Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
647844
European Research Council - International
680037
European Research Council - International
PubMed
29897331
PubMed Central
PMC6019068
DOI
10.7554/elife.34465
PII: 34465
Knihovny.cz E-zdroje
- Klíčová slova
- cartilage induction, cleft palate, developmental biology, embryonic development, facial shaping, mammalian face, mouse, regenerative medicine, sonic hedgehog, stem cells,
- MeSH
- chondrocyty cytologie účinky léků metabolismus MeSH
- čichová sliznice cytologie účinky léků růst a vývoj metabolismus MeSH
- embryo savčí MeSH
- homeoboxový protein Nkx-2.2 MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- integrasy genetika metabolismus MeSH
- kolagen typ II genetika metabolismus MeSH
- lidé MeSH
- maxilofaciální vývoj genetika MeSH
- morfogeneze účinky léků genetika MeSH
- mozek účinky léků růst a vývoj metabolismus MeSH
- mutageny aplikace a dávkování MeSH
- myši transgenní MeSH
- myši MeSH
- nosní chrupavky cytologie účinky léků růst a vývoj metabolismus MeSH
- obličej anatomie a histologie embryologie MeSH
- obličejové kosti cytologie účinky léků růst a vývoj metabolismus MeSH
- proteiny dánia pruhovaného MeSH
- proteiny hedgehog genetika metabolismus MeSH
- rekombinantní fúzní proteiny genetika metabolismus MeSH
- signální transdukce * MeSH
- tamoxifen aplikace a dávkování MeSH
- transkripční faktory genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Col2a1 protein, mouse MeSH Prohlížeč
- Cre recombinase MeSH Prohlížeč
- homeoboxový protein Nkx-2.2 MeSH
- homeodoménové proteiny MeSH
- integrasy MeSH
- kolagen typ II MeSH
- mutageny MeSH
- proteiny dánia pruhovaného MeSH
- proteiny hedgehog MeSH
- rekombinantní fúzní proteiny MeSH
- SHH protein, human MeSH Prohlížeč
- tamoxifen MeSH
- transkripční faktory MeSH
Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.
Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Bioengineering University of Pennsylvania Philadelphia United States
Department of Biosciences and Nutrition Karolinska Institutet Stockholm Sweden
Department of Development Reproduction and Cancer Institute Cochin Paris France
Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
Department of Molecular Neurosciences Medical University Vienna Vienna Austria
Department of Neuroscience Karolinska Institutet Stockholm Sweden
Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
Developmental Biology Unit European Molecular Biology Laboratory Heidelberg Germany
Genomics of Animal Development Unit Institut Pasteur Paris France
Institute for Regenerative Medicine Sechenov 1st Moscow State Medical University Moscow Russia
Institute of Science and Technology IST Austria Klosterneuburg Austria
Zobrazit více v PubMed
Abzhanov A, Tabin CJ. Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. Developmental Biology. 2004;273:134–148. doi: 10.1016/j.ydbio.2004.05.028. PubMed DOI
Allen WL, Higham JP. Assessing the potential information content of multicomponent visual signals: a machine learning approach. Proceedings of the Royal Society B: Biological Sciences. 2015;282:20142284. doi: 10.1098/rspb.2014.2284. PubMed DOI PMC
Antshel KM, Fremont W, Kates WR. The neurocognitive phenotype in velo-cardio-facial syndrome: a developmental perspective. Developmental Disabilities Research Reviews. 2008;14:43–51. doi: 10.1002/ddrr.7. PubMed DOI
Attanasio C, Nord AS, Zhu Y, Blow MJ, Li Z, Liberton DK, Morrison H, Plajzer-Frick I, Holt A, Hosseini R, Phouanenavong S, Akiyama JA, Shoukry M, Afzal V, Rubin EM, FitzPatrick DR, Ren B, Hallgrímsson B, Pennacchio LA, Visel A. Fine tuning of craniofacial morphology by distant-acting enhancers. Science. 2013;342:1241006. doi: 10.1126/science.1241006. PubMed DOI PMC
Baggiolini A, Varum S, Mateos JM, Bettosini D, John N, Bonalli M, Ziegler U, Dimou L, Clevers H, Furrer R, Sommer L. Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell. 2015;16:314–322. doi: 10.1016/j.stem.2015.02.017. PubMed DOI
Balaskas N, Ribeiro A, Panovska J, Dessaud E, Sasai N, Page KM, Briscoe J, Ribes V. Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell. 2012;148:273–284. doi: 10.1016/j.cell.2011.10.047. PubMed DOI PMC
Bhullar BA, Morris ZS, Sefton EM, Tok A, Tokita M, Namkoong B, Camacho J, Burnham DA, Abzhanov A. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to Major transitions in vertebrate history. Evolution. 2015;69:1665–1677. doi: 10.1111/evo.12684. PubMed DOI
Billmyre KK, Klingensmith J. Sonic hedgehog from pharyngeal arch 1 epithelium is necessary for early mandibular arch cell survival and later cartilage condensation differentiation. Developmental Dynamics. 2015;244:564–576. doi: 10.1002/dvdy.24256. PubMed DOI
Brugmann SA, Powder KE, Young NM, Goodnough LH, Hahn SM, James AW, Helms JA, Lovett M. Comparative gene expression analysis of avian embryonic facial structures reveals new candidates for human craniofacial disorders. Human Molecular Genetics. 2010;19:920–930. doi: 10.1093/hmg/ddp559. PubMed DOI PMC
Carson B. Human Embryology & Developmental Biology. Mosby; 1999.
Cau E, Gradwohl G, Fode C, Guillemot F. Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development. 1997;124:1611–1621. PubMed
Chamberlain CE, Jeong J, Guo C, Allen BL, McMahon AP. Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning. Development. 2008;135:1097–1106. doi: 10.1242/dev.013086. PubMed DOI
Chang CF, Chang YT, Millington G, Brugmann SA. Craniofacial ciliopathies reveal specific requirements for GLI proteins during development of the facial midline. PLoS Genetics. 2016;12:e1006351. doi: 10.1371/journal.pgen.1006351. PubMed DOI PMC
Chong HJ, Young NM, Hu D, Jeong J, McMahon AP, Hallgrimsson B, Marcucio RS. Signaling by SHH rescues facial defects following blockade in the brain. Developmental dynamics : an official publication of the American Association of Anatomists. 2012;241:247–256. doi: 10.1002/dvdy.23726. PubMed DOI PMC
Foppiano S, Hu D, Marcucio RS. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development. Developmental Biology. 2007;312:103–114. doi: 10.1016/j.ydbio.2007.09.016. PubMed DOI PMC
Forbes BJ. Congenital craniofacial anomalies. Current Opinion in Ophthalmology. 2010;21:367–374. doi: 10.1097/ICU.0b013e32833cd422. PubMed DOI
Furlan A, Dyachuk V, Kastriti ME, Calvo-Enrique L, Abdo H, Hadjab S, Chontorotzea T, Akkuratova N, Usoskin D, Kamenev D, Petersen J, Sunadome K, Memic F, Marklund U, Fried K, Topilko P, Lallemend F, Kharchenko PV, Ernfors P, Adameyko I. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357 doi: 10.1126/science.aal3753. PubMed DOI PMC
Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. Journal of Cellular Biochemistry. 2006;97:33–44. doi: 10.1002/jcb.20652. PubMed DOI
Griffin JN, Compagnucci C, Hu D, Fish J, Klein O, Marcucio R, Depew MJ. Fgf8 dosage determines midfacial integration and polarity within the nasal and optic capsules. Developmental Biology. 2013;374:185–197. doi: 10.1016/j.ydbio.2012.11.014. PubMed DOI PMC
Grifone R, Demignon J, Houbron C, Souil E, Niro C, Seller MJ, Hamard G, Maire P. Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development. 2005;132:2235–2249. doi: 10.1242/dev.01773. PubMed DOI
Gros J, Tabin CJ. Vertebrate limb bud formation is initiated by localized epithelial-to-mesenchymal transition. Science. 2014;343:1253–1256. doi: 10.1126/science.1248228. PubMed DOI PMC
Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell. 1993;75:463–476. doi: 10.1016/0092-8674(93)90381-Y. PubMed DOI
Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell. 2004;118:517–528. doi: 10.1016/j.cell.2004.07.024. PubMed DOI
Herbrand H, Pabst O, Hill R, Arnold HH. Transcription factors Nkx3.1 and Nkx3.2 (Bapx1) play an overlapping role in sclerotomal development of the mouse. Mechanisms of Development. 2002;117:217–224. doi: 10.1016/S0925-4773(02)00207-1. PubMed DOI
Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development. 1999;126:4873–4884. PubMed
Hu D, Marcucio RS. A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development. 2009;136:107–116. doi: 10.1242/dev.026583. PubMed DOI PMC
Hu D, Young NM, Li X, Xu Y, Hallgrímsson B, Marcucio RS. A dynamic shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face. Development. 2015b;142:567–574. doi: 10.1242/dev.114835. PubMed DOI PMC
Hu D, Young NM, Xu Q, Jamniczky H, Green RM, Mio W, Marcucio RS, Hallgrimsson B. Signals from the brain induce variation in avian facial shape. Developmental dynamics : an official publication of the American Association of Anatomists. 2015a doi: 10.1002/dvdy.24284. PubMed DOI PMC
Ikeda K, Ookawara S, Sato S, Ando Z, Kageyama R, Kawakami K. Six1 is essential for early neurogenesis in the development of olfactory epithelium. Developmental Biology. 2007;311:53–68. doi: 10.1016/j.ydbio.2007.08.020. PubMed DOI
Irimia M, Royo JL, Burguera D, Maeso I, Gómez-Skarmeta JL, Garcia-Fernandez J. Comparative genomics of the hedgehog loci in chordates and the origins of shh regulatory novelties. Scientific Reports. 2012;2:433. doi: 10.1038/srep00433. PubMed DOI PMC
Jeong Y, El-Jaick K, Roessler E, Muenke M, Epstein DJ. A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development. 2006;133:761–772. doi: 10.1242/dev.02239. PubMed DOI
Kaucka M, Zikmund T, Tesarova M, Gyllborg D, Hellander A, Jaros J, Kaiser J, Petersen J, Szarowska B, Newton PT, Dyachuk V, Li L, Qian H, Johansson AS, Mishina Y, Currie JD, Tanaka EM, Erickson A, Dudley A, Brismar H, Southam P, Coen E, Chen M, Weinstein LS, Hampl A, Arenas E, Chagin AS, Fried K, Adameyko I. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. eLife. 2017;6:e25902. doi: 10.7554/eLife.25902. PubMed DOI PMC
Kobayashi H, Kawakami K, Asashima M, Nishinakamura R. Six1 and Six4 are essential for gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mechanisms of Development. 2007;124:290–303. doi: 10.1016/j.mod.2007.01.002. PubMed DOI
Laclef C, Hamard G, Demignon J, Souil E, Houbron C, Maire P. Altered myogenesis in Six1-deficient mice. Development. 2003;130:2239–2252. doi: 10.1242/dev.00440. PubMed DOI
LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Chang I, Darbonne WC, Graham RA, Zerivitz KL, Low JA, Von Hoff DD. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clinical Cancer Research. 2011;17:2502–2511. doi: 10.1158/1078-0432.CCR-10-2745. PubMed DOI PMC
Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-variation of the brain and face. Genesis. 2011;49:177–189. doi: 10.1002/dvg.20710. PubMed DOI PMC
Marinić M, Aktas T, Ruf S, Spitz F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Developmental Cell. 2013;24:530–542. doi: 10.1016/j.devcel.2013.01.025. PubMed DOI
McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Development and tissue origins of the mammalian cranial base. Developmental Biology. 2008;322:121–132. doi: 10.1016/j.ydbio.2008.07.016. PubMed DOI PMC
Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology. 2009;9:11. doi: 10.1186/1472-6793-9-11. PubMed DOI PMC
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010;137:2605–2621. doi: 10.1242/dev.040048. PubMed DOI
Murtaugh LC, Chyung JH, Lassar AB. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes & Development. 1999;13:225–237. doi: 10.1101/gad.13.2.225. PubMed DOI PMC
Murtaugh LC, Zeng L, Chyung JH, Lassar AB. The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Developmental Cell. 2001;1:411–422. doi: 10.1016/S1534-5807(01)00039-9. PubMed DOI
Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Developmental dynamics : an official publication of the American Association of Anatomists. 2006;235:2603–2612. doi: 10.1002/dvdy.20892. PubMed DOI
Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes & Development. 2002;16:1446–1465. doi: 10.1101/gad.990702. PubMed DOI
Ozaki H, Watanabe Y, Takahashi K, Kitamura K, Tanaka A, Urase K, Momoi T, Sudo K, Sakagami J, Asano M, Iwakura Y, Kawakami K. Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development. Molecular and Cellular Biology. 2001;21:3343–3350. doi: 10.1128/MCB.21.10.3343-3350.2001. PubMed DOI PMC
Park J, Zhang JJ, Moro A, Kushida M, Wegner M, Kim PC. Regulation of Sox9 by sonic hedgehog (Shh) is essential for patterning and formation of tracheal cartilage. Developmental Dynamics. 2010;239:514–526. doi: 10.1002/dvdy.22192. PubMed DOI
Parsons TE, Schmidt EJ, Boughner JC, Jamniczky HA, Marcucio RS, Hallgrímsson B. Epigenetic integration of the developing brain and face. Developmental Dynamics. 2011;240:2233–2244. doi: 10.1002/dvdy.22729. PubMed DOI PMC
Petryk A, Graf D, Marcucio R. Holoprosencephaly: signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans. Wiley Interdisciplinary Reviews: Developmental Biology. 2015;4:17–32. doi: 10.1002/wdev.161. PubMed DOI PMC
Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods. 2013;10:1096–1098. doi: 10.1038/nmeth.2639. PubMed DOI
Sagai T, Amano T, Tamura M, Mizushina Y, Sumiyama K, Shiroishi T. A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings. Development. 2009;136:1665–1674. doi: 10.1242/dev.032714. PubMed DOI
Sala FG, Del Moral PM, Tiozzo C, Alam DA, Warburton D, Grikscheit T, Veltmaat JM, Bellusci S. FGF10 controls the patterning of the tracheal cartilage rings via Shh. Development. 2011;138:273–282. doi: 10.1242/dev.051680. PubMed DOI PMC
Santana SE, Lynch Alfaro J, Alfaro ME. Adaptive evolution of facial colour patterns in neotropical primates. Proceedings of the Royal Society B: Biological Sciences. 2012;279:2204–2211. doi: 10.1098/rspb.2011.2326. PubMed DOI PMC
Shimeld SM, Donoghue PC. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish) Development. 2012;139:2091–2099. doi: 10.1242/dev.074716. PubMed DOI
Shirley ED, Ain MC. Achondroplasia: manifestations and treatment. The Journal of the American Academy of Orthopaedic Surgeons. 2009;17:231–241. doi: 10.5435/00124635-200904000-00004. PubMed DOI
Snider TN, Mishina Y. Cranial neural crest cell contribution to craniofacial formation, pathology, and future directions in tissue engineering. Birth Defects Research Part C: Embryo Today: Reviews. 2014;102:324–332. doi: 10.1002/bdrc.21075. PubMed DOI PMC
Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–144. doi: 10.1016/j.cell.2010.09.016. PubMed DOI
Starbuck JM, Cole TM, Reeves RH, Richtsmeier JT. The influence of trisomy 21 on facial form and variability. American Journal of Medical Genetics Part A. 2017;173:2861–2872. doi: 10.1002/ajmg.a.38464. PubMed DOI PMC
Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, Yokoyama C, Onoe H, Eguchi M, Yamaguchi S, Abe T, Kiyonari H, Shimizu Y, Miyawaki A, Yokota H, Ueda HR. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014;157:726–739. doi: 10.1016/j.cell.2014.03.042. PubMed DOI
Symmons O, Pan L, Remeseiro S, Aktas T, Klein F, Huber W, Spitz F. The shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Developmental Cell. 2016;39:529–543. doi: 10.1016/j.devcel.2016.10.015. PubMed DOI PMC
Vernon RJ, Sutherland CA, Young AW, Hartley T. Modeling first impressions from highly variable facial images. PNAS. 2014;111:E3353–3361. doi: 10.1073/pnas.1409860111. PubMed DOI PMC
Vincent M, Collet C, Verloes A, Lambert L, Herlin C, Blanchet C, Sanchez E, Drunat S, Vigneron J, Laplanche JL, Puechberty J, Sarda P, Geneviève D. Large deletions encompassing the TCOF1 and CAMK2A genes are responsible for Treacher Collins syndrome with intellectual disability. European journal of human genetics : EJHG. 2014;22:52–56. doi: 10.1038/ejhg.2013.98. PubMed DOI PMC
Voehringer D, Liang HE, Locksley RM. Homeostasis and effector function of lymphopenia-induced "memory-like" T cells in constitutively T cell-depleted mice. The Journal of Immunology. 2008;180:4742–4753. doi: 10.4049/jimmunol.180.7.4742. PubMed DOI PMC
Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. The Journal of Molecular Diagnostics : JMD. 2012;14:22–29. doi: 10.1016/j.jmoldx.2011.08.002. PubMed DOI PMC
Weisman O, Feldman R, Burg-Malki M, Keren M, Geva R, Diesendruck G, Gothelf D. Comparing the broad socio-cognitive profile of youth with williams syndrome and 22q11.2 deletion syndrome. Journal of Intellectual Disability Research. 2017;61:1083–1093. doi: 10.1111/jir.12424. PubMed DOI PMC
Yao Y, Minor PJ, Zhao YT, Jeong Y, Pani AM, King AN, Symmons O, Gan L, Cardoso WV, Spitz F, Lowe CJ, Epstein DJ. Cis-regulatory architecture of a brain signaling center predates the origin of chordates. Nature Genetics. 2016;48:575–580. doi: 10.1038/ng.3542. PubMed DOI PMC
Young NM, Hu D, Lainoff AJ, Smith FJ, Diaz R, Tucker AS, Trainor PA, Schneider RA, Hallgrímsson B, Marcucio RS. Embryonic bauplans and the developmental origins of facial diversity and constraint. Development. 2014;141:1059–1063. doi: 10.1242/dev.099994. PubMed DOI PMC
Yu K, McGlynn S, Matise MP. Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord. Development. 2013;140:1594–1604. doi: 10.1242/dev.090845. PubMed DOI PMC
Zagorski M, Tabata Y, Brandenberg N, Lutolf MP, Tkačik G, Bollenbach T, Briscoe J, Kicheva A. Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science. 2017;356:1379–1383. doi: 10.1126/science.aam5887. PubMed DOI PMC
Zeng L, Kempf H, Murtaugh LC, Sato ME, Lassar AB. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes & Development. 2002;16:1990–2005. doi: 10.1101/gad.1008002. PubMed DOI PMC
3D atlas of the human fetal chondrocranium in the middle trimester
Directionality of developing skeletal muscles is set by mechanical forces
X-ray microtomography-based atlas of mouse cranial development
Local retinoic acid signaling directs emergence of the extraocular muscle functional unit