Dimerization of Acetic Acid in the Gas Phase-NMR Experiments and Quantum-Chemical Calculations

. 2020 May 04 ; 25 (9) : . [epub] 20200504

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32375390

Grantová podpora
20-01472S Grantová Agentura České Republiky
1494119 Grantová Agentura, Univerzita Karlova

Due to the nature of the carboxylic group, acetic acid can serve as both a donor and acceptor of a hydrogen bond. Gaseous acetic acid is known to form cyclic dimers with two strong hydrogen bonds. However, trimeric and various oligomeric structures have also been hypothesized to exist in both the gas and liquid phases of acetic acid. In this work, a combination of gas-phase NMR experiments and advanced computational approaches were employed in order to validate the basic dimerization model of gaseous acetic acid. The gas-phase experiments performed in a glass tube revealed interactions of acetic acid with the glass surface. On the other hand, variable-temperature and variable-pressure NMR parameters obtained for acetic acid in a polymer insert provided thermodynamic parameters that were in excellent agreement with the MP2 (the second order Møller-Plesset perturbation theory) and CCSD(T) (coupled cluster with single, double and perturbative triple excitation) calculations based on the basic dimerization model. A slight disparity between the theoretical dimerization model and the experimental data was revealed only at low temperatures. This observation might indicate the presence of other, entropically disfavored, supramolecular structures at low temperatures.

Zobrazit více v PubMed

Davies J.A., Hanson-Heine M.W.D., Besley N.A., Shirley A., Trowers J., Yang S.F., Ellis A.M. Dimers of acetic acid in helium nanodroplets. Phys. Chem. Chem. Phys. 2019;21:13950–13958. doi: 10.1039/C8CP05934A. PubMed DOI

Nahringbauer I. Hydrogen bond studies .39. Reinvestigation of crystal structure of acetic acid (at +5 degrees c and −190 degrees C) Acta Chem. Scand. 1970;24:453–462. doi: 10.3891/acta.chem.scand.24-0453. DOI

Frurip D.J., Curtiss L.A., Blander M. Vapor-phase association in acetic and trifluoroacetic acids—thermal-conductivity measurements and molecular-orbital calculations. J. Am. Chem. Soc. 1980;102:2610–2616. doi: 10.1021/ja00528a015. DOI

Emmeluth C., Suhm M.A. A chemical approach towards the spectroscopy of carboxylic acid dimer isomerism. Phys. Chem. Chem. Phys. 2003;5:3094–3099. doi: 10.1039/b303816e. DOI

Derissen J.L. Reinvestigation of molecular structure of acetic acid monomer and dimer by gas electron diffraction. J. Mol. Struct. 1971;7:67–80. doi: 10.1016/0022-2860(71)90008-1. DOI

Bertie J.E., Michaelian K.H. The raman spectrum of gaseous acetic acid at 21 °C. J. Chem. Phys. 1982;77:5267–5271. doi: 10.1063/1.443795. DOI

Togeas J.B. Acetic acid vapor: 2. A statistical mechanical critique of vapor density experiments. J. Phys. Chem. A. 2005;109:5438–5444. doi: 10.1021/jp058004j. PubMed DOI

Lumbrosobader N., Coupry C., Baron D., Clague D.H. Dimerization of carboxylic acids: A vapor-phase NMR Study. J. Magn. Reson. 1975;17:386–392. doi: 10.1016/0022-2364(75)90207-3. DOI

Lengvinaite D., Aidas K., Kimtys L. Molecular aggregation in liquid acetic acid: Insight from molecular dynamics/quantum mechanics modelling of structural and NMR properties. Phys. Chem. Chem. Phys. 2019;21:14811–14820. doi: 10.1039/C9CP01892A. PubMed DOI

Bertagnolli H. The structure of liquid acetic-acid—an interpretation of neutron-diffraction results by geometrical models. Chem. Phys. Lett. 1982;93:287–292. doi: 10.1016/0009-2614(82)80141-3. DOI

Heisler I.A., Mazur K., Yamaguchi S., Tominaga K., Meech S.R. Measuring acetic acid dimer modes by ultrafast time-domain Raman spectroscopy. Phys. Chem. Chem. Phys. 2011;13:15573–15579. doi: 10.1039/c1cp20990f. PubMed DOI

