Dimerization of Acetic Acid in the Gas Phase-NMR Experiments and Quantum-Chemical Calculations
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-01472S
Grantová Agentura České Republiky
1494119
Grantová Agentura, Univerzita Karlova
PubMed
32375390
PubMed Central
PMC7248931
DOI
10.3390/molecules25092150
PII: molecules25092150
Knihovny.cz E-zdroje
- Klíčová slova
- NMR spectroscopy, carboxylic acids, hydrogen bonding, phase transitions, quantum-chemical calculations,
- MeSH
- algoritmy MeSH
- chemické modely * MeSH
- kvantová teorie * MeSH
- kyselina octová chemie MeSH
- magnetická rezonanční spektroskopie * metody MeSH
- plyny chemie MeSH
- tlak MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina octová MeSH
- plyny MeSH
Due to the nature of the carboxylic group, acetic acid can serve as both a donor and acceptor of a hydrogen bond. Gaseous acetic acid is known to form cyclic dimers with two strong hydrogen bonds. However, trimeric and various oligomeric structures have also been hypothesized to exist in both the gas and liquid phases of acetic acid. In this work, a combination of gas-phase NMR experiments and advanced computational approaches were employed in order to validate the basic dimerization model of gaseous acetic acid. The gas-phase experiments performed in a glass tube revealed interactions of acetic acid with the glass surface. On the other hand, variable-temperature and variable-pressure NMR parameters obtained for acetic acid in a polymer insert provided thermodynamic parameters that were in excellent agreement with the MP2 (the second order Møller-Plesset perturbation theory) and CCSD(T) (coupled cluster with single, double and perturbative triple excitation) calculations based on the basic dimerization model. A slight disparity between the theoretical dimerization model and the experimental data was revealed only at low temperatures. This observation might indicate the presence of other, entropically disfavored, supramolecular structures at low temperatures.
Zobrazit více v PubMed
Davies J.A., Hanson-Heine M.W.D., Besley N.A., Shirley A., Trowers J., Yang S.F., Ellis A.M. Dimers of acetic acid in helium nanodroplets. Phys. Chem. Chem. Phys. 2019;21:13950–13958. doi: 10.1039/C8CP05934A. PubMed DOI
Nahringbauer I. Hydrogen bond studies .39. Reinvestigation of crystal structure of acetic acid (at +5 degrees c and −190 degrees C) Acta Chem. Scand. 1970;24:453–462. doi: 10.3891/acta.chem.scand.24-0453. DOI
Frurip D.J., Curtiss L.A., Blander M. Vapor-phase association in acetic and trifluoroacetic acids—thermal-conductivity measurements and molecular-orbital calculations. J. Am. Chem. Soc. 1980;102:2610–2616. doi: 10.1021/ja00528a015. DOI
Emmeluth C., Suhm M.A. A chemical approach towards the spectroscopy of carboxylic acid dimer isomerism. Phys. Chem. Chem. Phys. 2003;5:3094–3099. doi: 10.1039/b303816e. DOI
Derissen J.L. Reinvestigation of molecular structure of acetic acid monomer and dimer by gas electron diffraction. J. Mol. Struct. 1971;7:67–80. doi: 10.1016/0022-2860(71)90008-1. DOI
Bertie J.E., Michaelian K.H. The raman spectrum of gaseous acetic acid at 21 °C. J. Chem. Phys. 1982;77:5267–5271. doi: 10.1063/1.443795. DOI
Togeas J.B. Acetic acid vapor: 2. A statistical mechanical critique of vapor density experiments. J. Phys. Chem. A. 2005;109:5438–5444. doi: 10.1021/jp058004j. PubMed DOI
Lumbrosobader N., Coupry C., Baron D., Clague D.H. Dimerization of carboxylic acids: A vapor-phase NMR Study. J. Magn. Reson. 1975;17:386–392. doi: 10.1016/0022-2364(75)90207-3. DOI
Lengvinaite D., Aidas K., Kimtys L. Molecular aggregation in liquid acetic acid: Insight from molecular dynamics/quantum mechanics modelling of structural and NMR properties. Phys. Chem. Chem. Phys. 2019;21:14811–14820. doi: 10.1039/C9CP01892A. PubMed DOI
Bertagnolli H. The structure of liquid acetic-acid—an interpretation of neutron-diffraction results by geometrical models. Chem. Phys. Lett. 1982;93:287–292. doi: 10.1016/0009-2614(82)80141-3. DOI
