Analysis of neural crest-derived clones reveals novel aspects of facial development
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 EB014877
NIBIB NIH HHS - United States
PubMed
27493992
PubMed Central
PMC4972470
DOI
10.1126/sciadv.1600060
PII: 1600060
Knihovny.cz E-zdroje
- Klíčová slova
- Early face development, clonal envelopes, embryonic development, migration, morphogenesis, neural crest cells,
- MeSH
- anatomické modely MeSH
- buněčná diferenciace * MeSH
- buněčné klony cytologie MeSH
- crista neuralis cytologie MeSH
- dánio pruhované MeSH
- ektoderm cytologie embryologie MeSH
- exprese genu MeSH
- fenotyp MeSH
- mezoderm cytologie embryologie MeSH
- morfogeneze * MeSH
- myši MeSH
- obličej embryologie MeSH
- organogeneze * MeSH
- pohyb buněk MeSH
- reportérové geny MeSH
- zobrazování trojrozměrné MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.
Central European Institute of Technology Brno University of Technology 616 00 Brno Czech Republic
Department of Biology Institute of Molecular Health Sciences ETH Zurich Zurich CH 8093 Switzerland
Department of Biotechnology and Biosciences University of Milano Bicocca 20126 Milano Italy
Department of Information Technology Uppsala University Uppsala SE 751 05 Sweden
Department of Molecular Neurosciences Medical University of Vienna Vienna 1190 Austria
Department of Neuroscience Karolinska Institutet Stockholm SE 171 77 Sweden
Department of Physiology and Pharmacology Karolinska Institutet Stockholm SE 171 77 Sweden
Science for Life Laboratory Royal Institute of Technology Solna 17121 Sweden
Zobrazit více v PubMed
Buchanan E. P., Xue A. S., Hollier L. H. Jr, Craniofacial syndromes. Plast. Reconstr. Surg. 134, 128e–153e (2014). PubMed
Trainor P. A., Tam P. P., Cranial paraxial mesoderm and neural crest cells of the mouse embryo: Co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121, 2569–2582 (1995). PubMed
Franklin V., Khoo P. L., Bildsoe H., Wong N., Lewis S., Tam P. P. L., Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo. Mech. Dev. 125, 587–600 (2008). PubMed
Pispa J., Thesleff I., Mechanisms of ectodermal organogenesis. Dev. Biol. 262, 195–205 (2003). PubMed
Mootoosamy R. C., Dietrich S., Distinct regulatory cascades for head and trunk myogenesis. Development 129, 573–583 (2002). PubMed
Couly G., Coltey P., Eichmann A., Le Douarin N. M., The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech. Dev. 53, 97–112 (1995). PubMed
Achilleos A., Trainor P. A., Neural crest stem cells: Discovery, properties and potential for therapy. Cell Res. 22, 288–304 (2012). PubMed PMC
McKinney M. C., Fukatsu K., Morrison J., McLennan R., Bronner M. E., Kulesa P. M., Evidence for dynamic rearrangements but lack of fate or position restrictions in premigratory avian trunk neural crest. Development 140, 820–830 (2013). PubMed PMC
Bronner-Fraser M., Fraser S. E., Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164 (1988). PubMed
Baroffio A., Dupin E., Le Douarin N. M., Clone-forming ability and differentiation potential of migratory neural crest cells. Proc. Natl. Acad. Sci. U.S.A. 85, 5325–5329 (1988). PubMed PMC
Baker C. V., Bronner-Fraser M., Le Douarin N. M., Teillet M. A., Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo. Development 124, 3077–3087 (1997). PubMed
Nitzan E., Krispin S., Pfaltzgraff E. R., Klar A., Labosky P. A., Kalcheim C., A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 140, 2269–2279 (2013). PubMed PMC
Krispin S., Nitzan E., Kassem Y., Kalcheim C., Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137, 585–595 (2010). PubMed
Baggiolini A., Varum S., Mateos J. M., Bettosini D., John N., Bonalli M., Ziegler U., Dimou L., Clevers H., Furrer R., Sommer L., Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16, 314–322 (2015). PubMed
Lee R. T. H., Nagai H., Nakaya Y., Sheng G., Trainor P. A., Weston J. A., Thiery J. P., Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development 140, 4890–4902 (2013). PubMed PMC
Gros J., Tabin C. J., Vertebrate limb bud formation is initiated by localized epithelial-to-mesenchymal transition. Science 343, 1253–1256 (2014). PubMed PMC
Gros J., Hu J. K.-H., Vinegoni C., Feruglio P. F., Weissleder R., Tabin C. J., WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr. Biol. 20, 1993–2002 (2010). PubMed PMC
Boehm B., Westerberg H., Lesnicar-Pucko G., Raja S., Rautschka M., Cotterell J., Swoger J., Sharpe J., The role of spatially controlled cell proliferation in limb bud morphogenesis. PLOS Biol. 8, e1000420 (2010). PubMed PMC
Zallen J. A., Planar polarity and tissue morphogenesis. Cell 129, 1051–1063 (2007). PubMed
Gray R. S., Roszko I., Solnica-Krezel L., Planar cell polarity: Coordinating morphogenetic cell behaviors with embryonic polarity. Dev. Cell 21, 120–133 (2011). PubMed PMC
van Amerongen R., Fuerer C., Mizutani M., Nusse R., Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol. 369, 101–114 (2012). PubMed PMC
Bakker E. R. M., Raghoebir L., Franken P. F., Helvensteijn W., van Gurp L., Meijlink F., van der Valk M. A., Rottier R. J., Kuipers E. J., van Veelen W., Smits R., Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice. Dev. Biol. 369, 91–100 (2012). PubMed
Ho H.-Y. H., Susman M. W., Bikoff J. B., Ryu Y. K., Jonas A. M., Hu L., Kuruvilla R., Greenberg M. E., Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 109, 4044–4051 (2012). PubMed PMC
Snippert H. J., van der Flier L. G., Sato T., van Es J. H., van den Born M., Kroon-Veenboer C., Barker N., Klein A. M., van Rheenen J., Simons B. D., Clevers H., Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010). PubMed
Laranjeira C., Sandgren K., Kessaris N., Richardson W., Potocnik A., Vanden Berghe P., Pachnis V., Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011). PubMed PMC
Leone D. P., Genoud S., Atanasoski S., Grausenburger R., Berger P., Metzger D., Macklin W. B., Chambon P., Suter U., Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol. Cell. Neurosci. 22, 430–440 (2003). PubMed
Hari L., Miescher I., Shakhova O., Suter U., Chin L., Taketo M., Richardson W. D., Kessaris N., Sommer L., Temporal control of neural crest lineage generation by Wnt/β-catenin signaling. Development 139, 2107–2117 (2012). PubMed
Lescroart F., Chabab S., Lin X., Rulands S., Paulissen C., Rodolosse A., Auer H., Achouri Y., Dubois C., Bondue A., Simons B. D., Blanpain C., Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development. Nat. Cell Biol. 16, 829–840 (2014). PubMed PMC
Nagase T., Nagase M., Osumi N., Fukuda S., Nakamura S., Ohsaki K., Harii K., Asato H., Yoshimura K., Craniofacial anomalies of the cultured mouse embryo induced by inhibition of sonic hedgehog signaling: An animal model of holoprosencephaly. J. Craniofac. Surg. 16, 80–88 (2005). PubMed
Favaro R., Valotta M., Ferri A. L. M., Latorre E., Mariani J., Giachino C., Lancini C., Tosetti V., Ottolenghi S., Taylor V., Nicolis S. K., Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat. Neurosci. 12, 1248–1256 (2009). PubMed
Danielian P. S., Muccino D., Rowitch D. H., Michael S. K., McMahon A. P., Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998). PubMed
Adameyko I., Lallemend F., Furlan A., Zinin N., Aranda S., Kitambi S. S., Blanchart A., Favaro R., Nicolis S., Lübke M., Müller T., Birchmeier C., Suter U., Zaitoun I., Takahashi Y., Ernfors P., Sox2 and Mitf cross-regulatory interactions consolidate progenitor and melanocyte lineages in the cranial neural crest. Development 139, 397–410 (2012). PubMed PMC