Lütgens M., Friedriszik F., Lochbrunner S. Direct observation of the cyclic dimer in liquid acetic acid by probing the C=O vibration with ultrafast coherent Raman spectroscopy. Phys. Chem. Chem. Phys. 2014;16:18010–18016. doi: 10.1039/C4CP01740D. PubMed DOI

Takamuku T., Kyoshoin Y., Noguchi H., Kusano S., Yamaguchi T. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle x-ray scattering and NMR. J. Phys. Chem. B. 2007;111:9270–9280. doi: 10.1021/jp0724976. PubMed DOI

Flakus H.T., Hachula B. The source of similarity of the IR spectra of acetic acid in the liquid and solid-state phases. Vib. Spectrosc. 2011;56:170–176. doi: 10.1016/j.vibspec.2011.02.001. DOI

Nakabayashi T., Kosugi K., Nishi N. Liquid structure of acetic acid studied by Raman spectroscopy and ab initio molecular orbital calculations. J. Phys. Chem. A. 1999;103:8595–8603. doi: 10.1021/jp991501d. DOI

Wu J.P. Gaussian analysis of Raman spectroscopy of acetic acid reveals a significant amount of monomers that effectively cooperate with hydrogen bonded linear chains. Phys. Chem. Chem. Phys. 2014;16:22458–22461. doi: 10.1039/C4CP03999H. PubMed DOI

Fathi S., Bouazizi S., Trabelsi S., Gonzalez M.A., Bahri M., Nasr S., Bellissent-Funel M.C. Structural investigation of liquid acetic acid by neutron scattering, DFT calculations and molecular dynamics simulations. Complementarity to x-ray scattering results. J. Mol. Liq. 2014;196:69–76. doi: 10.1016/j.molliq.2014.02.043. DOI

Pašalić H., Tunega D., Aquino A.J.A., Haberhauer G., Gerzabek M.H., Lischka H. The stability of the acetic acid dimer in microhydrated environments and in aqueous solution. Phys. Chem. Chem. Phys. 2012;14:4162–4170. doi: 10.1039/c2cp23015a. PubMed DOI

Lim V.T., Bayly C.I., Fusti-Molnar L., Mobley D.L. Assessing the conformational equilibrium of carboxylic acid via quantum mechanical and molecular dynamics studies on acetic acid. J. Chem. Inf. Model. 2019;59:1957–1964. doi: 10.1021/acs.jcim.8b00835. PubMed DOI PMC

Zhang M.H., Chen L.H., Yang H.M., Ma J. Theoretical study of acetic acid association based on hydrogen bonding mechanism. J. Phys. Chem. A. 2017;121:4560–4568. doi: 10.1021/acs.jpca.7b03324. PubMed DOI

Chocholoušová J., Vacek J., Hobza P. Acetic acid dimer in the gas phase, nonpolar solvent, microhydrated environment, and dilute and concentrated acetic acid: Ab initio quantum chemical and molecular dynamics simulations. J. Phys. Chem. A. 2003;107:3086–3092. doi: 10.1021/jp027637k. DOI

Colominas C., Teixido J., Cemeli J., Luque F.J., Orozco M. Dimerization of carboxylic acids: Reliability of theoretical calculations and the effect of solvent. J. Phys. Chem. B. 1998;102:2269–2276. doi: 10.1021/jp973414w. DOI

Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced database of benchmark interaction energies relevant to biomolecular structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC

Řezáč J., Hobza P. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI

Brauer B., Kesharwani M.K., Martin J.M.L. Some observations on counterpoise corrections for explicitly correlated calculations on noncovalent interactions. J. Chem. Theory Comput. 2014;10:3791–3799. doi: 10.1021/ct500513b. PubMed DOI

Miller C.E., Francisco J.S. A quadratic configuration interaction study of the proton affinity of acetic acid. Chem. Phys. Lett. 2002;364:427–431. doi: 10.1016/S0009-2614(02)01348-9. DOI

Saunders C.M., Tantillo D.J. Application of computational chemical shift prediction techniques to the cereoanhydride structure problem—carboxylate complications. Mar. Drugs. 2017;15:171. doi: 10.3390/md15060171. PubMed DOI PMC

Rudolph W.W., Fischer D., Irmer G. Vibrational spectroscopic studies and DFT calculations on NaCH3CO2(aq) and CH3COOH(aq) Dalton Trans. 2014;43:3174–3185. doi: 10.1039/C3DT52580E. PubMed DOI

de Nevers N. Air pollution control engineering. Waveland Pr Inc.; Long Grove, IL, USA: 2010.

