Analysis of neural crest-derived clones reveals novel aspects of facial development

. 2016 Aug ; 2 (8) : e1600060. [epub] 20160803

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27493992

Grantová podpora
R01 EB014877 NIBIB NIH HHS - United States

Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.

Central European Institute of Technology Brno University of Technology 616 00 Brno Czech Republic

Department of Biology Institute of Molecular Health Sciences ETH Zurich Zurich CH 8093 Switzerland

Department of Biotechnology and Biosciences University of Milano Bicocca 20126 Milano Italy

Department of Craniofacial Development and Stem Cell Biology King's College London Dental Institute Guy's Hospital London SE1 9RT UK

Department of Information Technology Uppsala University Uppsala SE 751 05 Sweden

Department of Molecular Neurosciences Medical University of Vienna Vienna 1190 Austria

Department of Neuroscience Karolinska Institutet Stockholm SE 171 77 Sweden

Department of Physiology and Pharmacology Karolinska Institutet Stockholm SE 171 77 Sweden

Department of Physiology and Pharmacology Karolinska Institutet Stockholm SE 171 77 Sweden ; Department of Molecular Neurosciences Medical University of Vienna Vienna 1190 Austria

Department of Physiology and Pharmacology Karolinska Institutet Stockholm SE 171 77 Sweden ; Research Center of Neurology 125367 Moscow Russia

Division of Molecular Neurobiology Medical Research Council National Institute for Medical Research London NW7 1AA UK

Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences Princess Maxima Centre and University Medical Centre Utrecht 3584 Utrecht Netherlands

Science for Life Laboratory Royal Institute of Technology Solna 17121 Sweden

Unit of Molecular Neurobiology Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm SE 171 77 Sweden

Zobrazit více v PubMed

Buchanan E. P., Xue A. S., Hollier L. H. Jr, Craniofacial syndromes. Plast. Reconstr. Surg. 134, 128e–153e (2014). PubMed

Trainor P. A., Tam P. P., Cranial paraxial mesoderm and neural crest cells of the mouse embryo: Co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121, 2569–2582 (1995). PubMed

Franklin V., Khoo P. L., Bildsoe H., Wong N., Lewis S., Tam P. P. L., Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo. Mech. Dev. 125, 587–600 (2008). PubMed

Pispa J., Thesleff I., Mechanisms of ectodermal organogenesis. Dev. Biol. 262, 195–205 (2003). PubMed

Mootoosamy R. C., Dietrich S., Distinct regulatory cascades for head and trunk myogenesis. Development 129, 573–583 (2002). PubMed

Couly G., Coltey P., Eichmann A., Le Douarin N. M., The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech. Dev. 53, 97–112 (1995). PubMed

Achilleos A., Trainor P. A., Neural crest stem cells: Discovery, properties and potential for therapy. Cell Res. 22, 288–304 (2012). PubMed PMC

McKinney M. C., Fukatsu K., Morrison J., McLennan R., Bronner M. E., Kulesa P. M., Evidence for dynamic rearrangements but lack of fate or position restrictions in premigratory avian trunk neural crest. Development 140, 820–830 (2013). PubMed PMC

Bronner-Fraser M., Fraser S. E., Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164 (1988). PubMed

Baroffio A., Dupin E., Le Douarin N. M., Clone-forming ability and differentiation potential of migratory neural crest cells. Proc. Natl. Acad. Sci. U.S.A. 85, 5325–5329 (1988). PubMed PMC

Baker C. V., Bronner-Fraser M., Le Douarin N. M., Teillet M. A., Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo. Development 124, 3077–3087 (1997). PubMed

Nitzan E., Krispin S., Pfaltzgraff E. R., Klar A., Labosky P. A., Kalcheim C., A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 140, 2269–2279 (2013). PubMed PMC

Krispin S., Nitzan E., Kassem Y., Kalcheim C., Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137, 585–595 (2010). PubMed