Enshell-Seijffers D., Lindon C., Wu E., Taketo M. M., Morgan B. A., β-Catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc. Natl. Acad. Sci. U.S.A. 107, 21564–21569 (2010). PubMed PMC
Dinulescu D. M., Cone R. D., Agouti and agouti-related protein: Analogies and contrasts. J. Biol. Chem. 275, 6695–6698 (2000). PubMed
Saga Y., Miyagawa-Tomita S., Takagi A., Kitajima S., Miyazaki J. i., Inoue T., MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999). PubMed
Yamaguchi T. P., Bradley A., McMahon A. P., Jones S., A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223 (1999). PubMed
Schieber M. H., Constraints on somatotopic organization in the primary motor cortex. J. Neurophysiol. 86, 2125–2143 (2001). PubMed
Méhes E., Vicsek T., Collective motion of cells: From experiments to models. Integr. Biol. 6, 831–854 (2014). PubMed
David R., Luu O., Damm E. W., Wen J. W. H., Nagel M., Winklbauer R., Tissue cohesion and the mechanics of cell rearrangement. Development 141, 3672–3682 (2014). PubMed
Kanca O., Caussinus E., Denes A. S., Percival-Smith A., Affolter M., Raeppli: A whole-tissue labeling tool for live imaging of Drosophila development. Development 141, 472–480 (2014). PubMed
Worley M. I., Setiawan L., Hariharan I. K., TIE-DYE: A combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development 140, 3275–3284 (2013). PubMed PMC
Young N. M., Hu D., Lainoff A. J., Smith F. J., Diaz R., Tucker A. S., Trainor P. A., Schneider R. A., Hallgrímsson B., Marcucio R. S., Embryonic bauplans and the developmental origins of facial diversity and constraint. Development 141, 1059–1063 (2014). PubMed PMC
Theveneau E., Mayor R., Neural crest delamination and migration: From epithelium-to-mesenchyme transition to collective cell migration. Dev. Biol. 366, 34–54 (2012). PubMed
Minoux M., Rijli F. M., Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 137, 2605–2621 (2010). PubMed
Hu D., Young N. M., Li X., Xu Y., Hallgrímsson B., Marcucio R. S., A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face. Development 142, 567–574 (2015). PubMed PMC
Foppiano S., Hu D., Marcucio R. S., Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development. Dev. Biol. 312, 103–114 (2007). PubMed PMC
Schoenebeck J. J., Hutchinson S. A., Byers A., Beale H. C., Carrington B., Faden D. L., Rimbault M., Decker B., Kidd J. M., Sood R., Boyko A. R., Fondon J. W. III, Wayne R. K., Bustamante C. D., Ciruna B., Ostrander E. A., Variation of BMP3 contributes to dog breed skull diversity. PLOS Genet. 8, e1002849 (2012). PubMed PMC
M. Tanaka, Evolution of vertebrate limb development, in Encyclopedia of Life Sciences (eLS) (John Wiley & Sons Ltd., Chichester, UK, 2009), p. 1–9.
Freitas R., Zhang G., Cohn M. J., Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 442, 1033–1037 (2006). PubMed
Shubin N., Tabin C., Carroll S., Deep homology and the origins of evolutionary novelty. Nature 457, 818–823 (2009). PubMed
Mongera A., Singh A. P., Levesque M. P., Chen Y.-Y., Konstantinidis P., Nüsslein-Volhard C., Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development 140, 916–925 (2013). PubMed
Pan Y. A., Freundlich T., Weissman T. A., Schoppik D., Wang X. C., Zimmerman S., Ciruna B., Sanes J. R., Lichtman J. W., Schier A. F., Zebrabow: Multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140, 2835–2846 (2013). PubMed PMC
M. Westerfield, The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) (University of Oregon Press, Eugene, OR, ed. 4, 2000).
O’Brien G. S., Rieger S., Martin S. M., Cavanaugh A. M., Portera-Cailliau C., Sagasti A., Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J. Vis. Exp. (2009). PubMed PMC
Plasticity of Dental Cell Types in Development, Regeneration, and Evolution
Directionality of developing skeletal muscles is set by mechanical forces
Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage