An interactive and intuitive visualisation method for X-ray computed tomography data of biological samples in 3D Portable Document Format
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31624273
PubMed Central
PMC6797759
DOI
10.1038/s41598-019-51180-2
PII: 10.1038/s41598-019-51180-2
Knihovny.cz E-zdroje
- MeSH
- anatomické modely MeSH
- automatizované zpracování dat MeSH
- komprese dat statistika a číselné údaje MeSH
- lebka anatomie a histologie embryologie MeSH
- myši MeSH
- obličejové kosti anatomie a histologie embryologie MeSH
- rentgenová mikrotomografie statistika a číselné údaje MeSH
- rentgenový obraz - interpretace počítačová MeSH
- šíření informací metody MeSH
- software * MeSH
- zobrazování trojrozměrné statistika a číselné údaje MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
3D imaging approaches based on X-ray microcomputed tomography (microCT) have become increasingly accessible with advancements in methods, instruments and expertise. The synergy of material and life sciences has impacted biomedical research by proposing new tools for investigation. However, data sharing remains challenging as microCT files are usually in the range of gigabytes and require specific and expensive software for rendering and interpretation. Here, we provide an advanced method for visualisation and interpretation of microCT data with small file formats, readable on all operating systems, using freely available Portable Document Format (PDF) software. Our method is based on the conversion of volumetric data into interactive 3D PDF, allowing rotation, movement, magnification and setting modifications of objects, thus providing an intuitive approach to analyse structures in a 3D context. We describe the complete pipeline from data acquisition, data processing and compression, to 3D PDF formatting on an example of craniofacial anatomical morphology in the mouse embryo. Our procedure is widely applicable in biological research and can be used as a framework to analyse volumetric data from any research field relying on 3D rendering and CT-biomedical imaging.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department Adaptation du Vivant Museum national d'Histoire naturelle CNRS UMR 7221 Paris France
Department of Molecular Neurosciences Medical University of Vienna Vienna Austria
Department of Physiology and Pharmacology Karolinska Institutet Solna Sweden
Zobrazit více v PubMed
World Health Organization. Congenital anomalies, Fact sheet No. 370. https://www.who.int/news-room/fact-sheets/detail/congenital-anomalies (2016).
World Health Organization. Birth defects: report by the Secretariat, Executive board 125th session EB125/7. http://www.who.int/iris/handle/10665/2271 (2009).
Weninger W, et al. High-resolution episcopic microscopy: a rapid technique for high detailed 3D analysis of gene activity in the context of tissue architecture and morphology. Anat Embryol. 2006;211:213–221. doi: 10.1007/s00429-005-0073-x. PubMed DOI
De Bakker B, et al. An interactive three-dimensional digital atlas and quantitative database of human development. Science. 2016;354:1019–1028. doi: 10.1126/science.aag0053. PubMed DOI
De Bakker B, De Jong K, Hagoort J, Oostra R, Moorman A. Towards a 3-dimensional atlas of the developing human embryo: The Amsterdam experience. Reproductive Toxicol. 2012;34:225–236. doi: 10.1016/j.reprotox.2012.05.087. PubMed DOI
De Boer B, Van den Berg G, De Boer P, Moorman A, Ruijter J. Growth of the developing mouse heart: An interactive qualitative and quantitative 3D atlas. Dev Biol. 2012;368:203–213. doi: 10.1016/j.ydbio.2012.05.001. PubMed DOI
Belle M, et al. Tridimensional Visualization and Analysis of Early Human Development. Cell. 2017;169:161–173. doi: 10.1016/j.cell.2017.03.008. PubMed DOI
