Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 HL131768
NHLBI NIH HHS - United States
R35 DE026602
NIDCR NIH HHS - United States
PubMed
32968047
PubMed Central
PMC7511944
DOI
10.1038/s41467-020-18512-7
PII: 10.1038/s41467-020-18512-7
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace * genetika MeSH
- dospělí MeSH
- epitelové buňky MeSH
- genetická heterogenita MeSH
- kmenové buňky cytologie MeSH
- lidé MeSH
- mezoderm cytologie růst a vývoj metabolismus MeSH
- mladiství MeSH
- mladý dospělý MeSH
- modely u zvířat MeSH
- moláry cytologie růst a vývoj MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odontoblasty MeSH
- řezáky cytologie růst a vývoj MeSH
- vývojová regulace genové exprese MeSH
- zuby cytologie růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation.
Centre d'Immunologie de Marseille Luminy Aix Marseille Université INSERM CNRS UMR Marseille France
Department of Biomedical Informatics Harvard Medical School Boston MA USA
Department of Evolutionary Biology University of Vienna Vienna Austria
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Neuroimmunology Center for Brain Research Medical University of Vienna Vienna Austria
Department of Neuroscience Karolinska Institutet Stockholm Sweden
Department of Oral Biology Medical University of Vienna Vienna Austria
Department of Oral Surgery Medical University of Vienna Vienna Austria
Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
Institute of Animal Physiology and Genetics CAS Brno Czech Republic
Zobrazit více v PubMed
Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb. Perspect. Biol. 2012;4:a008425. doi: 10.1101/cshperspect.a008425. PubMed DOI PMC
Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Curr. Top. Dev. Biol. 2015;115:157–186. doi: 10.1016/bs.ctdb.2015.07.006. PubMed DOI
Krivanek J, Adameyko I, Fried K. Heterogeneity and developmental connections between cell types inhabiting teeth. Front. Physiol. 2017;8:376. doi: 10.3389/fphys.2017.00376. PubMed DOI PMC
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res. 2005;15:301–316. doi: 10.1038/sj.cr.7290299. PubMed DOI
Balic A. Biology explaining tooth repair and regeneration: a mini-review. Gerontology. 2018;64:382–388. doi: 10.1159/000486592. PubMed DOI
Monterubbianesi R, et al. A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci. Rep. 2019;9:1761. doi: 10.1038/s41598-018-37981-x. PubMed DOI PMC
Orsini G, Pagella P, Putignano A, Mitsiadis TA. Novel biological and technological platforms for dental clinical use. Front. Physiol. 2018;9:1102. doi: 10.3389/fphys.2018.01102. PubMed DOI PMC
Shi, X., Mao, J. & Liu, Y. Concise review: pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl. Med.9, 445–464 (2020). PubMed PMC
Hematti P. Mesenchymal stromal cells and fibroblasts: a case of mistaken identity? Cytotherapy. 2012;14:516–521. doi: 10.3109/14653249.2012.677822. PubMed DOI
Rahmani W, et al. Macrophages promote wound-Induced hair follicle regeneration in a CX3CR1- and TGF-beta1-dependent manner. J. Invest. Dermatol. 2018;138:2111–2122. doi: 10.1016/j.jid.2018.04.010. PubMed DOI
Sehgal A, et al. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat. Commun. 2018;9:1272. doi: 10.1038/s41467-018-03638-6. PubMed DOI PMC
Picelli S, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods. 2013;10:1096–1098. doi: 10.1038/nmeth.2639. PubMed DOI
Fan J, et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods. 2016;13:241–244. doi: 10.1038/nmeth.3734. PubMed DOI PMC
Babajko S, de La Dure-Molla M, Jedeon K, Berdal A. MSX2 in ameloblast cell fate and activity. Front. Physiol. 2014;5:510. PubMed PMC
Moffatt P, Wazen RM, Dos Santos Neves J, Nanci A. Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces. Cell Tissue Res. 2014;358:843–855. doi: 10.1007/s00441-014-1989-3. PubMed DOI
Smith CEL, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front. Physiol. 2017;8:435. doi: 10.3389/fphys.2017.00435. PubMed DOI PMC
Coste B, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60. doi: 10.1126/science.1193270. PubMed DOI PMC
Woo SH, et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature. 2014;509:622–626. doi: 10.1038/nature13251. PubMed DOI PMC
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol. 2010;2:a003996. doi: 10.1101/cshperspect.a003996. PubMed DOI PMC
Yoshizato K, Thuy le TT, Shiota G, Kawada N. Discovery of cytoglobin and its roles in physiology and pathology of hepatic stellate cells. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 2016;92:77–97. doi: 10.2183/pjab.92.77. PubMed DOI PMC
Thuy le TT, et al. Absence of cytoglobin promotes multiple organ abnormalities in aged mice. Sci. Rep. 2016;6:24990. doi: 10.1038/srep24990. PubMed DOI PMC
Martin CE, Jones N. Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front. Endocrinol. (Lausanne) 2018;9:302. doi: 10.3389/fendo.2018.00302. PubMed DOI PMC
Mak DO, Dang B, Weiner ID, Foskett JK, Westhoff CM. Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am. J. Physiol. Ren. Physiol. 2006;290:F297–F305. doi: 10.1152/ajprenal.00147.2005. PubMed DOI PMC
Biehs B, et al. BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat. Cell Biol. 2013;15:846–852. doi: 10.1038/ncb2766. PubMed DOI PMC
Juuri E, et al. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev. Cell. 2012;23:317–328. doi: 10.1016/j.devcel.2012.05.012. PubMed DOI PMC
Seidel K, et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development. 2010;137:3753–3761. doi: 10.1242/dev.056358. PubMed DOI PMC
Seidel, K. et al. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis. elife6, https://elifesciences.org/articles/24712 (2017). PubMed PMC
Suomalainen M, Thesleff I. Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Dev. Dyn. 2010;239:364–372. PubMed
Gritli-Linde A, et al. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development. 2002;129:5323–5337. doi: 10.1242/dev.00100. PubMed DOI
Balic A, Mina M. Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone. 2011;48:927–937. doi: 10.1016/j.bone.2010.12.008. PubMed DOI PMC
Vidovic I, et al. alphaSMA-expressing perivascular cells represent dental pulp progenitors in vivo. J. Dent. Res. 2017;96:323–330. doi: 10.1177/0022034516678208. PubMed DOI PMC
Mark MP, Bloch-Zupan A, Ruch JV. Effects of retinoids on tooth morphogenesis and cytodifferentiations, in vitro. Int. J. Dev. Biol. 1992;36:517–526. PubMed
Rhinn M, Dolle P. Retinoic acid signalling during development. Development. 2012;139:843–858. doi: 10.1242/dev.065938. PubMed DOI
Zhao H, et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell. 2014;14:160–173. doi: 10.1016/j.stem.2013.12.013. PubMed DOI PMC
Yu T, Volponi AA, Babb R, An Z, Sharpe PT. Stem cells in tooth development, growth, repair, and regeneration. Curr. Top. Dev. Biol. 2015;115:187–212. doi: 10.1016/bs.ctdb.2015.07.010. PubMed DOI
La Manno G, et al. RNA velocity of single cells. Nature. 2018;560:494–498. doi: 10.1038/s41586-018-0414-6. PubMed DOI PMC
Hu M, et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 1997;11:774–785. doi: 10.1101/gad.11.6.774. PubMed DOI
Vijaykumar A, et al. Generation and characterization of DSPP-Cerulean/DMP1-Cherry reporter mice. Genesis. 2019;57:e23324. doi: 10.1002/dvg.23324. PubMed DOI PMC
Kaukua N, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–554. doi: 10.1038/nature13536. PubMed DOI
Barkas N, et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods. 2019;16:695–698. doi: 10.1038/s41592-019-0466-z. PubMed DOI PMC
Neves VC, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci. Rep. 2017;7:39654. doi: 10.1038/srep39654. PubMed DOI PMC
Nanci A. Ten Cate’s Oral Histology-E-Book: Development, Structure, and Function (Elsevier Health Sciences, 2017).
Jontell M, Okiji T, Dahlgren U, Bergenholtz G. Immune defense mechanisms of the dental pulp. Crit. Rev. Oral. Biol. Med. 1998;9:179–200. doi: 10.1177/10454411980090020301. PubMed DOI
Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front. Physiol. 2014;5:313. doi: 10.3389/fphys.2014.00313. PubMed DOI PMC
Vishwakarma, A., Sharpe, P., Shi, S. & Ramalingam, M. Stem Cell Biology and Tissue Engineering In Dental Sciences (Academic Press, 2014).
Sharir A, et al. A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nat. Cell Biol. 2019;21:1102–1112. doi: 10.1038/s41556-019-0378-2. PubMed DOI PMC
An Z, et al. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun. 2018;9:378. doi: 10.1038/s41467-017-02785-6. PubMed DOI PMC
Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143:2273–2280. doi: 10.1242/dev.134189. PubMed DOI
Maye P, et al. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs. BMC Biotechnol. 2009;9:20. doi: 10.1186/1472-6750-9-20. PubMed DOI PMC
Kobayashi A, et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep. 2014;3:650–662. doi: 10.1016/j.stemcr.2014.08.008. PubMed DOI PMC
Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science364, https://science.sciencemag.org/content/364/6444/eaas9536 (2019). PubMed
Qi M, Li W, Tsang IW, Yijun S. Principal graph and structure learning based on reversed graph embedding. IEEE Trans. Pattern Anal. Mach. Intell. 2017;39:2227–2241. doi: 10.1109/TPAMI.2016.2587643. PubMed DOI PMC
Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281–291.e289. doi: 10.1016/j.cels.2018.11.005. PubMed DOI PMC
Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat. Methods. 2018;15:1053–1058. doi: 10.1038/s41592-018-0229-2. PubMed DOI PMC
Xu, C. et al. Harmonization and annotation of single-cell transcriptomics data with deep generative models. bioRxiv, 532895. Preprint at https://www.biorxiv.org/content/10.1101/532895v1 (2019). PubMed DOI PMC
Periderm fate and independence of tooth formation are conserved across osteichthyans
Plasticity of Dental Cell Types in Development, Regeneration, and Evolution
Ptch2 is a Potential Regulator of Mesenchymal Stem Cells
Oral stem cells, decoding and mapping the resident cells populations
The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium