Targeting CD10 on B-Cell Leukemia Using the Universal CAR T-Cell Platform (UniCAR)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35563312
PubMed Central
PMC9105388
DOI
10.3390/ijms23094920
PII: ijms23094920
Knihovny.cz E-zdroje
- Klíčová slova
- CAR T-cells, CD10, immunotherapy,
- MeSH
- antigeny CD19 metabolismus MeSH
- chronická lymfatická leukemie * metabolismus terapie MeSH
- imunoterapie adoptivní MeSH
- leukemie B-buněčná * metabolismus terapie MeSH
- lidé MeSH
- neprilysin * terapeutické užití MeSH
- receptory antigenů T-buněk metabolismus MeSH
- T-lymfocyty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD19 MeSH
- neprilysin * MeSH
- receptory antigenů T-buněk MeSH
Chimeric antigen receptor (CAR)-expressing T-cells are without a doubt a breakthrough therapy for hematological malignancies. Despite their success, clinical experience has revealed several challenges, which include relapse after targeting single antigens such as CD19 in the case of B-cell acute lymphoblastic leukemia (B-ALL), and the occurrence of side effects that could be severe in some cases. Therefore, it became clear that improved safety approaches, and targeting multiple antigens, should be considered to further improve CAR T-cell therapy for B-ALL. In this paper, we address both issues by investigating the use of CD10 as a therapeutic target for B-ALL with our switchable UniCAR system. The UniCAR platform is a modular platform that depends on the presence of two elements to function. These include UniCAR T-cells and the target modules (TMs), which cross-link the T-cells to their respective targets on tumor cells. The TMs function as keys that control the switchability of UniCAR T-cells. Here, we demonstrate that UniCAR T-cells, armed with anti-CD10 TM, can efficiently kill B-ALL cell lines, as well as patient-derived B-ALL blasts, thereby highlighting the exciting possibility for using CD10 as an emerging therapeutic target for B-cell malignancies.
Department of Biophysics and Radiation Biology Semmelweis University H 1094 Budapest Hungary
German Cancer Consortium 69120 Heidelberg Germany
Zobrazit více v PubMed
Liu Y., Chen X., Han W., Zhang Y. Tisagenlecleucel, an Approved Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Leukemia. Drugs Today. 2017;53:597–608. doi: 10.1358/dot.2017.53.11.2725754. PubMed DOI
Elsallab M., Levine B.L., Wayne A.S., Abou-El-Enein M. CAR T-Cell Product Performance in Haematological Malignancies before and after Marketing Authorisation. Lancet Oncol. 2020;21:e104–e116. doi: 10.1016/S1470-2045(19)30729-6. PubMed DOI PMC
Sengsayadeth S., Savani B.N., Oluwole O., Dholaria B. Overview of Approved CAR-T Therapies, Ongoing Clinical Trials, and Its Impact on Clinical Practice. eJHaem. 2022;3:6–10. doi: 10.1002/jha2.338. PubMed DOI PMC
Mejstríková E., Hrusak O., Borowitz M.J., Whitlock J.A., Brethon B., Trippett T.M., Zugmaier G., Gore L., Von Stackelberg A., Locatelli F. CD19-Negative Relapse of Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia Following Blinatumomab Treatment. Blood Cancer J. 2017;7:659. doi: 10.1038/s41408-017-0023-x. PubMed DOI PMC
Fousek K., Watanabe J., Joseph S.K., George A., An X., Byrd T.T., Morris J.S., Luong A., Martínez-Paniagua M.A., Sanber K., et al. CAR T-Cells That Target Acute B-Lineage Leukemia Irrespective of CD19 Expression. Leukemia. 2020;35:75–89. doi: 10.1038/s41375-020-0792-2. PubMed DOI PMC
Ghodke K., Bibi A., Rabade N., Patkar N., Subramanian P.G., Kadam P.A., Badrinath Y., Ghogale S., Gujral S., Tembhare P. CD19 Negative Precursor B Acute Lymphoblastic Leukemia (B-ALL)—Immunophenotypic Challenges in Diagnosis and Monitoring: A Study of Three Cases. Cytom. Part B Clin. Cytom. 2017;92:315–318. doi: 10.1002/cyto.b.21373. PubMed DOI
Rivera A.M., May S., Lei M., Qualls S., Bushey K., Rubin D.B., Barra M.E. CAR T-Cell-Associated Neurotoxicity: Current Management and Emerging Treatment Strategies. Crit. Care Nurs. Q. 2020;43:191–204. doi: 10.1097/CNQ.0000000000000302. PubMed DOI
Zheng P.P., Kros J.M., Li J. Approved CAR T Cell Therapies: Ice Bucket Challenges on Glaring Safety Risks and Long-Term Impacts. Drug Discov. Today. 2018;23:1175–1182. doi: 10.1016/j.drudis.2018.02.012. PubMed DOI
Cai C., Tang D., Han Y., Shen E., Ahmed O.A., Guo C., Shen H., Zeng S. A Comprehensive Analysis of the Fatal Toxic Effects Associated with CD19 CAR-T Cell Therapy. Aging. 2020;12:18741. doi: 10.18632/aging.104058. PubMed DOI PMC
Maguer-Satta V., Besançon R., Bachelard-Cascales E. Concise Review: Neutral Endopeptidase (CD10): A Multifaceted Environment Actor in Stem Cells, Physiological Mechanisms, and Cancer. Stem Cells. 2011;29:389–396. doi: 10.1002/stem.592. PubMed DOI
Nalivaeva N.N., Zhuravin I.A., Turner A.J. Neprilysin Expression and Functions in Development, Ageing and Disease. Mech. Ageing Dev. 2020;192:111363. doi: 10.1016/j.mad.2020.111363. PubMed DOI PMC
Blom B., Spits H. Development of human lymphoid cells. Annu. Rev. Immunol. 2006;24:287–320. doi: 10.1146/annurev.immunol.24.021605.090612. PubMed DOI
Wentink M.W.J., Kalina T., Perez-Andres M., del Pino Molina L., IJspeert H., Kavelaars F.G., Lankester A.C., Lecrevisse Q., van Dongen J.J.M., Orfao A., et al. Delineating Human B Cell Precursor Development with Genetically Identified PID Cases as a Model. Front. Immunol. 2019;10:2680. doi: 10.3389/fimmu.2019.02680. PubMed DOI PMC
Mishra D., Singh S., Narayan G. Role of B Cell Development Marker CD10 in Cancer Progression and Prognosis. Mol. Biol. Int. 2016;2016:4328697. doi: 10.1155/2016/4328697. PubMed DOI PMC
Sȩdek L., Bulsa J., Sonsala A., Twardoch M., Wieczorek M., Malinowska I., Derwich K., Niedźwiecki M., Sobol-Milejska G., Kowalczyk J.R., et al. The Immunophenotypes of Blast Cells in B-Cell Precursor Acute Lymphoblastic Leukemia: How Different Are They from Their Normal Counterparts? Cytom. Part B Clin. Cytom. 2014;86:329–339. doi: 10.1002/cytob.21176. PubMed DOI
Ritz J., Pesando J.M., Notis-McConarty J., Lazarus H., Schlossman S.F. A Monoclonal Antibody to Human Acute Lymphoblastic Leukaemia Antigen. Nature. 1980;283:583–585. doi: 10.1038/283583a0. PubMed DOI
Uherova P., Ross C.W., Schnitzer B., Singleton T.P., Finn W.G. The Clinical Significance of CD10 Antigen Expression in Diffuse Large B-Cell Lymphoma. Am. J. Clin. Pathol. 2001;115:582–588. doi: 10.1309/84GE-U85A-FMU0-7AUV. PubMed DOI
Almasri N.M., Iturraspe J.A., Braylan R.C. CD10 Expression in Follicular Lymphoma and Large Cell Lymphoma Is Different from That of Reactive Lymph Node Follicles. Arch. Pathol. Lab. Med. 1998;122:539–544. PubMed
Craig F.E., Foon K.A. Flow Cytometric Immunophenotyping for Hematologic Neoplasms. Blood. 2008;111:3941–3967. doi: 10.1182/blood-2007-11-120535. PubMed DOI
Szumera-Ciećkiewicz A., Rymkiewicz G., Sokół K., Paszkiewicz-Kozik E., Borysiuk A., Poleszczuk J., Bachnio K., Bystydzienski Z., Woroniecka R., Grygalewicz B., et al. Significance of CD10 Protein Expression in the Diagnostics of Follicular Lymphoma: A Comparison of Conventional Immunohistochemistry with Flow Cytometry Supported by the Establishment of BCL2 and BCL6 Rearrangements. Int. J. Lab. Hematol. 2020;42:453–463. doi: 10.1111/ijlh.13222. PubMed DOI
Abdulbaki R., Tizro P., Nava V.E., da Silva M.G., Ascensão J.L. Low-Grade Primary Splenic CD10-Positive Small B-Cell Lymphoma/Follicular Lymphoma. Curr. Oncol. 2021;28:4821–4831. doi: 10.3390/curroncol28060407. PubMed DOI PMC
Wang H.Y., Zu Y. Diagnostic Algorithm of Common Mature B-Cell Lymphomas by Immunohistochemistry. Arch. Pathol. Lab. Med. 2017;141:1236–1246. doi: 10.5858/arpa.2016-0521-RA. PubMed DOI
Ziemba Y., Brody J., Hsu P., Reddy K. Potential Prognostic Significance of Aberrant CD10 Positivity in Mantle Cell Lymphoma. Am. J. Clin. Pathol. 2018;150((Suppl. 1)):S109–S110. doi: 10.1093/ajcp/aqy097.265. DOI
Chung J., Shevchenko A., Lee J.B. Evolution of a Melanoma in Situ to a Sarcomatoid Dedifferentiated Melanoma. J. Cutan. Pathol. 2021;48:943–947. doi: 10.1111/cup.14003. PubMed DOI
Fukusumi T., Ishii H., Konno M., Yasui T., Nakahara S., Takenaka Y., Yamamoto Y., Nishikawa S., Kano Y., Ogawa H., et al. CD10 as a Novel Marker of Therapeutic Resistance and Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma. Br. J. Cancer. 2014;111:506–514. doi: 10.1038/bjc.2014.289. PubMed DOI PMC
Dall’Era M.A., True L.D., Siegel A.F., Porter M.P., Sherertz T.M., Liu A.Y. Differential Expression of CD10 in Prostate Cancer and Its Clinical Implication. BMC Urol. 2007;7:3. doi: 10.1186/1471-2490-7-3. PubMed DOI PMC
Kanitakis J., Narvaez D., Claudy A. Differential Expression of the CD10 Antigen (Neutral Endopeptidase) in Primary versus Metastatic Malignant Melanomas of the Skin. Melanoma Res. 2002;12:241–244. doi: 10.1097/00008390-200206000-00007. PubMed DOI
Jang T.J., Park J.B., Lee J.I. The Expression of CD10 and CD15 Is Progressively Increased during Colorectal Cancer Development. Korean J. Pathol. 2013;47:340–347. doi: 10.4132/KoreanJPathol.2013.47.4.340. PubMed DOI PMC
Żurawski J., Talarska P., de Mezer M., Kaszkowiak K., Chalcarz M., Iwanik K., Karoń J., Krokowicz P. Evaluation of CD10 Expression as a Diagnostic Marker for Colorectal Cancer. Gastroenterol. Hepatol. Bed Bench. 2022;15:1–8. doi: 10.22037/GHFBB.VI.2296. PubMed DOI PMC
Louhichi T., Saad H., Dhiab M.B., Ziadi S., Trimeche M. Stromal CD10 Expression in Breast Cancer Correlates with Tumor Invasion and Cancer Stem Cell Phenotype. BMC Cancer. 2018;18:49. doi: 10.1186/s12885-017-3951-8. PubMed DOI PMC