Baggiolini A., Varum S., Mateos J. M., Bettosini D., John N., Bonalli M., Ziegler U., Dimou L., Clevers H., Furrer R., Sommer L., Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16, 314–322 (2015). PubMed

Lee R. T. H., Nagai H., Nakaya Y., Sheng G., Trainor P. A., Weston J. A., Thiery J. P., Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development 140, 4890–4902 (2013). PubMed PMC

Gros J., Tabin C. J., Vertebrate limb bud formation is initiated by localized epithelial-to-mesenchymal transition. Science 343, 1253–1256 (2014). PubMed PMC

Gros J., Hu J. K.-H., Vinegoni C., Feruglio P. F., Weissleder R., Tabin C. J., WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr. Biol. 20, 1993–2002 (2010). PubMed PMC

Boehm B., Westerberg H., Lesnicar-Pucko G., Raja S., Rautschka M., Cotterell J., Swoger J., Sharpe J., The role of spatially controlled cell proliferation in limb bud morphogenesis. PLOS Biol. 8, e1000420 (2010). PubMed PMC

Zallen J. A., Planar polarity and tissue morphogenesis. Cell 129, 1051–1063 (2007). PubMed

Gray R. S., Roszko I., Solnica-Krezel L., Planar cell polarity: Coordinating morphogenetic cell behaviors with embryonic polarity. Dev. Cell 21, 120–133 (2011). PubMed PMC

van Amerongen R., Fuerer C., Mizutani M., Nusse R., Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol. 369, 101–114 (2012). PubMed PMC

Bakker E. R. M., Raghoebir L., Franken P. F., Helvensteijn W., van Gurp L., Meijlink F., van der Valk M. A., Rottier R. J., Kuipers E. J., van Veelen W., Smits R., Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice. Dev. Biol. 369, 91–100 (2012). PubMed

Ho H.-Y. H., Susman M. W., Bikoff J. B., Ryu Y. K., Jonas A. M., Hu L., Kuruvilla R., Greenberg M. E., Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 109, 4044–4051 (2012). PubMed PMC

Snippert H. J., van der Flier L. G., Sato T., van Es J. H., van den Born M., Kroon-Veenboer C., Barker N., Klein A. M., van Rheenen J., Simons B. D., Clevers H., Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010). PubMed

Laranjeira C., Sandgren K., Kessaris N., Richardson W., Potocnik A., Vanden Berghe P., Pachnis V., Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011). PubMed PMC

Leone D. P., Genoud S., Atanasoski S., Grausenburger R., Berger P., Metzger D., Macklin W. B., Chambon P., Suter U., Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol. Cell. Neurosci. 22, 430–440 (2003). PubMed

Hari L., Miescher I., Shakhova O., Suter U., Chin L., Taketo M., Richardson W. D., Kessaris N., Sommer L., Temporal control of neural crest lineage generation by Wnt/β-catenin signaling. Development 139, 2107–2117 (2012). PubMed

Lescroart F., Chabab S., Lin X., Rulands S., Paulissen C., Rodolosse A., Auer H., Achouri Y., Dubois C., Bondue A., Simons B. D., Blanpain C., Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol. 16, 829–840 (2014). PubMed PMC

Nagase T., Nagase M., Osumi N., Fukuda S., Nakamura S., Ohsaki K., Harii K., Asato H., Yoshimura K., Craniofacial anomalies of the cultured mouse embryo induced by inhibition of sonic hedgehog signaling: An animal model of holoprosencephaly. J. Craniofac. Surg. 16, 80–88 (2005). PubMed

Favaro R., Valotta M., Ferri A. L. M., Latorre E., Mariani J., Giachino C., Lancini C., Tosetti V., Ottolenghi S., Taylor V., Nicolis S. K., Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat. Neurosci. 12, 1248–1256 (2009). PubMed

Danielian P. S., Muccino D., Rowitch D. H., Michael S. K., McMahon A. P., Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998). PubMed

Adameyko I., Lallemend F., Furlan A., Zinin N., Aranda S., Kitambi S. S., Blanchart A., Favaro R., Nicolis S., Lübke M., Müller T., Birchmeier C., Suter U., Zaitoun I., Takahashi Y., Ernfors P., Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development 139, 397–410 (2012). PubMed PMC

Enshell-Seijffers D., Lindon C., Wu E., Taketo M. M., Morgan B. A., β-Catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc. Natl. Acad. Sci. U.S.A. 107, 21564–21569 (2010). PubMed PMC

Dinulescu D. M., Cone R. D., Agouti and agouti-related protein: Analogies and contrasts. J. Biol. Chem. 275, 6695–6698 (2000). PubMed

Saga Y., Miyagawa-Tomita S., Takagi A., Kitajima S., Miyazaki J. i., Inoue T., MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999). PubMed

Yamaguchi T. P., Bradley A., McMahon A. P., Jones S., A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223 (1999). PubMed

Schieber M. H., Constraints on somatotopic organization in the primary motor cortex. J. Neurophysiol. 86, 2125–2143 (2001). PubMed

Méhes E., Vicsek T., Collective motion of cells: From experiments to models. Integr. Biol. 6, 831–854 (2014). PubMed

David R., Luu O., Damm E. W., Wen J. W. H., Nagel M., Winklbauer R., Tissue cohesion and the mechanics of cell rearrangement. Development 141, 3672–3682 (2014). PubMed

Kanca O., Caussinus E., Denes A. S., Percival-Smith A., Affolter M., Raeppli: A whole-tissue labeling tool for live imaging of Drosophila development. Development 141, 472–480 (2014). PubMed

Worley M. I., Setiawan L., Hariharan I. K., TIE-DYE: A combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development 140, 3275–3284 (2013). PubMed PMC

Young N. M., Hu D., Lainoff A. J., Smith F. J., Diaz R., Tucker A. S., Trainor P. A., Schneider R. A., Hallgrímsson B., Marcucio R. S., Embryonic bauplans and the developmental origins of facial diversity and constraint. Development 141, 1059–1063 (2014). PubMed PMC

Theveneau E., Mayor R., Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration. Dev. Biol. 366, 34–54 (2012). PubMed

Minoux M., Rijli F. M., Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 137, 2605–2621 (2010). PubMed

Hu D., Young N. M., Li X., Xu Y., Hallgrímsson B., Marcucio R. S., A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face. Development 142, 567–574 (2015). PubMed PMC

Foppiano S., Hu D., Marcucio R. S., Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development. Dev. Biol. 312, 103–114 (2007). PubMed PMC

Schoenebeck J. J., Hutchinson S. A., Byers A., Beale H. C., Carrington B., Faden D. L., Rimbault M., Decker B., Kidd J. M., Sood R., Boyko A. R., Fondon J. W. III, Wayne R. K., Bustamante C. D., Ciruna B., Ostrander E. A., Variation of BMP3 contributes to dog breed skull diversity. PLOS Genet. 8, e1002849 (2012). PubMed PMC

M. Tanaka, Evolution of vertebrate limb development, in Encyclopedia of Life Sciences (eLS) (John Wiley & Sons Ltd., Chichester, UK, 2009), p. 1–9.

Freitas R., Zhang G., Cohn M. J., Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 442, 1033–1037 (2006). PubMed

Shubin N., Tabin C., Carroll S., Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009). PubMed

Mongera A., Singh A. P., Levesque M. P., Chen Y.-Y., Konstantinidis P., Nüsslein-Volhard C., Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development 140, 916–925 (2013). PubMed

Pan Y. A., Freundlich T., Weissman T. A., Schoppik D., Wang X. C., Zimmerman S., Ciruna B., Sanes J. R., Lichtman J. W., Schier A. F., Zebrabow: Multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140, 2835–2846 (2013). PubMed PMC

M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) (University of Oregon Press, Eugene, OR, ed. 4, 2000).

O’Brien G. S., Rieger S., Martin S. M., Cavanaugh A. M., Portera-Cailliau C., Sagasti A., Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J. Vis. Exp. (2009). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...