UniCAR T cell immunotherapy enables efficient elimination of radioresistant cancer cells
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32426176
PubMed Central
PMC7219270
DOI
10.1080/2162402x.2020.1743036
PII: 1743036
Knihovny.cz E-zdroje
- Klíčová slova
- CD98, EGFR, T cell immunotherapy, adaptor CAR, radioresistance,
- MeSH
- chimerické antigenní receptory MeSH
- imunoterapie adoptivní * MeSH
- lidé MeSH
- lokální recidiva nádoru MeSH
- myši MeSH
- nádory * radioterapie terapie MeSH
- T-lymfocyty MeSH
- tolerance záření MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chimerické antigenní receptory MeSH
Induction or selection of radioresistant cancer (stem) cells following standard radiotherapy is presumably one of the major causes for recurrence of metastatic disease. One possibility to prevent tumor relapse is the application of targeted immunotherapies including, e.g., chimeric antigen receptor (CAR) T cells. In light of long-term remissions, it is highly relevant to clarify whether radioresistant cancer cells are susceptible to CAR T cell-mediated killing. To answer this question, we evaluated the anti-tumor activity of the switchable universal chimeric antigen receptor (UniCAR) system against highly radioresistant head and neck squamous cell carcinoma cells both in vitro and in vivo. Following specific UniCAR T cell engagement via EGFR or CD98 target modules, T cell effector mechanisms were induced including secretion of pro-inflammatory cytokines, up-regulation of granzyme B and perforin, as well as T cell proliferation. CD98- or EGFR-redirected UniCAR T cells further possess the capability to efficiently lyse radioresistant tumor cells. Observed anti-tumor effects were comparable to those against the radiosensitive parental cell lines. Finally, redirected UniCAR T cells significantly inhibited the growth of radioresistant cancer cells in immunodeficient mice. Taken together, our obtained data underline that the UniCAR system is able to overcome radioresistance. Thus, it represents an attractive technology for the development of combined radioimmunotherapeutic approaches that might improve the outcome of patients with metastatic radioresistant tumor diseases.
CROmed Translational Research Centers Budapest Hungary
German Cancer Consortium Heidelberg Germany
Helmholtz Zentrum Dresden Rossendorf Institute of Radiooncology OncoRay Dresden Germany
Institute of Immunology Faculty of Medicine Carl Gustav Carus TU Dresden Dresden Germany
Medical Clinic and Polyclinic 1 University Hospital Carl Gustav Carus TU Dresden Dresden Germany
National Center for Tumor Diseases Dresden Germany
Semmelweis University Department of Biophysics and Radiation Biology Budapest Hungary
Zobrazit více v PubMed
Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T.. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016. April;16(4):234–12. Epub 2016 Mar 18. doi:10.1038/nrc.2016.18. PubMed DOI
Schulz A, Meyer F, Dubrovska A, Borgmann K. Cancer stem cells and radioresistance: DNA repair and beyond. Cancers (Basel). 2019. June 21;11(6):E862. doi:10.3390/cancers11060862. PubMed DOI PMC
Maier P, Hartmann L, Wenz F, Herskind C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci. 2016. January 14;17(1):E102. doi:10.3390/ijms17010102. PubMed DOI PMC
Kurth I, Hein L, Mäbert K, Peitzsch C, Koi L, Cojoc M, Kunz-Schughart L, Baumann M, Dubrovska A. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015. October 27;6(33):34494–34509. doi:10.18632/oncotarget.5417. PubMed DOI PMC
Zeman EM. 2012. Biologic basis of radiation oncology, in clinical radiation oncology. 3ed.UK: Saunders Elsevier.