Kumagai-Togashi A., Uozaki H., Kikuchi Y., Watabe S., Numakura S., Watanabe M. Tumorous CD10 Is More Strongly Related to the Progression of Urothelial Carcinoma than Stromal CD10. Anticancer Res. 2019;39:635–640. doi: 10.21873/anticanres.13157. PubMed DOI
Gülhan Ö., Mahi B. The Role of AMACR, CD10, TMPRSS2-ERG, and P27 Protein Expression Among Different Gleason Grades of Prostatic Adenocarcinoma on Needle Biopsy. Clin. Med. Insights Oncol. 2020;14:1179554920947322. doi: 10.1177/1179554920947322. PubMed DOI PMC
Gabal S.M., Salem M.M., Mostafa R.R., Abdelsalam S.M. Role of CD10 Marker in Differentiating Malignant Thyroid Neoplasms from Benign Thyroid Lesions (Immunohistochemical & Histopathological Study) Open Access Maced. J. Med. Sci. 2018;6:2295. doi: 10.3889/OAMJMS.2018.456. PubMed DOI PMC
Makretsov N.A., Hayes M., Carter B.A., Dabiri S., Gilks C.B., Huntsman D.G. Stromal CD10 Expression in Invasive Breast Carcinoma Correlates with Poor Prognosis, Estrogen Receptor Negativity, and High Grade. Mod. Pathol. 2007;20:84–89. doi: 10.1038/modpathol.3800713. PubMed DOI
Huang W.-B., Zhou X.-J., Chen J.-Y., Zhang L.-H., Meng K., Ma H.-H., Lu Z.-F. CD10-Positive Stromal Cells in Gastric Carcinoma: Correlation with Invasion and Metastasis. Jpn. J. Clin. Oncol. 2005;35:245–250. doi: 10.1093/jjco/hyi076. PubMed DOI
Su S., Chen J., Yao H., Liu J., Yu S., Lao L., Wang M., Luo M., Xing Y., Chen F., et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841–856.e16. doi: 10.1016/j.cell.2018.01.009. PubMed DOI
Oh E.J., Bychkov A., Cho H., Kim T.M., Bae J.S., Lim D.J., Jung C.K. Prognostic Implications of CD10 and CD15 Expression in Papillary Thyroid Carcinoma. Cancers. 2020;12:1413. doi: 10.3390/cancers12061413. PubMed DOI PMC
Mizutani N., Abe M., Kajino K., Matsuoka S. A New CD10 Antibody Inhibits the Growth of Malignant Mesothelioma. Monoclon. Antibodies Immunodiagn. Immunother. 2021;40:21–27. doi: 10.1089/mab.2020.0033. PubMed DOI PMC
Ruiz-Arguelles G.J., Ruiz-Arguelles A., Lobato-Mendizabal E., Presno-Bernal M., Alvarez-Amaya C. Infusion of Anti-CD10 Monoclonal Antibody (J5) Following Ablative Chemotherapy in a Patient with Refractory Pre-B Acute Lymphoblastic Leukemia. Rev. Investig. Clin. 1991;43:259–263. PubMed
Bachmann M. The UniCAR System: A Modular CAR T Cell Approach to Improve the Safety of CAR T Cells. Immunol. Lett. 2019;211:13–22. doi: 10.1016/j.imlet.2019.05.003. PubMed DOI
Feldmann A., Arndt C., Koristka S., Berndt N., Bergmann R., Bachmann M.P. Conventional CARs versus Modular CARs. Cancer Immunol. Immunother. 2019;68:1713–1719. doi: 10.1007/s00262-019-02399-5. PubMed DOI PMC
Koristka S., Cartellieri M., Feldmann A., Arndt C., Loff S., Michalk I., Aliperta R., von Bonin M., Bornhäuser M., Ehninger A., et al. Flexible Antigen-Specific Redirection of Human Regulatory T Cells Via a Novel Universal Chimeric Antigen Receptor System. Blood. 2014;124:3494. doi: 10.1182/blood.V124.21.3494.3494. DOI
Carmo-Fonseca M., Pfeifer K., Schröder H.C., Vaz M.F., Fonseca J.E., Müller W.E.G., Bachmann M. Identification of La Ribonucleoproteins as a Component of Interchromatin Granules. Exp. Cell Res. 1989;185:73–85. doi: 10.1016/0014-4827(89)90038-4. PubMed DOI
Bachmann D., Aliperta R., Bergmann R., Feldmann A., Koristka S., Arndt C., Loff S., Welzel P., Albert S., Kegler A., et al. Retargeting of UniCAR T Cells with an In Vivo Synthesized Target Module Directed against CD19 Positive Tumor Cells. Oncotarget. 2018;9:7487–7500. doi: 10.18632/oncotarget.23556. PubMed DOI PMC
Wermke M., Kraus S., Ehninger A., Bargou R.C., Goebeler M.E., Middeke J.M., Kreissig C., von Bonin M., Koedam J., Pehl M., et al. Proof of Concept for a Rapidly Switchable Universal CAR-T Platform with UniCAR-T-CD123 in Relapsed/Refractory AML. Blood. 2021;137:3145. doi: 10.1182/blood.2020009759. PubMed DOI PMC
Feldmann A., Arndt C., Bergmann R., Loff S., Cartellieri M., Bachmann D., Aliperta R., Hetzenecker M., Ludwig F., Albert S., et al. Retargeting of T Lymphocytes to PSCA- or PSMA Positive Prostate Cancer Cells Using the Novel Modular Chimeric Antigen Receptor Platform Technology “UniCAR”. Oncotarget. 2017;8:31368–31385. doi: 10.18632/oncotarget.15572. PubMed DOI PMC
Mitwasi N., Feldmann A., Bergmann R., Berndt N., Arndt C., Koristka S., Kegler A., Jureczek J., Hoffmann A., Ehninger A., et al. Development of Novel Target Modules for Retargeting of UniCAR T Cells to GD2 Positive Tumor Cells. Oncotarget. 2017;8:108584–108603. doi: 10.18632/oncotarget.21017. PubMed DOI PMC
Albert S., Arndt C., Feldmann A., Bergmann R., Bachmann D., Koristka S., Ludwig F., Ziller-Walter P., Kegler A., Gärtner S., et al. A Novel Nanobody-Based Target Module for Retargeting of T Lymphocytes to EGFR-Expressing Cancer Cells via the Modular UniCAR Platform. Oncoimmunology. 2017;6:e1287246. doi: 10.1080/2162402X.2017.1287246. PubMed DOI PMC
Cartellieri M., Feldmann A., Koristka S., Arndt C., Loff S., Ehninger A., von Bonin M., Bejestani E.P., Ehninger G., Bachmann M.P. Switching CAR T Cells on and off: A Novel Modular Platform for Retargeting of T Cells to AML Blasts. Blood Cancer J. 2016;6:e458. doi: 10.1038/bcj.2016.61. PubMed DOI PMC
Feldmann A., Arndt C., Töpfer K., Stamova S., Krone F., Cartellieri M., Koristka S., Michalk I., Lindemann D., Schmitz M., et al. Novel Humanized and Highly Efficient Bispecific Antibodies Mediate Killing of Prostate Stem Cell Antigen-Expressing Tumor Cells by CD8+ and CD4+ T Cells. J. Immunol. 2012;189:3249–3259. doi: 10.4049/jimmunol.1200341. PubMed DOI
Cartellieri M., Koristka S., Arndt C., Feldmann A., Stamova S., Von Bonin M., Töpfer K., Krüger T., Geib M., Michalk I., et al. A Novel Ex Vivo Isolation and Expansion Procedure for Chimeric Antigen Receptor Engrafted Human T Cells. PLoS ONE. 2014;9:e93745. doi: 10.1371/journal.pone.0093745. PubMed DOI PMC
Arndt C., Loureiro L.R., Feldmann A., Jureczek J., Bergmann R., Máthé D., Hegedüs N., Berndt N., Koristka S., Mitwasi N., et al. UniCAR T Cell Immunotherapy Enables Efficient Elimination of Radioresistant Cancer Cells. Oncoimmunology. 2020;9:1743036. doi: 10.1080/2162402X.2020.1743036. PubMed DOI PMC
D’Aloia M.M., Zizzari I.G., Sacchetti B., Pierelli L., Alimandi M. CAR-T Cells: The Long and Winding Road to Solid Tumors Review-Article. Cell Death Dis. 2018;9:282. doi: 10.1038/s41419-018-0278-6. PubMed DOI PMC
Hou A.J., Chen L.C., Chen Y.Y. Navigating CAR-T Cells through the Solid-Tumour Microenvironment. Nat. Rev. Drug Discov. 2021;20:531–550. doi: 10.1038/s41573-021-00189-2. PubMed DOI
Marofi F., Motavalli R., Safonov V.A., Thangavelu L., Yumashev A.V., Alexander M., Shomali N., Chartrand M.S., Pathak Y., Jarahian M., et al. CAR T Cells in Solid Tumors: Challenges and Opportunities. Stem Cell Res. Ther. 2021;12:81. doi: 10.1186/s13287-020-02128-1. PubMed DOI PMC
Zhang J., Li J., Ma Q., Yang H., Signorovitch J., Wu E. A Review of Two Regulatory Approved Anti-CD19 CAR T-Cell Therapies in Diffuse Large B-Cell Lymphoma: Why Are Indirect Treatment Comparisons Not Feasible? Adv. Ther. 2020;37:3040–3058. doi: 10.1007/s12325-020-01397-9. PubMed DOI PMC
Maus M.V. CD19 CAR T Cells for Adults wit h Relapsed or Refractory Acute Lymphoblastic Leukaemia. Lancet. 2021;398:466–467. doi: 10.1016/S0140-6736(21)01289-7. PubMed DOI
Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J. Toxicity and Management in CAR T-Cell Therapy. Mol. Ther.-Oncolytics. 2016;3:16011. doi: 10.1038/mto.2016.11. PubMed DOI PMC
Song M.K., Park B.B., Uhm J.E. Resistance Mechanisms to CAR T-Cell Therapy and Overcoming Strategy in B-Cell Hematologic Malignancies. Int. J. Mol. Sci. 2019;20:5010. doi: 10.3390/ijms20205010. PubMed DOI PMC
Xu X., Sun Q., Liang X., Chen Z., Zhang X., Zhou X., Li M., Tu H., Liu Y., Tu S., et al. Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies. Front. Immunol. 2019;10:2664. doi: 10.3389/fimmu.2019.02664. PubMed DOI PMC
Liang A., Ye S., Li P., Huang J., Zhu S., Yao X., Zhou L., Xu Y., Zhu J., Zheng C., et al. Safety and Efficacy of a Novel Anti-CD20 Chimeric Antigen Receptor (CAR)-T Cell Therapy in Relapsed/Refractory (r/r) B-Cell Non-Hodgkin Lymphoma (B-NHL) Patients after Failing CD19 CAR-T Therapy. J. Clin. Oncol. 2021;39:2508. doi: 10.1200/JCO.2021.39.15_suppl.2508. DOI
Spiegel J.Y., Patel S., Muffly L., Hossain N.M., Oak J., Baird J.H., Frank M.J., Shiraz P., Sahaf B., Craig J., et al. CAR T Cells with Dual Targeting of CD19 and CD22 in Adult Patients with Recurrent or Refractory B Cell Malignancies: A Phase 1 Trial. Nat. Med. 2021;27:1419–1431. doi: 10.1038/s41591-021-01436-0. PubMed DOI PMC
Zhou H., Luo Y., Zhu S., Wang X., Zhao Y., Ou X., Zhang T., Ma X. The Efficacy and Safety of Anti-CD19/CD20 Chimeric Antigen Receptor- T Cells Immunotherapy in Relapsed or Refractory B-Cell Malignancies: A Meta-Analysis. BMC Cancer. 2018;18:929. doi: 10.1186/s12885-018-4817-4. PubMed DOI PMC
Fry T.J., Shah N.N., Orentas R.J., Stetler-Stevenson M., Yuan C.M., Ramakrishna S., Wolters P., Martin S., Delbrook C., Yates B., et al. CD22-Targeted CAR T Cells Induce Remission in B-ALL That Is Naive or Resistant to CD19-Targeted CAR Immunotherapy. Nat. Med. 2018;24:20–28. doi: 10.1038/nm.4441. PubMed DOI PMC
Jana S.H., Jha B.M., Patel C., Jana D., Agarwal A. CD10-A New Prognostic Stromal Marker in Breast Carcinoma, Its Utility, Limitations and Role in Breast Cancer Pathogenesis. Indian J. Pathol. Microbiol. 2014;57:530–536. doi: 10.4103/0377-4929.142639. PubMed DOI