Renier N, et al. iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging. Cell. 2014;159:896–910. doi: 10.1016/j.cell.2014.10.010. PubMed DOI
Ragazzi, et al. G. Fluorescence confocal microscopy for pathologists. Mod Pathol. 2014;27:460–471. doi: 10.1038/modpathol.2013.158. PubMed DOI
Dickinson M, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537:508–514. doi: 10.1038/nature19356. PubMed DOI PMC
Sharpe J. Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies. Science. 2002;296:541–545. doi: 10.1126/science.1068206. PubMed DOI
Sharpe J. Optical projection tomography as a new tool for studying embryo anatomy. J Anat. 2003;202:175–181. doi: 10.1046/j.1469-7580.2003.00155.x. PubMed DOI PMC
Wong M, Dorr A, Walls J, Lerch J, Henkelman R. A novel 3D mouse embryo atlas based on micro-CT. Dev. 2012;139:3248–3256. doi: 10.1242/dev.082016. PubMed DOI PMC
Hsu C, et al. Three-dimensional microCT imaging of mouse development from early post-implantation to early postnatal stages. Dev Biol. 2016;419:229–236. doi: 10.1016/j.ydbio.2016.09.011. PubMed DOI PMC
Kaucka M, et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. elife. 2017;6:e25902. doi: 10.7554/eLife.25902. PubMed DOI PMC
Kaucka M, et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife. 2018;7:e34465. doi: 10.7554/eLife.34465. PubMed DOI PMC
Noden D, Trainor P. Relations and interactions between cranial mesoderm and neural crest populations. J Anat. 2005;207:575–601. doi: 10.1111/j.1469-7580.2005.00473.x. PubMed DOI PMC
Buchanan E, Xue A, Hollier L. Craniofacial Syndromes. Plast Reconstr Surg. 2014;134:128e–153e. doi: 10.1097/PRS.0000000000000308. PubMed DOI
De Boer B, et al. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format. Dev. 2010;138:159–167. doi: 10.1242/dev.051086. PubMed DOI PMC
De Laurier A, et al. The Mouse Limb Anatomy Atlas: An interactive 3D tool for studying embryonic limb patterning. BMC Dev Biol. 2008;8:1–7. doi: 10.1186/1471-213x-8-83. PubMed DOI PMC
Newe A, Becker L. Three-Dimensional Portable Document Format (3D PDF) in Clinical Communication and Biomedical Sciences: Systematic Review of Applications, Tools, and Protocols. JMIR Med Inform. 2018;6:e10295. doi: 10.2196/10295. PubMed DOI PMC
Danz J, Katsaros C. Three-dimensional portable document format: A simple way to present 3-dimensional data in an electronic publication. Am J Orthod Dentofac Orthop. 2011;140:274–276. doi: 10.1016/j.ajodo.2011.04.010. PubMed DOI
Valera-Melé M, et al. A Novel and Freely Available Interactive 3d Model of the Internal Carotid Artery. J Med Syst. 2018;42:6. doi: 10.1007/s10916-018-0919-4. PubMed DOI
Van de Kamp T, et al. Three-Dimensional Reconstructions Come to Life – Interactive 3D PDF Animations in Functional Morphology. PLoS ONE. 2014;9:e102355. doi: 10.1371/journal.pone.0102355. PubMed DOI PMC
Ruthensteiner B, Heß M. Embedding 3D models of biological specimens in PDF publications. Microsc Res Techn. 2008;71:778–786. doi: 10.1002/jemt.20618. PubMed DOI
Ruthensteiner B, Baeumler N, Barnes D. Interactive 3D volume rendering in biomedical publications. Micron. 2010;41:886.e1–886.e17. doi: 10.1016/j.micron.2010.03.010. PubMed DOI
Menn J, Seliger G. Increasing Knowledge and Skills for Assembly Processes through Interactive 3D-PDFs. Procedia CIRP. 2016;48:454–459. doi: 10.1016/j.procir.2016.02.093. DOI
Semple T, Peakall R, Tatarnic N. A comprehensive and user-friendly framework for 3D-data visualisation in invertebrates and other organisms. J Morphol. 2019;280:223–231. doi: 10.1002/jmor.20938. PubMed DOI PMC
Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. doi: 10.1186/1472-6793-9-11. PubMed DOI PMC
Metscher BD. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn. 2009;238:632–640. doi: 10.1002/dvdy.21857. PubMed DOI
Wilkins S, Gureyev T, Gao D, Pogany A, Stevenson A. Phase-contrast imaging using polychromatic hard X-rays. Nature. 1996;384:335–338. doi: 10.1038/384335a0. DOI
Baran P, et al. High-Resolution X-Ray Phase-Contrast 3-D Imaging of Breast Tissue Specimens as a Possible Adjunct to Histopathology. IEEE Trans Med Imaging. 2018;37:2642–2650. doi: 10.1109/TMI.2018.2845905. PubMed DOI
Wagner W, et al. Towards synchrotron phase-contrast lung imaging in patients – a proof-of-concept study on porcine lungs in a human-scale chest phantom. J Synchrotron Rad. 2018;25:1827–1832. doi: 10.1107/S1600577518013401. PubMed DOI
Momose, A., Takeda, T., Itaj, Y. & Hirano, K. Phase−contrast X−ray computed tomography for observing biological soft tissues. Nat. Med. 2 (1996). PubMed
Saccomano Mara, Albers Jonas, Tromba Giuliana, Dobrivojević Radmilović Marina, Gajović Srećko, Alves Frauke, Dullin Christian. Synchrotron inline phase contrast µCT enables detailed virtual histology of embedded soft-tissue samples with and without staining. Journal of Synchrotron Radiation. 2018;25(4):1153–1161. doi: 10.1107/S1600577518005489. PubMed DOI
Larsson, D. H., Vågberg, W., Yaroshenko, A., Yildirim, A. Ö. & Hertz, H. M. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography. Sci. Rep. 6, 10.1038/srep39074 (2016). PubMed PMC
Yang M, et al. Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues. Phys Med Biol. 2010;55:1343–1362. doi: 10.1088/0031-9155/55/5/006. PubMed DOI
Yan Dongmei, Zhang Zhihong, Luo Qingming, Yang Xiaoquan. A Novel Mouse Segmentation Method Based on Dynamic Contrast Enhanced Micro-CT Images. PLOS ONE. 2017;12(1):e0169424. doi: 10.1371/journal.pone.0169424. PubMed DOI PMC
Lusic H, Grinstaff MW. X-Ray Computed Tomography Contrast Agents. Chem Rev. 2013;3:113. doi: 10.1021/cr200358s. PubMed DOI PMC
Heude E, Rivals I, Couly G, Levi G. Masticatory muscle defects in hemifacial microsomia: A new embryological concept. Am J Med Genet Part A. 2011;155:1991–1995. doi: 10.1002/ajmg.a.34095. PubMed DOI
de Bournonville S, Vangrunderbeeck S, Kerckhofs G. Contrast-Enhanced MicroCT for Virtual 3D Anatomical Pathology of Biological Tissues: A Literature Review. Contrast Media Mol. Imaging. 2019;2019:1–9. doi: 10.1155/2019/8617406. PubMed DOI PMC
Zikmund T, et al. J. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography. J Instrum. 2018;13:C02039–C02039. doi: 10.1088/1748-0221/13/02/C02039. DOI
Weinhardt V, et al. Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography. Sci Rep. 2018;8:16531. doi: 10.1038/s41598-018-34848-z. PubMed DOI PMC
Boccardi M, et al. Survey of Protocols for the Manual Segmentation of the Hippocampus: Preparatory Steps Towards a Joint EADC-ADNI Harmonized Protocol. J Alzheimers Dis. 2011;26:61–75. doi: 10.3233/JAD-2011-0004. PubMed DOI PMC
Tesařová M, et al. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J Instrum. 2016;11:C03006–C03006. doi: 10.1088/1748-0221/11/03/C03006. DOI
Tesařová M, et al. A quantitative analysis of 3D-cell distribution in regenerating muscle-skeletal system with synchrotron X-ray computed microtomography. Sci Rep. 2018;8:14145. doi: 10.1038/s41598-018-32459-2. PubMed DOI PMC
Cignoni, P. et al. MeshLab: an Open-Source Mesh Processing Tool. http://vcg.isti.cnr.it/Publications/2008/CCCDGR08/MeshLabEGIT.final.pdf (2008).
Hess, R. The essential Blender: guide to 3D creation with the open source suite Blender (ed. Roosendaal, T.) (No Starch Press, 2007).
3D PDF Maker [software] www.3dpdfmaker.com (2019).
Heude E, et al. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. eLife. 2018;7:e40179. doi: 10.7554/eLife.40179. PubMed DOI PMC
Prochazka D, et al. Joint utilization of double-pulse laser-induced breakdown spectroscopy and X-ray computed tomography for volumetric information of geological samples. J Anal Atom Spectrom. 2018;33:1993–1999. doi: 10.1039/c8ja00232k. DOI