Dean J.A. Lange’s Handbook of Chemistry. 15th ed. McGraw-Hill, Inc.; New York, NY: 1999.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision A.03. Gaussian, Inc.; Wallingford, CT, USA: 2016.

Becke A.D. Density-functional thermochemistry 3. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Lee C.T., Yang W.T., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Dunning T.H. Gaussian-basis sets for use in correlated molecular calculations.1. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI

Kendall R.A., Dunning T.H., Harrison R.J. Electron-affinities of the 1st-row atoms revisited–systematic basis-sets and wave-functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI

Boys S.F., Bernardi F. Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI

Møller C., Plesset M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934;46:618–622. doi: 10.1103/PhysRev.46.618. DOI

Bartlett R.J., Purvis G.D. Many-body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem. Int. J. Quantum Chem. 1978;14:561–581. doi: 10.1002/qua.560140504. DOI

Čížek J. On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. In: LeFebvre R., Moser C., editors. Advances in Chemical Physics. Volume 14. John Wiley & Sons, Ltd.; London, UK: 1969. pp. 35–89.

Purvis G.D., Bartlett R.J. A full coupled-cluster singles and doubles model—the inclusion of disconnected triples. J. Chem. Phys. 1982;76:1910–1918. doi: 10.1063/1.443164. DOI

Scuseria G.E., Janssen C.L., Schaefer H.F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (Ccsd) equations. J. Chem. Phys. 1988;89:7382–7387. doi: 10.1063/1.455269. DOI

Helgaker T., Klopper W., Koch H., Noga J. Basis-set convergence of correlated calculations on water. J. Chem. Phys. 1997;106:9639–9646. doi: 10.1063/1.473863. DOI

Hobza P. Theoretical studies of hydrogen bonding. In: Webb G.A., editor. Annual Reports Section C (Physical Chemistry) Volume 100. Royal Society of Chemistry; Cambridge, UK: 2004. pp. 3–27.

Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical-shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI

Jensen F. Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods. J. Chem. Theory Comput. 2008;4:719–727. doi: 10.1021/ct800013z. PubMed DOI

Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990;41:7892–7895. doi: 10.1103/PhysRevB.41.7892. PubMed DOI

Monkhorst H.J., Pack J.D. Special points for brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Stapleton J.J., Suchy D.L., Banerjee J., Mueller K.T., Pantano C.G. adsorption reactions of carboxylic acid functional groups on sodium aluminoborosilicate glass fiber surfaces. Acs Appl. Mater. Interfaces. 2010;2:3303–3309. doi: 10.1021/am100730z. PubMed DOI

Alvarez-Idaboy J.R., Galano A. Counterpoise corrected interaction energies are not systematically better than uncorrected ones: Comparison with CCSD(T) CBS extrapolated values. Theor. Chem. Acc. 2010;126:75–85. doi: 10.1007/s00214-009-0676-z. DOI

Sheng X.W., Mentel L., Gritsenko O.V., Baerends E.J. Counterpoise correction is not useful for short and van der waals distances but may be useful at long range. J. Comput. Chem. 2011;32:2896–2901. doi: 10.1002/jcc.21872. PubMed DOI

Mentel L.M., Baerends E.J. Can the counterpoise correction for basis set superposition effect be justified? J. Chem. Theory Comput. 2014;10:252–267. doi: 10.1021/ct400990u. PubMed DOI

Ruud K., Åstrand P.O., Taylor P.R. Zero-point vibrational effects on proton shieldings: Functional-group contributions from ab initio calculations. J. Am. Chem. Soc. 2001;123:4826–4833. doi: 10.1021/ja004160m. PubMed DOI

Dračínský M., Hodgkinson P. Effects of quantum nuclear delocalisation on NMR parameters from path integral molecular dynamics. Chem. Eur. J. 2014;20:2201–2207. doi: 10.1002/chem.201303496. PubMed DOI

Dračínský M., Bouř P., Hodgkinson P. Temperature dependence of NMR parameters calculated from path integral molecular dynamics simulations. J. Chem. Theory Comput. 2016;12:968–973. doi: 10.1021/acs.jctc.5b01131. PubMed DOI

Pohl R., Socha O., Slavíček P., Šála M., Hodgkinson P., Dračínský M. Proton transfer in guanine-cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations. Faraday Discuss. 2018;212:331–344. doi: 10.1039/C8FD00070K. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...