The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2020-02298
Vetenskapsrådet (Swedish Research Council)
NNF21OC0070314
Novo Nordisk Fonden (Novo Nordisk Foundation)
PubMed
38531868
PubMed Central
PMC10965948
DOI
10.1038/s41467-024-46030-3
PII: 10.1038/s41467-024-46030-3
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované * MeSH
- dieta MeSH
- lidé MeSH
- mTORC1 MeSH
- myši MeSH
- proteiny MeSH
- signální transdukce * MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mTORC1 MeSH
- proteiny MeSH
The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
Astrid Lindgren Children's hospital Stockholm Sweden
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Biosciences and Nutrition Karolinska Institute Flemingsberg Sweden
Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
Department of Materials Engineering KU Leuven Leuven Belgium
Department of Neuroimmunology Center for Brain Research Medical University of Vienna Vienna Austria
Department of Neuroscience Karolinska Institutet Stockholm Sweden
Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
Endocrinology Research Center Moscow Russia
Intractable Disease Research Center Juntendo University Tokyo Japan
Life Improvement by Future Technologies Center Moscow Russia
Pole of Morphology Institute of Experimental and Clinical Research UCLouvain Woluwe Belgium
Prometheus Division for Skeletal Tissue Engineering KU Leuven Leuven Belgium
Regulatory Genomics Research Center Kazan Federal University Kazan Russia
Zobrazit více v PubMed
Kohn LAP. The role of genetics in craniofacial morphology and growth. Annu. Rev. Anthropol. 1991;20:261–276. doi: 10.1146/annurev.an.20.100191.001401. DOI
Porras-Hurtado XS-GaGL. Characterization of congenital craniofacial anomalies in a specialized hospital of Risaralda, Colombia. 2010-2014. Rev. Fac. Med. 2018;66:223–227. doi: 10.15446/revfacmed.v66n2.61551. DOI
WHO. Craniofacial anomalies and associated birth defects. Global registry and database on craniofacial anomalies.
Stewart TA, Albertson RC. Evolution of a unique predatory feeding apparatus: functional anatomy, development and a genetic locus for jaw laterality in Lake Tanganyika scale-eating cichlids. BMC Biol. 2010;8:8. doi: 10.1186/1741-7007-8-8. PubMed DOI PMC
Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat. Rev. Genet. 2011;12:167–178. doi: 10.1038/nrg2933. PubMed DOI PMC
Weinberg SM, Cornell R, Leslie EJ. Craniofacial genetics: Where have we been and where are we going? PLoS Genet. 2018;14:e1007438. doi: 10.1371/journal.pgen.1007438. PubMed DOI PMC
Weinberg SM, et al. Hunting for genes that shape human faces: Initial successes and challenges for the future. Orthod. Craniofac. Res. 2019;22:207–212. doi: 10.1111/ocr.12268. PubMed DOI PMC
Johannsdottir B, Thorarinsson F, Thordarson A, Magnusson TE. Heritability of craniofacial characteristics between parents and offspring estimated from lateral cephalograms. Am. J. Orthod. Dentofac. Orthop. 2005;127:200–207. doi: 10.1016/j.ajodo.2004.07.033. PubMed DOI
King L, Harris EF, Tolley EA. Heritability of cephalometric and occlusal variables as assessed from siblings with overt malocclusions. Am. J. Orthod. Dentofac. Orthop. 1993;104:121–131. doi: 10.1016/S0889-5406(05)81001-7. PubMed DOI
Carson EA. Maximum likelihood estimation of human craniometric heritabilities. Am. J. Phys. Anthropol. 2006;131:169–180. doi: 10.1002/ajpa.20424. PubMed DOI
Tsagkrasoulis D, Hysi P, Spector T, Montana G. Heritability maps of human face morphology through large-scale automated three-dimensional phenotyping. Sci. Rep. 2017;7:45885. doi: 10.1038/srep45885. PubMed DOI PMC
Muggli E, et al. Association between prenatal alcohol exposure and craniofacial shape of children at 12 months of age. JAMA Pediatr. 2017;171:771–780. doi: 10.1001/jamapediatrics.2017.0778. PubMed DOI PMC
Kaucka M, Adameyko I. Evolution and development of the cartilaginous skull: From a lancelet towards a human face. Semin Cell Dev. Biol. 2019;91:2–12. doi: 10.1016/j.semcdb.2017.12.007. PubMed DOI
Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res. 2012;22:288–304. doi: 10.1038/cr.2012.11. PubMed DOI PMC
Kaucka M, et al. Analysis of neural crest-derived clones reveals novel aspects of facial development. Sci. Adv. 2016;2:e1600060. doi: 10.1126/sciadv.1600060. PubMed DOI PMC
Lee RT, et al. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development. 2013;140:4890–4902. doi: 10.1242/dev.094680. PubMed DOI PMC
Xie M, et al. Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proc. Natl Acad. Sci. USA. 2019;116:15068–15073. doi: 10.1073/pnas.1900038116. PubMed DOI PMC
Kaucka, M. et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife710.7554/eLife.34465 (2018). PubMed PMC
Kaucka, M. et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife610.7554/eLife.25902 (2017). PubMed PMC
Hooper JE, et al. Systems biology of facial development: contributions of ectoderm and mesenchyme. Dev. Biol. 2017;426:97–114. doi: 10.1016/j.ydbio.2017.03.025. PubMed DOI PMC
Liu F, et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 2012;8:e1002932. doi: 10.1371/journal.pgen.1002932. PubMed DOI PMC
Shaffer JR, et al. Genome-wide association study reveals multiple loci influencing normal human facial morphology. PLoS Genet. 2016;12:e1006149. doi: 10.1371/journal.pgen.1006149. PubMed DOI PMC
White JD, et al. Insights into the genetic architecture of the human face. Nat. Genet. 2021;53:45–53. doi: 10.1038/s41588-020-00741-7. PubMed DOI PMC
Köhler S, et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2020;49:D1207–D1217. doi: 10.1093/nar/gkaa1043. PubMed DOI PMC
Rogers CD, Nie S. Specifying neural crest cells: From chromatin to morphogens and factors in between. Wiley Interdiscip. Rev. Dev. Biol. 2018;7:e322. doi: 10.1002/wdev.322. PubMed DOI PMC
Shao YY, Wang L, Welter JF, Ballock RT. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone. 2012;50:79–84. doi: 10.1016/j.bone.2011.08.033. PubMed DOI PMC
Navon D, et al. Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc. Natl Acad. Sci. USA. 2020;117:19321–19327. doi: 10.1073/pnas.1921856117. PubMed DOI PMC
Darwin, C. On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. (London: John Murray, 1859, 1859).
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell. 2015;161:67–83. doi: 10.1016/j.cell.2015.02.041. PubMed DOI PMC
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169:361–371. doi: 10.1016/j.cell.2017.03.035. PubMed DOI
Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat. Metab. 2019;1:321–333. doi: 10.1038/s42255-019-0038-7. PubMed DOI
Solon-Biet SamanthaM, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19:418–430. doi: 10.1016/j.cmet.2014.02.009. PubMed DOI PMC
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020;21:183–203. doi: 10.1038/s41580-019-0199-y. PubMed DOI PMC
Estivariz CF, Ziegler TR. Nutrition and the insulin-like growth factor system. Endocrine. 1997;7:65–71. doi: 10.1007/BF02778066. PubMed DOI
Xia X, Wang X, Li Q, Li N, Li J. Essential amino acid enriched high-protein enteral nutrition modulates insulin-like growth factor-1 system function in a rat model of trauma-hemorrhagic shock. PLoS ONE. 2013;8:e77823. doi: 10.1371/journal.pone.0077823. PubMed DOI PMC
Erbay E, Park I-H, Nuzzi PD, Schoenherr CJ, Chen J. IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. J. Cell Biol. 2003;163:931–936. doi: 10.1083/jcb.200307158. PubMed DOI PMC
Fang F, et al. Neural crest-specific TSC1 deletion in mice leads to sclerotic craniofacial bone lesion. J. Bone Min. Res. 2015;30:1195–1205. doi: 10.1002/jbmr.2447. PubMed DOI PMC
Nie X, et al. mTOR acts as a pivotal signaling hub for neural crest cells during craniofacial development. PLoS Genet. 2018;14:e1007491. doi: 10.1371/journal.pgen.1007491. PubMed DOI PMC
Yang, J. et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic beta-catenin degradation. Sci. Signal14 (2021). PubMed PMC
Shorning, B. Y., Dass, M. S., Smalley, M. J. & Pearson, H. B. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci.2110.3390/ijms21124507 (2020). PubMed PMC
Wang Y, et al. The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell. 2012;21:374–387. doi: 10.1016/j.ccr.2011.12.028. PubMed DOI PMC
Abascal F, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583:699–710. doi: 10.1038/s41586-020-2493-4. PubMed DOI PMC
Leone DP, et al. Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol. Cell Neurosci. 2003;22:430–440. doi: 10.1016/S1044-7431(03)00029-0. PubMed DOI
Kimmel CB, et al. The shaping of pharyngeal cartilages during early development of the zebrafish. Dev. Biol. 1998;203:245–263. doi: 10.1006/dbio.1998.9016. PubMed DOI
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic-development of the zebrafish. Dev. Dynam. 1995;203:253–310. doi: 10.1002/aja.1002030302. PubMed DOI
Minard AY, et al. mTORC1 is a major regulatory node in the FGF21 signaling network in adipocytes. Cell Rep. 2016;17:29–36. doi: 10.1016/j.celrep.2016.08.086. PubMed DOI PMC
Zeng H, et al. mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc. Natl Acad. Sci. USA. 2018;115:E10362–E10369. doi: 10.1073/pnas.1808575115. PubMed DOI PMC
Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFbeta acts through PDGFRbeta to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J. Biol. Chem. 2020;295:14262–14278. doi: 10.1074/jbc.RA120.014994. PubMed DOI PMC
Hsu YT, Li J, Wu D, Sudhof TC, Chen L. Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. Proc. Natl Acad. Sci. USA. 2019;116:7113–7122. doi: 10.1073/pnas.1820690116. PubMed DOI PMC
Chen J, Long F. mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development. 2014;141:2848–2854. doi: 10.1242/dev.108811. PubMed DOI PMC
Newton PT, et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature. 2019;567:234–238. doi: 10.1038/s41586-019-0989-6. PubMed DOI
Newton PT, Xie M, Medvedeva EV, Savendahl L, Chagin AS. Activation of mTORC1 in chondrocytes does not affect proliferation or differentiation, but causes the resting zone of the growth plate to become disordered. Bone Rep. 2018;8:64–71. doi: 10.1016/j.bonr.2018.02.006. PubMed DOI PMC
Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019;21:63–71. doi: 10.1038/s41556-018-0205-1. PubMed DOI
Lamming, D. W. et al. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model. Oncotarget6 (2015). PubMed PMC
Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24:400–406. doi: 10.1016/j.tcb.2014.03.003. PubMed DOI PMC
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell. 2010;40:310–322. doi: 10.1016/j.molcel.2010.09.026. PubMed DOI PMC
Klemetsen A. The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes. Freshw. Rev. 2010;3:49–74. doi: 10.1608/FRJ-3.1.3. DOI
Anderson CT, et al. Primary cilia: cellular sensors for the skeleton. Anat. Rec. (Hoboken) 2008;291:1074–1078. doi: 10.1002/ar.20754. PubMed DOI PMC
R. Ferreira, R., Fukui, H., Chow, R., Vilfan, A. & Vermot, J. The cilium as a force sensor−myth versus reality. J. Cell Sci.13210.1242/jcs.213496 (2019). PubMed
Bentzinger CF, et al. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet. Muscle. 2013;3:6. doi: 10.1186/2044-5040-3-6. PubMed DOI PMC
Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75. doi: 10.1016/j.tins.2009.11.003. PubMed DOI PMC
Tuckett QM, Simon KS, Saros JE, Halliwell DB, Kinnison MT. Fish trophic divergence along a lake productivity gradient revealed by historic patterns of invasion and eutrophication. Freshw. Biol. 2013;58:2517–2531. doi: 10.1111/fwb.12229. DOI
Luo C, et al. Perfect match: mTOR inhibitors and tuberous sclerosis complex. Orphanet J. Rare Dis. 2022;17:106. doi: 10.1186/s13023-022-02266-0. PubMed DOI PMC
Morris B, Garg A, Jadhav P. Tuberous sclerosis: a presentation of less-commonly encountered stigmata. Australas. Radiol. 2002;46:426–430. doi: 10.1046/j.1440-1673.2002.01098.x. PubMed DOI
Levine MorganE, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19:407–417. doi: 10.1016/j.cmet.2014.02.006. PubMed DOI PMC
Katz DC, Grote MN, Weaver TD. Changes in human skull morphology across the agricultural transition are consistent with softer diets in preindustrial farming groups. Proc. Natl Acad. Sci. USA. 2017;114:9050–9055. doi: 10.1073/pnas.1702586114. PubMed DOI PMC
Zaidi AA, et al. Investigating the case of human nose shape and climate adaptation. PLoS Genet. 2017;13:e1006616. doi: 10.1371/journal.pgen.1006616. PubMed DOI PMC
Kouno T, et al. C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nat. Commun. 2019;10:360. doi: 10.1038/s41467-018-08126-5. PubMed DOI PMC
Murata, M. et al. in Transcription Factor Regulatory Networks: Methods and Protocols (eds E. Miyamoto-Sato et al.) 67–85 (Springer New York, 2014).
Andersson R, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–461. doi: 10.1038/nature12787. PubMed DOI PMC
Kwiatkowski DJ, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 2002;11:525–534. doi: 10.1093/hmg/11.5.525. PubMed DOI
Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev. Dyn. 2006;235:2603–2612. doi: 10.1002/dvdy.20892. PubMed DOI
Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 2010;468:1100–1104. doi: 10.1038/nature09584. PubMed DOI
Snippert HJ, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–144. doi: 10.1016/j.cell.2010.09.016. PubMed DOI
Mitchell RE, et al. New tools for studying osteoarthritis genetics in zebrafish. Osteoarthr. Cartil. 2013;21:269–278. doi: 10.1016/j.joca.2012.11.004. PubMed DOI PMC
Mongera A, et al. Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development. 2013;140:916–925. doi: 10.1242/dev.091066. PubMed DOI
Pan YA, et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 2013;140:2835–2846. doi: 10.1242/dev.094631. PubMed DOI PMC
Tesarova, M. et al. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J Instrum1110.1088/1748-0221/11/03/C03006 (2016).
Gray, T. Magnifying Glass. Wolfram Demonstrations Projecthttps://demonstrations.wolfram.com/MagnifyingGlass/ (2011).