Heisler I.A., Mazur K., Yamaguchi S., Tominaga K., Meech S.R. Measuring acetic acid dimer modes by ultrafast time-domain Raman spectroscopy. Phys. Chem. Chem. Phys. 2011;13:15573–15579. doi: 10.1039/c1cp20990f. PubMed DOI
Lütgens M., Friedriszik F., Lochbrunner S. Direct observation of the cyclic dimer in liquid acetic acid by probing the C=O vibration with ultrafast coherent Raman spectroscopy. Phys. Chem. Chem. Phys. 2014;16:18010–18016. doi: 10.1039/C4CP01740D. PubMed DOI
Takamuku T., Kyoshoin Y., Noguchi H., Kusano S., Yamaguchi T. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle x-ray scattering and NMR. J. Phys. Chem. B. 2007;111:9270–9280. doi: 10.1021/jp0724976. PubMed DOI
Flakus H.T., Hachula B. The source of similarity of the IR spectra of acetic acid in the liquid and solid-state phases. Vib. Spectrosc. 2011;56:170–176. doi: 10.1016/j.vibspec.2011.02.001. DOI
Nakabayashi T., Kosugi K., Nishi N. Liquid structure of acetic acid studied by Raman spectroscopy and ab initio molecular orbital calculations. J. Phys. Chem. A. 1999;103:8595–8603. doi: 10.1021/jp991501d. DOI
Wu J.P. Gaussian analysis of Raman spectroscopy of acetic acid reveals a significant amount of monomers that effectively cooperate with hydrogen bonded linear chains. Phys. Chem. Chem. Phys. 2014;16:22458–22461. doi: 10.1039/C4CP03999H. PubMed DOI
Fathi S., Bouazizi S., Trabelsi S., Gonzalez M.A., Bahri M., Nasr S., Bellissent-Funel M.C. Structural investigation of liquid acetic acid by neutron scattering, DFT calculations and molecular dynamics simulations. Complementarity to x-ray scattering results. J. Mol. Liq. 2014;196:69–76. doi: 10.1016/j.molliq.2014.02.043. DOI
Pašalić H., Tunega D., Aquino A.J.A., Haberhauer G., Gerzabek M.H., Lischka H. The stability of the acetic acid dimer in microhydrated environments and in aqueous solution. Phys. Chem. Chem. Phys. 2012;14:4162–4170. doi: 10.1039/c2cp23015a. PubMed DOI
Lim V.T., Bayly C.I., Fusti-Molnar L., Mobley D.L. Assessing the conformational equilibrium of carboxylic acid via quantum mechanical and molecular dynamics studies on acetic acid. J. Chem. Inf. Model. 2019;59:1957–1964. doi: 10.1021/acs.jcim.8b00835. PubMed DOI PMC
Zhang M.H., Chen L.H., Yang H.M., Ma J. Theoretical study of acetic acid association based on hydrogen bonding mechanism. J. Phys. Chem. A. 2017;121:4560–4568. doi: 10.1021/acs.jpca.7b03324. PubMed DOI
Chocholoušová J., Vacek J., Hobza P. Acetic acid dimer in the gas phase, nonpolar solvent, microhydrated environment, and dilute and concentrated acetic acid: Ab initio quantum chemical and molecular dynamics simulations. J. Phys. Chem. A. 2003;107:3086–3092. doi: 10.1021/jp027637k. DOI
Colominas C., Teixido J., Cemeli J., Luque F.J., Orozco M. Dimerization of carboxylic acids: Reliability of theoretical calculations and the effect of solvent. J. Phys. Chem. B. 1998;102:2269–2276. doi: 10.1021/jp973414w. DOI
Řezáč J., Riley K.E., Hobza P. S66: A Well-balanced database of benchmark interaction energies relevant to biomolecular structures. J. Chem. Theory Comput. 2011;7:2427–2438. doi: 10.1021/ct2002946. PubMed DOI PMC
Řezáč J., Hobza P. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 2012;8:141–151. doi: 10.1021/ct200751e. PubMed DOI
Brauer B., Kesharwani M.K., Martin J.M.L. Some observations on counterpoise corrections for explicitly correlated calculations on noncovalent interactions. J. Chem. Theory Comput. 2014;10:3791–3799. doi: 10.1021/ct500513b. PubMed DOI
Miller C.E., Francisco J.S. A quadratic configuration interaction study of the proton affinity of acetic acid. Chem. Phys. Lett. 2002;364:427–431. doi: 10.1016/S0009-2614(02)01348-9. DOI
Saunders C.M., Tantillo D.J. Application of computational chemical shift prediction techniques to the cereoanhydride structure problem—carboxylate complications. Mar. Drugs. 2017;15:171. doi: 10.3390/md15060171. PubMed DOI PMC
Rudolph W.W., Fischer D., Irmer G. Vibrational spectroscopic studies and DFT calculations on NaCH3CO2(aq) and CH3COOH(aq) Dalton Trans. 2014;43:3174–3185. doi: 10.1039/C3DT52580E. PubMed DOI
de Nevers N. Air pollution control engineering. Waveland Pr Inc.; Long Grove, IL, USA: 2010.
Dean J.A. Lange’s Handbook of Chemistry. 15th ed. McGraw-Hill, Inc.; New York, NY: 1999.
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision A.03. Gaussian, Inc.; Wallingford, CT, USA: 2016.
Becke A.D. Density-functional thermochemistry 3. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Lee C.T., Yang W.T., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Dunning T.H. Gaussian-basis sets for use in correlated molecular calculations.1. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Kendall R.A., Dunning T.H., Harrison R.J. Electron-affinities of the 1st-row atoms revisited–systematic basis-sets and wave-functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Boys S.F., Bernardi F. Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Mol. Phys. 1970;19:553–566. doi: 10.1080/00268977000101561. DOI
Møller C., Plesset M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934;46:618–622. doi: 10.1103/PhysRev.46.618. DOI
Bartlett R.J., Purvis G.D. Many-body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem. Int. J. Quantum Chem. 1978;14:561–581. doi: 10.1002/qua.560140504. DOI
Čížek J. On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. In: LeFebvre R., Moser C., editors. Advances in Chemical Physics. Volume 14. John Wiley & Sons, Ltd.; London, UK: 1969. pp. 35–89.
Purvis G.D., Bartlett R.J. A full coupled-cluster singles and doubles model—the inclusion of disconnected triples. J. Chem. Phys. 1982;76:1910–1918. doi: 10.1063/1.443164. DOI
Scuseria G.E., Janssen C.L., Schaefer H.F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (Ccsd) equations. J. Chem. Phys. 1988;89:7382–7387. doi: 10.1063/1.455269. DOI
Helgaker T., Klopper W., Koch H., Noga J. Basis-set convergence of correlated calculations on water. J. Chem. Phys. 1997;106:9639–9646. doi: 10.1063/1.473863. DOI
Hobza P. Theoretical studies of hydrogen bonding. In: Webb G.A., editor. Annual Reports Section C (Physical Chemistry) Volume 100. Royal Society of Chemistry; Cambridge, UK: 2004. pp. 3–27.
Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical-shift calculations. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI
Jensen F. Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods. J. Chem. Theory Comput. 2008;4:719–727. doi: 10.1021/ct800013z. PubMed DOI
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990;41:7892–7895. doi: 10.1103/PhysRevB.41.7892. PubMed DOI
Monkhorst H.J., Pack J.D. Special points for brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Stapleton J.J., Suchy D.L., Banerjee J., Mueller K.T., Pantano C.G. adsorption reactions of carboxylic acid functional groups on sodium aluminoborosilicate glass fiber surfaces. Acs Appl. Mater. Interfaces. 2010;2:3303–3309. doi: 10.1021/am100730z. PubMed DOI
Alvarez-Idaboy J.R., Galano A. Counterpoise corrected interaction energies are not systematically better than uncorrected ones: Comparison with CCSD(T) CBS extrapolated values. Theor. Chem. Acc. 2010;126:75–85. doi: 10.1007/s00214-009-0676-z. DOI
Sheng X.W., Mentel L., Gritsenko O.V., Baerends E.J. Counterpoise correction is not useful for short and van der waals distances but may be useful at long range. J. Comput. Chem. 2011;32:2896–2901. doi: 10.1002/jcc.21872. PubMed DOI
Mentel L.M., Baerends E.J. Can the counterpoise correction for basis set superposition effect be justified? J. Chem. Theory Comput. 2014;10:252–267. doi: 10.1021/ct400990u. PubMed DOI
Ruud K., Åstrand P.O., Taylor P.R. Zero-point vibrational effects on proton shieldings: Functional-group contributions from ab initio calculations. J. Am. Chem. Soc. 2001;123:4826–4833. doi: 10.1021/ja004160m. PubMed DOI
Dračínský M., Hodgkinson P. Effects of quantum nuclear delocalisation on NMR parameters from path integral molecular dynamics. Chem. Eur. J. 2014;20:2201–2207. doi: 10.1002/chem.201303496. PubMed DOI
Dračínský M., Bouř P., Hodgkinson P. Temperature dependence of NMR parameters calculated from path integral molecular dynamics simulations. J. Chem. Theory Comput. 2016;12:968–973. doi: 10.1021/acs.jctc.5b01131. PubMed DOI
Pohl R., Socha O., Slavíček P., Šála M., Hodgkinson P., Dračínský M. Proton transfer in guanine-cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations. Faraday Discuss. 2018;212:331–344. doi: 10.1039/C8FD00070K. PubMed DOI