Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth

. 2020 Sep 23 ; 11 (1) : 4816. [epub] 20200923

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32968047

Grantová podpora
R01 HL131768 NHLBI NIH HHS - United States
R35 DE026602 NIDCR NIH HHS - United States

Odkazy

PubMed 32968047
PubMed Central PMC7511944
DOI 10.1038/s41467-020-18512-7
PII: 10.1038/s41467-020-18512-7
Knihovny.cz E-zdroje

Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation.

Centre d'Immunologie de Marseille Luminy Aix Marseille Université INSERM CNRS UMR Marseille France

Centre for Craniofacial and Regenerative Biology Faculty of Dentistry Oral and Craniofacial Sciences King's College London London UK

Clinic of Stomatology Institution Shared with St Anne's Faculty Hospital Faculty of Medicine Masaryk University Brno Czech Republic

Department of Biomedical Informatics Harvard Medical School Boston MA USA

Department of Craniofacial Sciences School of Dental Medicine University of Connecticut Health Center Farmington CT USA

Department of Evolutionary Biology University of Vienna Vienna Austria

Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic

Department of Molecular Neuroscience Center for Brain Research Medical University of Vienna Vienna Austria

Department of Neuroimmunology Center for Brain Research Medical University of Vienna Vienna Austria

Department of Neuroscience Karolinska Institutet Stockholm Sweden

Department of Oral Biology Medical University of Vienna Vienna Austria

Department of Oral Surgery Medical University of Vienna Vienna Austria

Department of Pediatrics and Institute for Human Genetics University of California San Francisco CA USA

Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden

Institute of Animal Physiology and Genetics CAS Brno Czech Republic

Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA

Research Program in Developmental Biology Institute of Biotechnology University of Helsinki Helsinki Finland

Zobrazit více v PubMed

Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb. Perspect. Biol. 2012;4:a008425. doi: 10.1101/cshperspect.a008425. PubMed DOI PMC

Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Curr. Top. Dev. Biol. 2015;115:157–186. doi: 10.1016/bs.ctdb.2015.07.006. PubMed DOI

Krivanek J, Adameyko I, Fried K. Heterogeneity and developmental connections between cell types inhabiting teeth. Front. Physiol. 2017;8:376. doi: 10.3389/fphys.2017.00376. PubMed DOI PMC

Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res. 2005;15:301–316. doi: 10.1038/sj.cr.7290299. PubMed DOI

Balic A. Biology explaining tooth repair and regeneration: a mini-review. Gerontology. 2018;64:382–388. doi: 10.1159/000486592. PubMed DOI

Monterubbianesi R, et al. A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci. Rep. 2019;9:1761. doi: 10.1038/s41598-018-37981-x. PubMed DOI PMC

Orsini G, Pagella P, Putignano A, Mitsiadis TA. Novel biological and technological platforms for dental clinical use. Front. Physiol. 2018;9:1102. doi: 10.3389/fphys.2018.01102. PubMed DOI PMC

Shi, X., Mao, J. & Liu, Y. Concise review: pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl. Med.9, 445–464 (2020). PubMed PMC

Hematti P. Mesenchymal stromal cells and fibroblasts: a case of mistaken identity? Cytotherapy. 2012;14:516–521. doi: 10.3109/14653249.2012.677822. PubMed DOI

Rahmani W, et al. Macrophages promote wound-Induced hair follicle regeneration in a CX3CR1- and TGF-beta1-dependent manner. J. Invest. Dermatol. 2018;138:2111–2122. doi: 10.1016/j.jid.2018.04.010. PubMed DOI

Sehgal A, et al. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat. Commun. 2018;9:1272. doi: 10.1038/s41467-018-03638-6. PubMed DOI PMC

Picelli S, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods. 2013;10:1096–1098. doi: 10.1038/nmeth.2639. PubMed DOI

Fan J, et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods. 2016;13:241–244. doi: 10.1038/nmeth.3734. PubMed DOI PMC

Babajko S, de La Dure-Molla M, Jedeon K, Berdal A. MSX2 in ameloblast cell fate and activity. Front. Physiol. 2014;5:510. PubMed PMC

Moffatt P, Wazen RM, Dos Santos Neves J, Nanci A. Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces. Cell Tissue Res. 2014;358:843–855. doi: 10.1007/s00441-014-1989-3. PubMed DOI

Smith CEL, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front. Physiol. 2017;8:435. doi: 10.3389/fphys.2017.00435. PubMed DOI PMC

Coste B, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60. doi: 10.1126/science.1193270. PubMed DOI PMC

Woo SH, et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature. 2014;509:622–626. doi: 10.1038/nature13251. PubMed DOI PMC

Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol. 2010;2:a003996. doi: 10.1101/cshperspect.a003996. PubMed DOI PMC

Yoshizato K, Thuy le TT, Shiota G, Kawada N. Discovery of cytoglobin and its roles in physiology and pathology of hepatic stellate cells. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 2016;92:77–97. doi: 10.2183/pjab.92.77. PubMed DOI PMC

Thuy le TT, et al. Absence of cytoglobin promotes multiple organ abnormalities in aged mice. Sci. Rep. 2016;6:24990. doi: 10.1038/srep24990. PubMed DOI PMC

