. 2 (1996). PubMed
Beltran MA, Paganin DM, Uesugi K, Kitchen MJ. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance. Opt Express. 2010;18:6423–36. doi: 10.1364/OE.18.006423. PubMed DOI
Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. doi: 10.1186/1472-6793-9-11. PubMed DOI PMC
Metscher Brian D. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Developmental Dynamics. 2009;238(3):632–640. doi: 10.1002/dvdy.21857. PubMed DOI
Shinohara M, et al. Atherosclerotic plaque imaging using phase-contrast X-ray computed tomography. Am J Physiol Heart Circ Physiol. 2008;294:H1094–H1100. doi: 10.1152/ajpheart.01149.2007. PubMed DOI
Zanette I, et al. Holotomography versus X-ray grating interferometry: A comparative study. Applied Physics Letters. 2013;103:244105. doi: 10.1063/1.4848595. DOI
Lang S, et al. Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue. Journal of Applied Physics. 2014;116:154903. doi: 10.1152/ajpheart.01149.2007. DOI
Kumar A. et al. An orphan gene is necessary for preaxial digit formation during salamander limb development. Nat Communn. 610.1038/ncomms9684 (2015). PubMed PMC
Frobisch NB, Shubin NH. Salamander limb development: integrating genes, morphology, and fossils. Dev. Dyn. 2011;240:1087–1099. doi: 10.1002/dvdy.22629. PubMed DOI
Godwin JW, et al. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA. 2013;23:9415–20. doi: 10.1073/pnas.1300290110. PubMed DOI PMC
Yun MH, et al. Regulation of p53 is critical for vertebrate limb regeneration. Proc Natl Acad Sci USA. 2013;43:17392–7. doi: 10.1073/pnas.1310519110. PubMed DOI PMC
Cosden RS, et al. Intrinsic repair of full-thickness articular cartilage defects in the axolotl salamander. Osteoarthritis Cartilage. 2011;19:200–205. doi: 10.1016/j.joca.2010.11.005. PubMed DOI PMC
Khan IM, et al. The development of synovial joints. Curr. Top. Dev. Biol. 2007;79:1–36. doi: 10.1016/S0070-2153(06)79001-9. PubMed DOI
Cosden-Decker RS, et al. Structural and functional analysis of intra-articular interzone tissue in axolotl salamanders. Osteoarthritis Cartilage. 2012;20:1347–1356. doi: 10.1016/j.joca.2012.07.002. PubMed DOI PMC
Adameyko I, Fried K. The Nervous System Orchestrates and Integrates Craniofacial Development: A Review. Front. Physiol. 2016;7:49. doi: 10.3389/fphys.2016.00049. PubMed DOI PMC
Davidson LA. Epithelial machines that shape the embryo. Trends Cell Biol. 2012;22:82–87. doi: 10.1016/j.tcb.2011.10.005. PubMed DOI PMC
Boehm B, et al. The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis. PLoS Biol. 2010;8:e1000420. doi: 10.1371/journal.pbio.1000420. PubMed DOI PMC
Abzhanov A, Tabin CJ. Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. Dev Biol. 2004;273:134–148. doi: 10.1016/j.ydbio.2004.05.028. PubMed DOI
Gros J, Tabin CJ. Vertebrate Limb Bud Formation Is Initiated by Localized Epithelial-to-Mesenchymal Transition. Science. 2014;343:1253–1256. doi: 10.1126/science.1248228. PubMed DOI PMC
Kaucka M, et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife. 2017;6:e25902. doi: 10.7554/eLife.25902. PubMed DOI PMC
Li L, et al. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J. 2017;31:1067–1084. doi: 10.1096/fj.201600918R. PubMed DOI PMC
Kaucka M, et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife eLife. 2018;7:e34465. doi: 10.7554/eLife.34465. PubMed DOI PMC
Buckingham M, et al. The formation of skeletal muscle: from somite to limb. J Anat. 2003;202:59–68. doi: 10.1046/j.1469-7580.2003.00139.x. PubMed DOI PMC
Stockdale FE, et al. Molecular and cellular biology of avian somite development. Dev Dyn. 2000;219:304–21. doi: 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1057>3.0.CO;2-5. PubMed DOI
Roddy KA, et al. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos. PLoS One. 2011;6:e17526. doi: 10.1371/journal.pone.0017526. PubMed DOI PMC
Rapaport D, et al. Short stature in Duchenne muscular dystrophy. Growth Regul. 1991;1:11–5. PubMed
Cairns DM, et al. The role of muscle cells in regulating cartilage matrix production. J Orthop Res. 2010;28:529–536. PubMed PMC
Zehbe R, et al. Characterization of oriented protein-ceramic and protein-polymer-composites for cartilage tissue engineering using synchrotron m-CT. Int. J. Mater. Res. 2007;98:562–568. doi: 10.3139/146.101509. DOI
Zehbe R, et al. Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: from tissue morphology to individual cells. J R Soc Interface. 2010;7:49–59. doi: 10.1098/rsif.2008.0539. PubMed DOI PMC
Hieber S, et al. Tomographic brain imaging with nucleolar detail and automatic cell counting. Sci. Rep. 2016;6:32156. doi: 10.1038/srep32156. PubMed DOI PMC
Elewa A, et al. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat. Communn. 2017;8:9. doi: 10.1038/s41467-017-01964-. PubMed DOI PMC
Tesařová M, et al. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. JINST. 2016;11:C03006–C03006. doi: 10.1088/1748-0221/11/03/C03006. DOI
Constantine VS, Mowry RW. Selective staining of human dermal collagen. J. Invest Dermatol. 1968;50:414–418. doi: 10.1038/jid.1968.67. PubMed DOI
Nemetschek T, Riedl H, Jonak R. Topochemistry of the binding of phosphotungstic acid to collagen. J. Mol. Biol. 1979;133:67–83. doi: 10.1016/0022-2836(79)90251-1. PubMed DOI
Adams R, Bischof L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994;16:641–647. doi: 10.1109/34.295913. DOI
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. methods. 2012;9:671. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Boudier T. Elaboration d’un modèle de déformation pour la détection de contours aux formes complexes. Innov. Techn. Biol. Med. 1997;18:1.
Andrey, P. & Boudier, T. Adaptive active contours (snakes) for the segmentation of complex structures in biological images. in Centre de Recherche Public Henri Tudor Copyright Notice 181 (2006).
Brun F, et al. Pore3D: A software library for quantitative analysis of porous media. Nucl. Instr. Meth. Phys. Res. 2010;615:326–332. doi: 10.1016/j.nima.2010.02.063. DOI
Hartigan JA, Wong MA. Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics. 1979;28:100. doi: 10.2307/2346830. DOI
Zandomeneghi D, et al. Quantitative analysis of X-ray microtomography images of geomaterials: Application to volcanic rocks. Geosphere. 2010;6:793–804. doi: 10.1130/GES00561.1. DOI
Viani A, et al. Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography. Dent Mater. 2017;4:402–417. doi: 10.1016/j.dental.2017.01.008. PubMed DOI
Wong M, et al. Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J. Orthop. Res. 1996;14:424–432. doi: 10.1002/jor.1100140313. PubMed DOI
Jadin KD, et al. Depth-varying density and organization of chondrocytes in immature and mature bovine articular cartilage assessed by 3D imaging and analysis. J. Histochem. Cytochem. 2005;53:1109–1119. doi: 10.1369/jhc.4A6511.2005. PubMed DOI
Brunt LH, et al. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development. J Biochem. 2015;48:3112–22. doi: 10.1016/j.jbiomech.2015.07.017. PubMed DOI PMC
Kaucka M, et al. Analysis of neural crest–derived clones reveals novel aspects of facial development. Science Advances. 2016;2:e1600060. doi: 10.1126/sciadv.1600060. PubMed DOI PMC
Joven Alberto, Kirkham Matthew, Simon András. Methods in Molecular Biology. New York, NY: Springer New York; 2015. Husbandry of Spanish Ribbed Newts (Pleurodeles waltl) pp. 47–70. PubMed
Brun F, et al. Enhanced and Flexible Software Tools for X-ray Computed Tomography at the Italian Synchrotron Radiation Facility Elettra. Fundamenta Informaticae. 2015;141:233–243. doi: 10.3233/FI-2015-1273. DOI
Living in darkness: Exploring adaptation of Proteus anguinus in 3 dimensions by X-ray imaging