Targeting CD10 on B-Cell Leukemia Using the Universal CAR T-Cell Platform (UniCAR)

. 2022 Apr 28 ; 23 (9) : . [epub] 20220428

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35563312

Chimeric antigen receptor (CAR)-expressing T-cells are without a doubt a breakthrough therapy for hematological malignancies. Despite their success, clinical experience has revealed several challenges, which include relapse after targeting single antigens such as CD19 in the case of B-cell acute lymphoblastic leukemia (B-ALL), and the occurrence of side effects that could be severe in some cases. Therefore, it became clear that improved safety approaches, and targeting multiple antigens, should be considered to further improve CAR T-cell therapy for B-ALL. In this paper, we address both issues by investigating the use of CD10 as a therapeutic target for B-ALL with our switchable UniCAR system. The UniCAR platform is a modular platform that depends on the presence of two elements to function. These include UniCAR T-cells and the target modules (TMs), which cross-link the T-cells to their respective targets on tumor cells. The TMs function as keys that control the switchability of UniCAR T-cells. Here, we demonstrate that UniCAR T-cells, armed with anti-CD10 TM, can efficiently kill B-ALL cell lines, as well as patient-derived B-ALL blasts, thereby highlighting the exciting possibility for using CD10 as an emerging therapeutic target for B-cell malignancies.

Zobrazit více v PubMed

Liu Y., Chen X., Han W., Zhang Y. Tisagenlecleucel, an Approved Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy for the Treatment of Leukemia. Drugs Today. 2017;53:597–608. doi: 10.1358/dot.2017.53.11.2725754. PubMed DOI

Elsallab M., Levine B.L., Wayne A.S., Abou-El-Enein M. CAR T-Cell Product Performance in Haematological Malignancies before and after Marketing Authorisation. Lancet Oncol. 2020;21:e104–e116. doi: 10.1016/S1470-2045(19)30729-6. PubMed DOI PMC

Sengsayadeth S., Savani B.N., Oluwole O., Dholaria B. Overview of Approved CAR-T Therapies, Ongoing Clinical Trials, and Its Impact on Clinical Practice. eJHaem. 2022;3:6–10. doi: 10.1002/jha2.338. PubMed DOI PMC

Mejstríková E., Hrusak O., Borowitz M.J., Whitlock J.A., Brethon B., Trippett T.M., Zugmaier G., Gore L., Von Stackelberg A., Locatelli F. CD19-Negative Relapse of Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia Following Blinatumomab Treatment. Blood Cancer J. 2017;7:659. doi: 10.1038/s41408-017-0023-x. PubMed DOI PMC

Fousek K., Watanabe J., Joseph S.K., George A., An X., Byrd T.T., Morris J.S., Luong A., Martínez-Paniagua M.A., Sanber K., et al. CAR T-Cells That Target Acute B-Lineage Leukemia Irrespective of CD19 Expression. Leukemia. 2020;35:75–89. doi: 10.1038/s41375-020-0792-2. PubMed DOI PMC

Ghodke K., Bibi A., Rabade N., Patkar N., Subramanian P.G., Kadam P.A., Badrinath Y., Ghogale S., Gujral S., Tembhare P. CD19 Negative Precursor B Acute Lymphoblastic Leukemia (B-ALL)—Immunophenotypic Challenges in Diagnosis and Monitoring: A Study of Three Cases. Cytom. Part B Clin. Cytom. 2017;92:315–318. doi: 10.1002/cyto.b.21373. PubMed DOI

Rivera A.M., May S., Lei M., Qualls S., Bushey K., Rubin D.B., Barra M.E. CAR T-Cell-Associated Neurotoxicity: Current Management and Emerging Treatment Strategies. Crit. Care Nurs. Q. 2020;43:191–204. doi: 10.1097/CNQ.0000000000000302. PubMed DOI

Zheng P.P., Kros J.M., Li J. Approved CAR T Cell Therapies: Ice Bucket Challenges on Glaring Safety Risks and Long-Term Impacts. Drug Discov. Today. 2018;23:1175–1182. doi: 10.1016/j.drudis.2018.02.012. PubMed DOI

Cai C., Tang D., Han Y., Shen E., Ahmed O.A., Guo C., Shen H., Zeng S. A Comprehensive Analysis of the Fatal Toxic Effects Associated with CD19 CAR-T Cell Therapy. Aging. 2020;12:18741. doi: 10.18632/aging.104058. PubMed DOI PMC

Maguer-Satta V., Besançon R., Bachelard-Cascales E. Concise Review: Neutral Endopeptidase (CD10): A Multifaceted Environment Actor in Stem Cells, Physiological Mechanisms, and Cancer. Stem Cells. 2011;29:389–396. doi: 10.1002/stem.592. PubMed DOI

Nalivaeva N.N., Zhuravin I.A., Turner A.J. Neprilysin Expression and Functions in Development, Ageing and Disease. Mech. Ageing Dev. 2020;192:111363. doi: 10.1016/j.mad.2020.111363. PubMed DOI PMC

Blom B., Spits H. Development of human lymphoid cells. Annu. Rev. Immunol. 2006;24:287–320. doi: 10.1146/annurev.immunol.24.021605.090612. PubMed DOI

Wentink M.W.J., Kalina T., Perez-Andres M., del Pino Molina L., IJspeert H., Kavelaars F.G., Lankester A.C., Lecrevisse Q., van Dongen J.J.M., Orfao A., et al. Delineating Human B Cell Precursor Development with Genetically Identified PID Cases as a Model. Front. Immunol. 2019;10:2680. doi: 10.3389/fimmu.2019.02680. PubMed DOI PMC

Mishra D., Singh S., Narayan G. Role of B Cell Development Marker CD10 in Cancer Progression and Prognosis. Mol. Biol. Int. 2016;2016:4328697. doi: 10.1155/2016/4328697. PubMed DOI PMC

Sȩdek L., Bulsa J., Sonsala A., Twardoch M., Wieczorek M., Malinowska I., Derwich K., Niedźwiecki M., Sobol-Milejska G., Kowalczyk J.R., et al. The Immunophenotypes of Blast Cells in B-Cell Precursor Acute Lymphoblastic Leukemia: How Different Are They from Their Normal Counterparts? Cytom. Part B Clin. Cytom. 2014;86:329–339. doi: 10.1002/cytob.21176. PubMed DOI

Ritz J., Pesando J.M., Notis-McConarty J., Lazarus H., Schlossman S.F. A Monoclonal Antibody to Human Acute Lymphoblastic Leukaemia Antigen. Nature. 1980;283:583–585. doi: 10.1038/283583a0. PubMed DOI

Uherova P., Ross C.W., Schnitzer B., Singleton T.P., Finn W.G. The Clinical Significance of CD10 Antigen Expression in Diffuse Large B-Cell Lymphoma. Am. J. Clin. Pathol. 2001;115:582–588. doi: 10.1309/84GE-U85A-FMU0-7AUV. PubMed DOI

Almasri N.M., Iturraspe J.A., Braylan R.C. CD10 Expression in Follicular Lymphoma and Large Cell Lymphoma Is Different from That of Reactive Lymph Node Follicles. Arch. Pathol. Lab. Med. 1998;122:539–544. PubMed

Craig F.E., Foon K.A. Flow Cytometric Immunophenotyping for Hematologic Neoplasms. Blood. 2008;111:3941–3967. doi: 10.1182/blood-2007-11-120535. PubMed DOI

Szumera-Ciećkiewicz A., Rymkiewicz G., Sokół K., Paszkiewicz-Kozik E., Borysiuk A., Poleszczuk J., Bachnio K., Bystydzienski Z., Woroniecka R., Grygalewicz B., et al. Significance of CD10 Protein Expression in the Diagnostics of Follicular Lymphoma: A Comparison of Conventional Immunohistochemistry with Flow Cytometry Supported by the Establishment of BCL2 and BCL6 Rearrangements. Int. J. Lab. Hematol. 2020;42:453–463. doi: 10.1111/ijlh.13222. PubMed DOI

Abdulbaki R., Tizro P., Nava V.E., da Silva M.G., Ascensão J.L. Low-Grade Primary Splenic CD10-Positive Small B-Cell Lymphoma/Follicular Lymphoma. Curr. Oncol. 2021;28:4821–4831. doi: 10.3390/curroncol28060407. PubMed DOI PMC

Wang H.Y., Zu Y. Diagnostic Algorithm of Common Mature B-Cell Lymphomas by Immunohistochemistry. Arch. Pathol. Lab. Med. 2017;141:1236–1246. doi: 10.5858/arpa.2016-0521-RA. PubMed DOI

Ziemba Y., Brody J., Hsu P., Reddy K. Potential Prognostic Significance of Aberrant CD10 Positivity in Mantle Cell Lymphoma. Am. J. Clin. Pathol. 2018;150((Suppl. 1)):S109–S110. doi: 10.1093/ajcp/aqy097.265. DOI

Chung J., Shevchenko A., Lee J.B. Evolution of a Melanoma in Situ to a Sarcomatoid Dedifferentiated Melanoma. J. Cutan. Pathol. 2021;48:943–947. doi: 10.1111/cup.14003. PubMed DOI

Fukusumi T., Ishii H., Konno M., Yasui T., Nakahara S., Takenaka Y., Yamamoto Y., Nishikawa S., Kano Y., Ogawa H., et al. CD10 as a Novel Marker of Therapeutic Resistance and Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma. Br. J. Cancer. 2014;111:506–514. doi: 10.1038/bjc.2014.289. PubMed DOI PMC

Dall’Era M.A., True L.D., Siegel A.F., Porter M.P., Sherertz T.M., Liu A.Y. Differential Expression of CD10 in Prostate Cancer and Its Clinical Implication. BMC Urol. 2007;7:3. doi: 10.1186/1471-2490-7-3. PubMed DOI PMC

Kanitakis J., Narvaez D., Claudy A. Differential Expression of the CD10 Antigen (Neutral Endopeptidase) in Primary versus Metastatic Malignant Melanomas of the Skin. Melanoma Res. 2002;12:241–244. doi: 10.1097/00008390-200206000-00007. PubMed DOI

Jang T.J., Park J.B., Lee J.I. The Expression of CD10 and CD15 Is Progressively Increased during Colorectal Cancer Development. Korean J. Pathol. 2013;47:340–347. doi: 10.4132/KoreanJPathol.2013.47.4.340. PubMed DOI PMC

Żurawski J., Talarska P., de Mezer M., Kaszkowiak K., Chalcarz M., Iwanik K., Karoń J., Krokowicz P. Evaluation of CD10 Expression as a Diagnostic Marker for Colorectal Cancer. Gastroenterol. Hepatol. Bed Bench. 2022;15:1–8. doi: 10.22037/GHFBB.VI.2296. PubMed DOI PMC

Louhichi T., Saad H., Dhiab M.B., Ziadi S., Trimeche M. Stromal CD10 Expression in Breast Cancer Correlates with Tumor Invasion and Cancer Stem Cell Phenotype. BMC Cancer. 2018;18:49. doi: 10.1186/s12885-017-3951-8. PubMed DOI PMC

Kumagai-Togashi A., Uozaki H., Kikuchi Y., Watabe S., Numakura S., Watanabe M. Tumorous CD10 Is More Strongly Related to the Progression of Urothelial Carcinoma than Stromal CD10. Anticancer Res. 2019;39:635–640. doi: 10.21873/anticanres.13157. PubMed DOI

Gülhan Ö., Mahi B. The Role of AMACR, CD10, TMPRSS2-ERG, and P27 Protein Expression Among Different Gleason Grades of Prostatic Adenocarcinoma on Needle Biopsy. Clin. Med. Insights Oncol. 2020;14:1179554920947322. doi: 10.1177/1179554920947322. PubMed DOI PMC

Gabal S.M., Salem M.M., Mostafa R.R., Abdelsalam S.M. Role of CD10 Marker in Differentiating Malignant Thyroid Neoplasms from Benign Thyroid Lesions (Immunohistochemical & Histopathological Study) Open Access Maced. J. Med. Sci. 2018;6:2295. doi: 10.3889/OAMJMS.2018.456. PubMed DOI PMC

Makretsov N.A., Hayes M., Carter B.A., Dabiri S., Gilks C.B., Huntsman D.G. Stromal CD10 Expression in Invasive Breast Carcinoma Correlates with Poor Prognosis, Estrogen Receptor Negativity, and High Grade. Mod. Pathol. 2007;20:84–89. doi: 10.1038/modpathol.3800713. PubMed DOI

Huang W.-B., Zhou X.-J., Chen J.-Y., Zhang L.-H., Meng K., Ma H.-H., Lu Z.-F. CD10-Positive Stromal Cells in Gastric Carcinoma: Correlation with Invasion and Metastasis. Jpn. J. Clin. Oncol. 2005;35:245–250. doi: 10.1093/jjco/hyi076. PubMed DOI

Su S., Chen J., Yao H., Liu J., Yu S., Lao L., Wang M., Luo M., Xing Y., Chen F., et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841–856.e16. doi: 10.1016/j.cell.2018.01.009. PubMed DOI

Oh E.J., Bychkov A., Cho H., Kim T.M., Bae J.S., Lim D.J., Jung C.K. Prognostic Implications of CD10 and CD15 Expression in Papillary Thyroid Carcinoma. Cancers. 2020;12:1413. doi: 10.3390/cancers12061413. PubMed DOI PMC

Mizutani N., Abe M., Kajino K., Matsuoka S. A New CD10 Antibody Inhibits the Growth of Malignant Mesothelioma. Monoclon. Antibodies Immunodiagn. Immunother. 2021;40:21–27. doi: 10.1089/mab.2020.0033. PubMed DOI PMC

Ruiz-Arguelles G.J., Ruiz-Arguelles A., Lobato-Mendizabal E., Presno-Bernal M., Alvarez-Amaya C. Infusion of Anti-CD10 Monoclonal Antibody (J5) Following Ablative Chemotherapy in a Patient with Refractory Pre-B Acute Lymphoblastic Leukemia. Rev. Investig. Clin. 1991;43:259–263. PubMed

Bachmann M. The UniCAR System: A Modular CAR T Cell Approach to Improve the Safety of CAR T Cells. Immunol. Lett. 2019;211:13–22. doi: 10.1016/j.imlet.2019.05.003. PubMed DOI

Feldmann A., Arndt C., Koristka S., Berndt N., Bergmann R., Bachmann M.P. Conventional CARs versus Modular CARs. Cancer Immunol. Immunother. 2019;68:1713–1719. doi: 10.1007/s00262-019-02399-5. PubMed DOI PMC

Koristka S., Cartellieri M., Feldmann A., Arndt C., Loff S., Michalk I., Aliperta R., von Bonin M., Bornhäuser M., Ehninger A., et al. Flexible Antigen-Specific Redirection of Human Regulatory T Cells Via a Novel Universal Chimeric Antigen Receptor System. Blood. 2014;124:3494. doi: 10.1182/blood.V124.21.3494.3494. DOI

Carmo-Fonseca M., Pfeifer K., Schröder H.C., Vaz M.F., Fonseca J.E., Müller W.E.G., Bachmann M. Identification of La Ribonucleoproteins as a Component of Interchromatin Granules. Exp. Cell Res. 1989;185:73–85. doi: 10.1016/0014-4827(89)90038-4. PubMed DOI

Bachmann D., Aliperta R., Bergmann R., Feldmann A., Koristka S., Arndt C., Loff S., Welzel P., Albert S., Kegler A., et al. Retargeting of UniCAR T Cells with an In Vivo Synthesized Target Module Directed against CD19 Positive Tumor Cells. Oncotarget. 2018;9:7487–7500. doi: 10.18632/oncotarget.23556. PubMed DOI PMC

Wermke M., Kraus S., Ehninger A., Bargou R.C., Goebeler M.E., Middeke J.M., Kreissig C., von Bonin M., Koedam J., Pehl M., et al. Proof of Concept for a Rapidly Switchable Universal CAR-T Platform with UniCAR-T-CD123 in Relapsed/Refractory AML. Blood. 2021;137:3145. doi: 10.1182/blood.2020009759. PubMed DOI PMC

Feldmann A., Arndt C., Bergmann R., Loff S., Cartellieri M., Bachmann D., Aliperta R., Hetzenecker M., Ludwig F., Albert S., et al. Retargeting of T Lymphocytes to PSCA- or PSMA Positive Prostate Cancer Cells Using the Novel Modular Chimeric Antigen Receptor Platform Technology “UniCAR”. Oncotarget. 2017;8:31368–31385. doi: 10.18632/oncotarget.15572. PubMed DOI PMC

Mitwasi N., Feldmann A., Bergmann R., Berndt N., Arndt C., Koristka S., Kegler A., Jureczek J., Hoffmann A., Ehninger A., et al. Development of Novel Target Modules for Retargeting of UniCAR T Cells to GD2 Positive Tumor Cells. Oncotarget. 2017;8:108584–108603. doi: 10.18632/oncotarget.21017. PubMed DOI PMC

Albert S., Arndt C., Feldmann A., Bergmann R., Bachmann D., Koristka S., Ludwig F., Ziller-Walter P., Kegler A., Gärtner S., et al. A Novel Nanobody-Based Target Module for Retargeting of T Lymphocytes to EGFR-Expressing Cancer Cells via the Modular UniCAR Platform. Oncoimmunology. 2017;6:e1287246. doi: 10.1080/2162402X.2017.1287246. PubMed DOI PMC

Cartellieri M., Feldmann A., Koristka S., Arndt C., Loff S., Ehninger A., von Bonin M., Bejestani E.P., Ehninger G., Bachmann M.P. Switching CAR T Cells on and off: A Novel Modular Platform for Retargeting of T Cells to AML Blasts. Blood Cancer J. 2016;6:e458. doi: 10.1038/bcj.2016.61. PubMed DOI PMC

Feldmann A., Arndt C., Töpfer K., Stamova S., Krone F., Cartellieri M., Koristka S., Michalk I., Lindemann D., Schmitz M., et al. Novel Humanized and Highly Efficient Bispecific Antibodies Mediate Killing of Prostate Stem Cell Antigen-Expressing Tumor Cells by CD8+ and CD4+ T Cells. J. Immunol. 2012;189:3249–3259. doi: 10.4049/jimmunol.1200341. PubMed DOI

Cartellieri M., Koristka S., Arndt C., Feldmann A., Stamova S., Von Bonin M., Töpfer K., Krüger T., Geib M., Michalk I., et al. A Novel Ex Vivo Isolation and Expansion Procedure for Chimeric Antigen Receptor Engrafted Human T Cells. PLoS ONE. 2014;9:e93745. doi: 10.1371/journal.pone.0093745. PubMed DOI PMC

Arndt C., Loureiro L.R., Feldmann A., Jureczek J., Bergmann R., Máthé D., Hegedüs N., Berndt N., Koristka S., Mitwasi N., et al. UniCAR T Cell Immunotherapy Enables Efficient Elimination of Radioresistant Cancer Cells. Oncoimmunology. 2020;9:1743036. doi: 10.1080/2162402X.2020.1743036. PubMed DOI PMC

D’Aloia M.M., Zizzari I.G., Sacchetti B., Pierelli L., Alimandi M. CAR-T Cells: The Long and Winding Road to Solid Tumors Review-Article. Cell Death Dis. 2018;9:282. doi: 10.1038/s41419-018-0278-6. PubMed DOI PMC

Hou A.J., Chen L.C., Chen Y.Y. Navigating CAR-T Cells through the Solid-Tumour Microenvironment. Nat. Rev. Drug Discov. 2021;20:531–550. doi: 10.1038/s41573-021-00189-2. PubMed DOI

Marofi F., Motavalli R., Safonov V.A., Thangavelu L., Yumashev A.V., Alexander M., Shomali N., Chartrand M.S., Pathak Y., Jarahian M., et al. CAR T Cells in Solid Tumors: Challenges and Opportunities. Stem Cell Res. Ther. 2021;12:81. doi: 10.1186/s13287-020-02128-1. PubMed DOI PMC

Zhang J., Li J., Ma Q., Yang H., Signorovitch J., Wu E. A Review of Two Regulatory Approved Anti-CD19 CAR T-Cell Therapies in Diffuse Large B-Cell Lymphoma: Why Are Indirect Treatment Comparisons Not Feasible? Adv. Ther. 2020;37:3040–3058. doi: 10.1007/s12325-020-01397-9. PubMed DOI PMC

Maus M.V. CD19 CAR T Cells for Adults wit h Relapsed or Refractory Acute Lymphoblastic Leukaemia. Lancet. 2021;398:466–467. doi: 10.1016/S0140-6736(21)01289-7. PubMed DOI

Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J. Toxicity and Management in CAR T-Cell Therapy. Mol. Ther.-Oncolytics. 2016;3:16011. doi: 10.1038/mto.2016.11. PubMed DOI PMC

Song M.K., Park B.B., Uhm J.E. Resistance Mechanisms to CAR T-Cell Therapy and Overcoming Strategy in B-Cell Hematologic Malignancies. Int. J. Mol. Sci. 2019;20:5010. doi: 10.3390/ijms20205010. PubMed DOI PMC

Xu X., Sun Q., Liang X., Chen Z., Zhang X., Zhou X., Li M., Tu H., Liu Y., Tu S., et al. Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies. Front. Immunol. 2019;10:2664. doi: 10.3389/fimmu.2019.02664. PubMed DOI PMC

Liang A., Ye S., Li P., Huang J., Zhu S., Yao X., Zhou L., Xu Y., Zhu J., Zheng C., et al. Safety and Efficacy of a Novel Anti-CD20 Chimeric Antigen Receptor (CAR)-T Cell Therapy in Relapsed/Refractory (r/r) B-Cell Non-Hodgkin Lymphoma (B-NHL) Patients after Failing CD19 CAR-T Therapy. J. Clin. Oncol. 2021;39:2508. doi: 10.1200/JCO.2021.39.15_suppl.2508. DOI

Spiegel J.Y., Patel S., Muffly L., Hossain N.M., Oak J., Baird J.H., Frank M.J., Shiraz P., Sahaf B., Craig J., et al. CAR T Cells with Dual Targeting of CD19 and CD22 in Adult Patients with Recurrent or Refractory B Cell Malignancies: A Phase 1 Trial. Nat. Med. 2021;27:1419–1431. doi: 10.1038/s41591-021-01436-0. PubMed DOI PMC

Zhou H., Luo Y., Zhu S., Wang X., Zhao Y., Ou X., Zhang T., Ma X. The Efficacy and Safety of Anti-CD19/CD20 Chimeric Antigen Receptor- T Cells Immunotherapy in Relapsed or Refractory B-Cell Malignancies: A Meta-Analysis. BMC Cancer. 2018;18:929. doi: 10.1186/s12885-018-4817-4. PubMed DOI PMC

Fry T.J., Shah N.N., Orentas R.J., Stetler-Stevenson M., Yuan C.M., Ramakrishna S., Wolters P., Martin S., Delbrook C., Yates B., et al. CD22-Targeted CAR T Cells Induce Remission in B-ALL That Is Naive or Resistant to CD19-Targeted CAR Immunotherapy. Nat. Med. 2018;24:20–28. doi: 10.1038/nm.4441. PubMed DOI PMC

Jana S.H., Jha B.M., Patel C., Jana D., Agarwal A. CD10-A New Prognostic Stromal Marker in Breast Carcinoma, Its Utility, Limitations and Role in Breast Cancer Pathogenesis. Indian J. Pathol. Microbiol. 2014;57:530–536. doi: 10.4103/0377-4929.142639. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...