Martin CE, Jones N. Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front. Endocrinol. (Lausanne) 2018;9:302. doi: 10.3389/fendo.2018.00302. PubMed DOI PMC

Mak DO, Dang B, Weiner ID, Foskett JK, Westhoff CM. Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am. J. Physiol. Ren. Physiol. 2006;290:F297–F305. doi: 10.1152/ajprenal.00147.2005. PubMed DOI PMC

Biehs B, et al. BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat. Cell Biol. 2013;15:846–852. doi: 10.1038/ncb2766. PubMed DOI PMC

Juuri E, et al. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev. Cell. 2012;23:317–328. doi: 10.1016/j.devcel.2012.05.012. PubMed DOI PMC

Seidel K, et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development. 2010;137:3753–3761. doi: 10.1242/dev.056358. PubMed DOI PMC

Seidel, K. et al. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis. elife6, https://elifesciences.org/articles/24712 (2017). PubMed PMC

Suomalainen M, Thesleff I. Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Dev. Dyn. 2010;239:364–372. PubMed

Gritli-Linde A, et al. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development. 2002;129:5323–5337. doi: 10.1242/dev.00100. PubMed DOI

Balic A, Mina M. Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone. 2011;48:927–937. doi: 10.1016/j.bone.2010.12.008. PubMed DOI PMC

Vidovic I, et al. alphaSMA-expressing perivascular cells represent dental pulp progenitors in vivo. J. Dent. Res. 2017;96:323–330. doi: 10.1177/0022034516678208. PubMed DOI PMC

Mark MP, Bloch-Zupan A, Ruch JV. Effects of retinoids on tooth morphogenesis and cytodifferentiations, in vitro. Int. J. Dev. Biol. 1992;36:517–526. PubMed

Rhinn M, Dolle P. Retinoic acid signalling during development. Development. 2012;139:843–858. doi: 10.1242/dev.065938. PubMed DOI

Zhao H, et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 2014;14:160–173. doi: 10.1016/j.stem.2013.12.013. PubMed DOI PMC

Yu T, Volponi AA, Babb R, An Z, Sharpe PT. Stem cells in tooth development, growth, repair, and regeneration. Curr. Top. Dev. Biol. 2015;115:187–212. doi: 10.1016/bs.ctdb.2015.07.010. PubMed DOI

La Manno G, et al. RNA velocity of single cells. Nature. 2018;560:494–498. doi: 10.1038/s41586-018-0414-6. PubMed DOI PMC

Hu M, et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 1997;11:774–785. doi: 10.1101/gad.11.6.774. PubMed DOI

Vijaykumar A, et al. Generation and characterization of DSPP-Cerulean/DMP1-Cherry reporter mice. Genesis. 2019;57:e23324. doi: 10.1002/dvg.23324. PubMed DOI PMC

Kaukua N, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–554. doi: 10.1038/nature13536. PubMed DOI

Barkas N, et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods. 2019;16:695–698. doi: 10.1038/s41592-019-0466-z. PubMed DOI PMC

Neves VC, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci. Rep. 2017;7:39654. doi: 10.1038/srep39654. PubMed DOI PMC

Nanci A. Ten Cate’s Oral Histology-E-Book: Development, Structure, and Function (Elsevier Health Sciences, 2017).

Jontell M, Okiji T, Dahlgren U, Bergenholtz G. Immune defense mechanisms of the dental pulp. Crit. Rev. Oral. Biol. Med. 1998;9:179–200. doi: 10.1177/10454411980090020301. PubMed DOI

Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front. Physiol. 2014;5:313. doi: 10.3389/fphys.2014.00313. PubMed DOI PMC

Vishwakarma, A., Sharpe, P., Shi, S. & Ramalingam, M. Stem Cell Biology and Tissue Engineering In Dental Sciences (Academic Press, 2014).

Sharir A, et al. A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nat. Cell Biol. 2019;21:1102–1112. doi: 10.1038/s41556-019-0378-2. PubMed DOI PMC

An Z, et al. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun. 2018;9:378. doi: 10.1038/s41467-017-02785-6. PubMed DOI PMC

Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143:2273–2280. doi: 10.1242/dev.134189. PubMed DOI

Maye P, et al. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs. BMC Biotechnol. 2009;9:20. doi: 10.1186/1472-6750-9-20. PubMed DOI PMC

Kobayashi A, et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 2014;3:650–662. doi: 10.1016/j.stemcr.2014.08.008. PubMed DOI PMC

Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science364, https://science.sciencemag.org/content/364/6444/eaas9536 (2019). PubMed

Qi M, Li W, Tsang IW, Yijun S. Principal graph and structure learning based on reversed graph embedding. IEEE Trans. Pattern Anal. Mach. Intell. 2017;39:2227–2241. doi: 10.1109/TPAMI.2016.2587643. PubMed DOI PMC

Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281–291.e289. doi: 10.1016/j.cels.2018.11.005. PubMed DOI PMC

Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat. Methods. 2018;15:1053–1058. doi: 10.1038/s41592-018-0229-2. PubMed DOI PMC

Xu, C. et al. Harmonization and annotation of single-cell transcriptomics data with deep generative models. bioRxiv, 532895. Preprint at https://www.biorxiv.org/content/10.1101/532895v1 (2019). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...