Plasticity of Dental Cell Types in Development, Regeneration, and Evolution
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36919873
PubMed Central
PMC10233505
DOI
10.1177/00220345231154800
Knihovny.cz E-zdroje
- Klíčová slova
- cell differentiation, dental informatics/bioinformatics, developmental biology, single-cell RNA-seq, stem cell(s), tooth development,
- MeSH
- regenerace fyziologie MeSH
- zuby * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Recent years have improved our understanding of the plasticity of cell types behind inducing, building, and maintaining different types of teeth. The latest efforts were aided by progress in single-cell transcriptomics, which helped to define not only cell states with mathematical precision but also transitions between them. This includes new aspects of dental epithelial and mesenchymal stem cell niches and beyond. These recent efforts revealed continuous and fluid trajectories connecting cell states during dental development and exposed the natural plasticity of tooth-building progenitors. Such "developmental" plasticity seems to be employed for organizing stem cell niches in adult continuously growing teeth. Furthermore, transitions between mature cell types elicited by trauma might represent a replay of embryonic continuous cell states. Alternatively, they could constitute transitions that evolved de novo, not known from the developmental paradigm. In this review, we discuss and exemplify how dental cell types exhibit plasticity during dynamic processes such as development, self-renewal, repair, and dental replacement. Hypothetically, minor plasticity of cell phenotypes and greater plasticity of transitions between cell subtypes might provide a better response to lifetime challenges, such as damage or dental loss. This plasticity might be additionally harnessed by the evolutionary process during the elaboration of dental cell subtypes in different animal lineages. In turn, the diversification of cell subtypes building teeth brings a diversity of their shape, structural properties, and functions.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Neuroimmunology Center for Brain Research Medical University of Vienna Vienna Austria
Department of Neuroscience Karolinska Institutet Solna Sweden
Department of Physiology and Pharmacology Karolinska Institutet Solna Sweden
Zobrazit více v PubMed
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. 2021. Dental pulp stem cells derived from adult human third molar tooth: a brief review. Front Cell Dev Biol. 9:717624. PubMed PMC
An Z, Sabalic M, Bloomquist RF, Fowler TE, Streelman T, Sharpe PT. 2018. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat Commun. 9(1):378. PubMed PMC
Balic A, Thesleff I. 2015. Tissue interactions regulating tooth development and renewal. Curr Top Dev Biol. 115:157–186. PubMed
Berkovitz BKB, Shellis RP. 2016. The teeth of non-mammalian vertebrates. London: Academic Press.
Beumer J, Clevers H. 2021. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 22(1):39–53. PubMed
Biehs B, Hu JK-H, Strauli NB, Sangiorgi E, Jung H, Heber R-P, Ho S, Goodwin AF, Dasen JS, Capecchi MR, et al.. 2013. BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol. 15(7):846–852. PubMed PMC
Butler PM. 1995. Ontogenetic aspects of dental evolution. Int J Dev Biol. 39(1):25–34. PubMed
Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT. 2011. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci USA. 108(16):6503–6508. PubMed PMC
Fresia R, Marangoni P, Burstyn-Cohen T, Sharir A. 2021. From bite to byte: dental structures resolved at a single-cell resolution. J Dent Res. 100(9):897–905. PubMed PMC
Furlan A, Adameyko I. 2018. Schwann cell precursor: a neural crest cell in disguise? Dev Biol. 444(Suppl 1):S25–S35. PubMed
Gaete M., Tucker A. S.2013. Organized Emergence of Multiple-Generations of Teeth in Snakes Is Dysregulated by Activation of Wnt/Beta-Catenin Signalling. PLOS ONE 8, e74484. PubMed PMC
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 97(25):13625–13630. PubMed PMC
Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. 1999. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 147(1):105–120. PubMed PMC
Hsu Y-C, Li L, Fuchs E. 2014. Emerging interactions between skin stem cells and their niches. Nat Med. 20(8):847–856. PubMed PMC
Isokawa S, Kubota K, Kosakai T, Satomura I, Tsubouchi M, Sera A. 1965. Some contributions to study of esophageal sacs and teeth of fishes. J Nihon Univ Sch Dent. 7(3):103–111. PubMed
Jernvall J, Thesleff I. 2012. Tooth shape formation and tooth renewal: evolving with the same signals. Development. 139(19):3487–3497. PubMed
Jing J, Feng J, Yuan Y, Guo T, Lei J, Pei F, Ho T-V, Chai Y. 2022. Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis. Nat Commun. 13(1):4803. PubMed PMC
Juuri E, Saito K, Ahtiainen L, Seidel K, Tummers M, Hochedlinger K, Klein OD, Thesleff I, Michon F. 2012. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev Cell. 23(2):317–328. PubMed PMC
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, et al.. 2022. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J. 41(17):e108780. PubMed PMC
Kaucka M, Ivashkin E, Gyllborg D, Zikmund T, Tesarova M, Kaiser J, Xie M, Petersen J, Pachnis V, Nicolis SK, et al.. 2016. Analysis of neural crest-derived clones reveals novel aspects of facial development. Sci Adv. 2(8):e1600060. PubMed PMC
Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, et al.. 2014. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 513(7519):551–554. PubMed
Keller L-V, Kuchler-Bopp S, Lesot H. 2012. Restoring physiological cell heterogeneity in the mesenchyme during tooth engineering. Int J Dev Biol. 56(9):737–746. PubMed
Kester L, van Oudenaarden A. 2018. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell. 23(2):166–179. PubMed
Klein OD, Lyons DB, Balooch G, Marshall GW, Basson MA, Peterka M, Boran T, Peterkova R, Martin GR. 2008. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development. 135(2):377–385. PubMed PMC
Krivanek J, Adameyko I, Fried K. 2017. Heterogeneity and developmental connections between cell types inhabiting teeth. Front Physiol. 8:376. PubMed PMC
Krivanek J, Lavicky J, Bouderlique T, Adameyko I. 2021. Rapid isolation of single cells from mouse and human teeth. J Vis Exp. 2021;176. doi:10.3791/63043 PubMed DOI
Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J, Szarowska B, Landova M, Matejova VK, Holla LI, et al.. 2020. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun. 11(1):4816. PubMed PMC
Lavicky J, Kolouskova M, Prochazka D, Rakultsev V, Gonzalez-Lopez M, Steklikova K, Bartos M, Vijaykumar A, Kaiser J, Pořízka P, et al.. 2022. The development of dentin microstructure is controlled by the type of adjacent epithelium. J Bone Miner Res. 37(2):323–339. PubMed PMC
Liu H, Yan X, Pandya M, Luan X, Diekwisch TGH. 2016. Daughters of the enamel organ: development, fate, and function of the stratum intermedium, stellate reticulum, and outer enamel epithelium. Stem Cells Dev. 25(20):1580–1590. PubMed PMC
Minarik M, Stundl J, Fabian P, Jandzik D, Metscher BD, Psenicka M, Gela D, Osorio-Pérez A, Arias-Rodriguez L, Horácek I, et al.. 2017. Pre-oral gut contributes to facial structures in non-teleost fishes. Nature. 547(7662):209–212. PubMed
Mirsky R, Jessen KR. 1996. Schwann cell development, differentiation and myelination. Curr Opin Neurobiol. 6(1):89–96. PubMed
Neves VCM, Babb R, Chandrasekaran D, Sharpe PT. 2017. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci Rep. 7:39654. PubMed PMC
Oralová V, Rosa JT, Larionova D, Witten PE, Huysseune A. 2020. Multiple epithelia are required to develop teeth deep inside the pharynx. Proc Natl Acad Sci USA. 117(21):11503–11512. PubMed PMC
Pagella P, de Vargas Roditi L, Stadlinger B, Moor AE, Mitsiadis TA. 2021. A single-cell atlas of human teeth. iScience. 24(5):102405. PubMed PMC
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 9(1):171–181. PubMed
Popa E. M., Buchtova M., Tucker A. S.Revitalising the rudimentary replacement dentition. PubMed
Sanz-Navarro M, Seidel K, Sun Z, Bertonnier-Brouty L, Amendt BA, Klein OD, Michon F. 2018. Plasticity within the niche ensures the maintenance of a Sox2+ stem cell population in the mouse incisor. Development. 145(1):dev155929. PubMed PMC
Scheiner MA, Sampson WJ. 1997. Supernumerary teeth: a review of the literature and four case reports. Aust Dent J. 42(3):160–165. PubMed
Seidel K, Ahn CP, Lyons D, Nee A, Ting K, Brownell I, Cao T, Carano RAD, Curran T, Schober M, et al.. 2010. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development. 137(22):3753–3761. PubMed PMC
Seidel K, Marangoni P, Tang C, Houshmand B, Du W, Maas RL, Murray S, Oldham MC, Klein OD. 2017. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis. eLife. 6:e24712. PubMed PMC
Sharir A, Marangoni P, Zilionis R, Wan M, Wald T, Hu JK, Kawaguchi K, Castillo-Azofeifa D, Epstein L, Harrington K, et al.. 2019. A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nat Cell Biol. 21(9):1102–1112. PubMed PMC
Sharpe PT. 2016. Dental mesenchymal stem cells. Development. 143(13):2273–2280. PubMed
Sire J-Y, Donoghue PCJ, Vickaryous MK. 2009. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J Anat. 214(4):409–440. PubMed PMC
Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Häring M, Dyachuk V, et al.. 2019. Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 364(6444):eaas9536. PubMed
Soukup V, Epperlein H-H, Horácek I, Cerny R. 2008. Dual epithelial origin of vertebrate oral teeth. Nature. 455(7214):795–798. PubMed
Subasioglu A, Savas S, Kucukyilmaz E, Kesim S, Yagci A, Dundar M. 2015. Genetic background of supernumerary teeth. Eur J Dent. 9(1):153–158. PubMed PMC
Thesleff I. 2018. From understanding tooth development to bioengineering of teeth. Eur J Oral Sci. 126(Suppl 1):67–71. PubMed
Vidovic I, Banerjee A, Fatahi R, Matthews BG, Dyment NA, Kalajzic I, Mina M. 2017. αSMA-expressing perivascular cells represent dental pulp progenitors in vivo. J Dent Res. 96(3):323–330. PubMed PMC
Volponi AA, Pang Y, Sharpe PT. 2010. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 20(12):715–722. PubMed PMC
Wang XP, O’Connell DP, Lund JJ, Saadi I, Kuraguchi M, Turbe-Doan A, Cavallesco R, Kim H, Park PJ, Harada H, et al.. 2009. Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 136, 1939–1949. PubMed PMC
Wang X-P, Suomalainen M, Felszeghy S, Zelarayan LC, Alonso MT, Plikus MV, Maas RL, Chuong C-M, Schimmang T, Thesleff I. 2007. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol. 5(6):e159. PubMed PMC
Wang X-P, Suomalainen M, Jorgez CJ, Matzuk MM, Werner S, Thesleff I. 2004. Follistatin regulates enamel patterning in mouse incisors by asymmetrically inhibiting BMP signaling and ameloblast differentiation. Dev Cell. 7(5):719–730. PubMed
Xiong J, Gronthos S, Bartold PM. 2013. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues. Periodontol 2000. 63(1):217–233. PubMed
Yajima-Himuro S, Oshima M, Yamamoto G, Ogawa M, Furuya M, Tanaka J, Nishii K, Mishima K, Tachikawa T, Tsuji T, et al.. 2014. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth. Sci Rep. 4(1):4867. PubMed PMC
Yianni V, Sharpe PT. 2019. Perivascular-derived mesenchymal stem cells.J Dent Res. 98(10):1066–1072. PubMed
Yoshizaki K, Hu L, Nguyen T, Sakai K, He B, Fong C, Yamada Y, Bikle DD, Oda Y. 2014. Ablation of coactivator Med1 switches the cell fate of dental epithelia to that generating hair. PLoS ONE. 9(6):e99991. PubMed PMC
Yu T, Klein OD. 2020. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development. 147(2):dev184754. PubMed PMC
Yuan X, Chen J, Grauer JA, Xu Q, Van Brunt LA, Helms JA. 2021. The junctional epithelium is maintained by a stem cell population. J Dent Res. 100(2):209–216. PubMed PMC
Zhao H, Feng J, Seidel K, Shi S, Klein O, Sharpe P, Chai Y. 2014. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 14(2):160–173. PubMed PMC