The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling

. 2024 Mar 26 ; 15 (1) : 2367. [epub] 20240326

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38531868

Grantová podpora
2020-02298 Vetenskapsrådet (Swedish Research Council)
NNF21OC0070314 Novo Nordisk Fonden (Novo Nordisk Foundation)

Odkazy

PubMed 38531868
PubMed Central PMC10965948
DOI 10.1038/s41467-024-46030-3
PII: 10.1038/s41467-024-46030-3
Knihovny.cz E-zdroje

The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.

A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia

Astrid Lindgren Children's hospital Stockholm Sweden

Biomechanics Lab Institute of Mechanics Materials and Civil Engineering UCLouvain Louvain la Neuve Belgium

Central European Institute of Technology Brno University of Technology Brno Czech Republic

Centre for Bone and Arthritis Research Institute of Medicine Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden

Department of Biosciences and Nutrition Karolinska Institute Flemingsberg Sweden

Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden

Department of Developmental and Comparative Physiology N K Koltsov Institute of Developmental Biology Russian Academy of Sciences Moscow Russia

Department of Materials Engineering KU Leuven Leuven Belgium

Department of Neuroimmunology Center for Brain Research Medical University of Vienna Vienna Austria

Department of Neuroscience Karolinska Institutet Stockholm Sweden

Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden

Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden

Endocrinology Research Center Moscow Russia

Intractable Disease Research Center Juntendo University Tokyo Japan

Life Improvement by Future Technologies Center Moscow Russia

Pole of Morphology Institute of Experimental and Clinical Research UCLouvain Woluwe Belgium

Prometheus Division for Skeletal Tissue Engineering KU Leuven Leuven Belgium

Regulatory Genomics Research Center Kazan Federal University Kazan Russia

School of Psychological and Cognitive Sciences PKU IDG McGovern Institute for Brain Research Peking University Beijing China

Zobrazit více v PubMed

Kohn LAP. The role of genetics in craniofacial morphology and growth. Annu. Rev. Anthropol. 1991;20:261–276. doi: 10.1146/annurev.an.20.100191.001401. DOI

Porras-Hurtado XS-GaGL. Characterization of congenital craniofacial anomalies in a specialized hospital of Risaralda, Colombia. 2010-2014. Rev. Fac. Med. 2018;66:223–227. doi: 10.15446/revfacmed.v66n2.61551. DOI

WHO. Craniofacial anomalies and associated birth defects. Global registry and database on craniofacial anomalies.

Stewart TA, Albertson RC. Evolution of a unique predatory feeding apparatus: functional anatomy, development and a genetic locus for jaw laterality in Lake Tanganyika scale-eating cichlids. BMC Biol. 2010;8:8. doi: 10.1186/1741-7007-8-8. PubMed DOI PMC

Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat. Rev. Genet. 2011;12:167–178. doi: 10.1038/nrg2933. PubMed DOI PMC

Weinberg SM, Cornell R, Leslie EJ. Craniofacial genetics: Where have we been and where are we going? PLoS Genet. 2018;14:e1007438. doi: 10.1371/journal.pgen.1007438. PubMed DOI PMC

Weinberg SM, et al. Hunting for genes that shape human faces: Initial successes and challenges for the future. Orthod. Craniofac. Res. 2019;22:207–212. doi: 10.1111/ocr.12268. PubMed DOI PMC

Johannsdottir B, Thorarinsson F, Thordarson A, Magnusson TE. Heritability of craniofacial characteristics between parents and offspring estimated from lateral cephalograms. Am. J. Orthod. Dentofac. Orthop. 2005;127:200–207. doi: 10.1016/j.ajodo.2004.07.033. PubMed DOI

King L, Harris EF, Tolley EA. Heritability of cephalometric and occlusal variables as assessed from siblings with overt malocclusions. Am. J. Orthod. Dentofac. Orthop. 1993;104:121–131. doi: 10.1016/S0889-5406(05)81001-7. PubMed DOI

Carson EA. Maximum likelihood estimation of human craniometric heritabilities. Am. J. Phys. Anthropol. 2006;131:169–180. doi: 10.1002/ajpa.20424. PubMed DOI

Tsagkrasoulis D, Hysi P, Spector T, Montana G. Heritability maps of human face morphology through large-scale automated three-dimensional phenotyping. Sci. Rep. 2017;7:45885. doi: 10.1038/srep45885. PubMed DOI PMC

Muggli E, et al. Association between prenatal alcohol exposure and craniofacial shape of children at 12 months of age. JAMA Pediatr. 2017;171:771–780. doi: 10.1001/jamapediatrics.2017.0778. PubMed DOI PMC

Kaucka M, Adameyko I. Evolution and development of the cartilaginous skull: From a lancelet towards a human face. Semin Cell Dev. Biol. 2019;91:2–12. doi: 10.1016/j.semcdb.2017.12.007. PubMed DOI

Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res. 2012;22:288–304. doi: 10.1038/cr.2012.11. PubMed DOI PMC

Kaucka M, et al. Analysis of neural crest-derived clones reveals novel aspects of facial development. Sci. Adv. 2016;2:e1600060. doi: 10.1126/sciadv.1600060. PubMed DOI PMC

Lee RT, et al. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development. 2013;140:4890–4902. doi: 10.1242/dev.094680. PubMed DOI PMC

Xie M, et al. Schwann cell precursors contribute to skeletal formation during embryonic development in mice and zebrafish. Proc. Natl Acad. Sci. USA. 2019;116:15068–15073. doi: 10.1073/pnas.1900038116. PubMed DOI PMC

Kaucka, M. et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife710.7554/eLife.34465 (2018). PubMed PMC

Kaucka, M. et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife610.7554/eLife.25902 (2017). PubMed PMC

Hooper JE, et al. Systems biology of facial development: contributions of ectoderm and mesenchyme. Dev. Biol. 2017;426:97–114. doi: 10.1016/j.ydbio.2017.03.025. PubMed DOI PMC

Liu F, et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 2012;8:e1002932. doi: 10.1371/journal.pgen.1002932. PubMed DOI PMC

Shaffer JR, et al. Genome-wide association study reveals multiple loci influencing normal human facial morphology. PLoS Genet. 2016;12:e1006149. doi: 10.1371/journal.pgen.1006149. PubMed DOI PMC

White JD, et al. Insights into the genetic architecture of the human face. Nat. Genet. 2021;53:45–53. doi: 10.1038/s41588-020-00741-7. PubMed DOI PMC

Köhler S, et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2020;49:D1207–D1217. doi: 10.1093/nar/gkaa1043. PubMed DOI PMC

Rogers CD, Nie S. Specifying neural crest cells: From chromatin to morphogens and factors in between. Wiley Interdiscip. Rev. Dev. Biol. 2018;7:e322. doi: 10.1002/wdev.322. PubMed DOI PMC

Shao YY, Wang L, Welter JF, Ballock RT. Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone. 2012;50:79–84. doi: 10.1016/j.bone.2011.08.033. PubMed DOI PMC

Navon D, et al. Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc. Natl Acad. Sci. USA. 2020;117:19321–19327. doi: 10.1073/pnas.1921856117. PubMed DOI PMC

Darwin, C. On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. (London: John Murray, 1859, 1859).

Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell. 2015;161:67–83. doi: 10.1016/j.cell.2015.02.041. PubMed DOI PMC

Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169:361–371. doi: 10.1016/j.cell.2017.03.035. PubMed DOI

Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat. Metab. 2019;1:321–333. doi: 10.1038/s42255-019-0038-7. PubMed DOI

Solon-Biet SamanthaM, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19:418–430. doi: 10.1016/j.cmet.2014.02.009. PubMed DOI PMC

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020;21:183–203. doi: 10.1038/s41580-019-0199-y. PubMed DOI PMC

Estivariz CF, Ziegler TR. Nutrition and the insulin-like growth factor system. Endocrine. 1997;7:65–71. doi: 10.1007/BF02778066. PubMed DOI

Xia X, Wang X, Li Q, Li N, Li J. Essential amino acid enriched high-protein enteral nutrition modulates insulin-like growth factor-1 system function in a rat model of trauma-hemorrhagic shock. PLoS ONE. 2013;8:e77823. doi: 10.1371/journal.pone.0077823. PubMed DOI PMC

Erbay E, Park I-H, Nuzzi PD, Schoenherr CJ, Chen J. IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. J. Cell Biol. 2003;163:931–936. doi: 10.1083/jcb.200307158. PubMed DOI PMC

Fang F, et al. Neural crest-specific TSC1 deletion in mice leads to sclerotic craniofacial bone lesion. J. Bone Min. Res. 2015;30:1195–1205. doi: 10.1002/jbmr.2447. PubMed DOI PMC

Nie X, et al. mTOR acts as a pivotal signaling hub for neural crest cells during craniofacial development. PLoS Genet. 2018;14:e1007491. doi: 10.1371/journal.pgen.1007491. PubMed DOI PMC

Yang, J. et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic beta-catenin degradation. Sci. Signal14 (2021). PubMed PMC

Shorning, B. Y., Dass, M. S., Smalley, M. J. & Pearson, H. B. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling. Int. J. Mol. Sci.2110.3390/ijms21124507 (2020). PubMed PMC

Wang Y, et al. The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell. 2012;21:374–387. doi: 10.1016/j.ccr.2011.12.028. PubMed DOI PMC

Abascal F, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583:699–710. doi: 10.1038/s41586-020-2493-4. PubMed DOI PMC

Leone DP, et al. Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol. Cell Neurosci. 2003;22:430–440. doi: 10.1016/S1044-7431(03)00029-0. PubMed DOI

Kimmel CB, et al. The shaping of pharyngeal cartilages during early development of the zebrafish. Dev. Biol. 1998;203:245–263. doi: 10.1006/dbio.1998.9016. PubMed DOI

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic-development of the zebrafish. Dev. Dynam. 1995;203:253–310. doi: 10.1002/aja.1002030302. PubMed DOI

Minard AY, et al. mTORC1 is a major regulatory node in the FGF21 signaling network in adipocytes. Cell Rep. 2016;17:29–36. doi: 10.1016/j.celrep.2016.08.086. PubMed DOI PMC

Zeng H, et al. mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc. Natl Acad. Sci. USA. 2018;115:E10362–E10369. doi: 10.1073/pnas.1808575115. PubMed DOI PMC

Maity S, Das F, Kasinath BS, Ghosh-Choudhury N, Ghosh Choudhury G. TGFbeta acts through PDGFRbeta to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. J. Biol. Chem. 2020;295:14262–14278. doi: 10.1074/jbc.RA120.014994. PubMed DOI PMC

Hsu YT, Li J, Wu D, Sudhof TC, Chen L. Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. Proc. Natl Acad. Sci. USA. 2019;116:7113–7122. doi: 10.1073/pnas.1820690116. PubMed DOI PMC

Chen J, Long F. mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development. 2014;141:2848–2854. doi: 10.1242/dev.108811. PubMed DOI PMC

Newton PT, et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature. 2019;567:234–238. doi: 10.1038/s41586-019-0989-6. PubMed DOI

Newton PT, Xie M, Medvedeva EV, Savendahl L, Chagin AS. Activation of mTORC1 in chondrocytes does not affect proliferation or differentiation, but causes the resting zone of the growth plate to become disordered. Bone Rep. 2018;8:64–71. doi: 10.1016/j.bonr.2018.02.006. PubMed DOI PMC

Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019;21:63–71. doi: 10.1038/s41556-018-0205-1. PubMed DOI

Lamming, D. W. et al. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model. Oncotarget6 (2015). PubMed PMC

Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24:400–406. doi: 10.1016/j.tcb.2014.03.003. PubMed DOI PMC

Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell. 2010;40:310–322. doi: 10.1016/j.molcel.2010.09.026. PubMed DOI PMC

Klemetsen A. The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes. Freshw. Rev. 2010;3:49–74. doi: 10.1608/FRJ-3.1.3. DOI

Anderson CT, et al. Primary cilia: cellular sensors for the skeleton. Anat. Rec. (Hoboken) 2008;291:1074–1078. doi: 10.1002/ar.20754. PubMed DOI PMC

R. Ferreira, R., Fukui, H., Chow, R., Vilfan, A. & Vermot, J. The cilium as a force sensor−myth versus reality. J. Cell Sci.13210.1242/jcs.213496 (2019). PubMed

Bentzinger CF, et al. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy. Skelet. Muscle. 2013;3:6. doi: 10.1186/2044-5040-3-6. PubMed DOI PMC

Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75. doi: 10.1016/j.tins.2009.11.003. PubMed DOI PMC

Tuckett QM, Simon KS, Saros JE, Halliwell DB, Kinnison MT. Fish trophic divergence along a lake productivity gradient revealed by historic patterns of invasion and eutrophication. Freshw. Biol. 2013;58:2517–2531. doi: 10.1111/fwb.12229. DOI

Luo C, et al. Perfect match: mTOR inhibitors and tuberous sclerosis complex. Orphanet J. Rare Dis. 2022;17:106. doi: 10.1186/s13023-022-02266-0. PubMed DOI PMC

Morris B, Garg A, Jadhav P. Tuberous sclerosis: a presentation of less-commonly encountered stigmata. Australas. Radiol. 2002;46:426–430. doi: 10.1046/j.1440-1673.2002.01098.x. PubMed DOI

Levine MorganE, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19:407–417. doi: 10.1016/j.cmet.2014.02.006. PubMed DOI PMC

Katz DC, Grote MN, Weaver TD. Changes in human skull morphology across the agricultural transition are consistent with softer diets in preindustrial farming groups. Proc. Natl Acad. Sci. USA. 2017;114:9050–9055. doi: 10.1073/pnas.1702586114. PubMed DOI PMC

Zaidi AA, et al. Investigating the case of human nose shape and climate adaptation. PLoS Genet. 2017;13:e1006616. doi: 10.1371/journal.pgen.1006616. PubMed DOI PMC

Kouno T, et al. C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution. Nat. Commun. 2019;10:360. doi: 10.1038/s41467-018-08126-5. PubMed DOI PMC

Murata, M. et al. in Transcription Factor Regulatory Networks: Methods and Protocols (eds E. Miyamoto-Sato et al.) 67–85 (Springer New York, 2014).

Andersson R, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–461. doi: 10.1038/nature12787. PubMed DOI PMC

Kwiatkowski DJ, et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 2002;11:525–534. doi: 10.1093/hmg/11.5.525. PubMed DOI

Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev. Dyn. 2006;235:2603–2612. doi: 10.1002/dvdy.20892. PubMed DOI

Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 2010;468:1100–1104. doi: 10.1038/nature09584. PubMed DOI

Snippert HJ, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–144. doi: 10.1016/j.cell.2010.09.016. PubMed DOI

Mitchell RE, et al. New tools for studying osteoarthritis genetics in zebrafish. Osteoarthr. Cartil. 2013;21:269–278. doi: 10.1016/j.joca.2012.11.004. PubMed DOI PMC

Mongera A, et al. Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development. 2013;140:916–925. doi: 10.1242/dev.091066. PubMed DOI

Pan YA, et al. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 2013;140:2835–2846. doi: 10.1242/dev.094631. PubMed DOI PMC

Tesarova, M. et al. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J Instrum1110.1088/1748-0221/11/03/C03006 (2016).

Gray, T. Magnifying Glass. Wolfram Demonstrations Projecthttps://demonstrations.wolfram.com/MagnifyingGlass/ (2011).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...