June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018. July 5;379(1):64–73. doi:10.1056/NEJMra1706169. PubMed DOI PMC
Bouchkouj N, Kasamon YL, de Claro RA, George B, Lin X, Lee S, Blumenthal GM, Bryan W, McKee AE, Pazdur R. FDA approval summary: axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Clin Cancer Res. 2019. March 15;25(6):1702–1708. Epub 2018 Nov 9. doi:10.1158/1078-0432.CCR-18-2743. PubMed DOI
Freyer CW. Tisagenlecleucel: the first CAR on the highway to remission for acute lymphoblastic leukemia. J Adv Pract Oncol. 2018. Jul-Aug;9(5):537–544. Epub 2018 Jul 1. PubMed PMC
Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev. 2016. May;30(3):157–167. Epub 2015 Nov 6. doi:10.1016/j.blre.2015.10.003. PubMed DOI
Cartellieri M, Bachmann M, Feldmann A, Bippes C, Stamova S, Wehner R, Temme A, Schmitz M. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol. 2010;2010:956304. Epub 2010 May 5. doi:10.1155/2010/956304. PubMed DOI PMC
Zheng PP, Kros JM, Li J. Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discov Today. 2018. June;23(6):1175–1182. Epub 2018 Mar 1. doi:10.1016/j.drudis.2018.02.012. PubMed DOI
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, Komanduri KV, Lin Y, Jain N, Daver N, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018. January;15(1):47–62. Epub 2017 Sep 19. doi:10.1038/nrclinonc.2017.148. PubMed DOI PMC
Urbanska K, Lanitis E, Poussin M, Lynn RC, Gavin BP, Kelderman S, Yu J, Scholler N, Powell DJ Jr.. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 2012. April 1;72(7):1844–1852. Epub 2012 Feb 7. doi:10.1158/0008-5472.CAN-11-3890. PubMed DOI PMC
Kim MS, Ma JS, Yun H, Cao Y, Kim JY, Chi V, Wang D, Woods A, Sherwood L, Caballero D, et al. Redirection of genetically engineered CAR-T cells using bifunctional small molecules. J Am Chem Soc. 2015. March 4;137(8):2832–2835. Epub 2015 Feb 24. doi:10.1021/jacs.5b00106. PubMed DOI
Rodgers DT, Mazagova M, Hampton EN, Cao Y, Ramadoss NS, Hardy IR, Schulman A, Du J, Wang F, Singer O, et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci U S A. 2016. January 26;113(4):E459–68. Epub 2016 Jan 12. doi:10.1073/pnas.1524155113. PubMed DOI PMC
Bachmann M. The UniCAR system: A modular CAR T cell approach to improve the safety of CAR T cells. Immunology Letters. 2019. May;211:13–22. doi:10.1016/j.imlet.2019.05.003. PubMed DOI
Arndt C, Bachmann M, Bergmann R, Berndt N, Feldmann A, Koristka S. Theranostic CAR T cell targeting: A brief review. J Labelled Comp Radiopharm. 2019. June 30;62(8):533–540. Epub 2019 Jun 6. doi:10.1002/jlcr.3727. PubMed DOI
Feldmann A, Arndt C, Koristka S, Berndt N, Bergmann R, Bachmann M. Conventional CARs versus modular CARs. Cancer Immunol Immunother. 2019. October;68(10):1713–1719. Epub 2019 Sep 21. Review. PMID: 31542798. doi:10.1007/s00262-019-02399-5. PubMed DOI PMC
Koristka S, Cartellieri M, Feldmann A, Arndt C, Loff S, Michalk I, Aliperta R, von Bonin M, Bornhäuser M, Ehninger A, et al. Flexible antigen-specific redirection of human regulatory T cells via a novel universal chimeric antigen receptor system. Blood. 2014;124(21):3494. doi:10.1182/blood.V124.21.3494.3494. DOI
Cartellieri M, Loff S, von Bonin M, Bejestani EP, Ehninger A, Feldmann A, Koristka S, Arndt C, Ehninger G, Bachmann M. Unicar: A novel modular retargeting platform technology for CAR T cells. Blood. 2015;126(23):5549. doi:10.1182/blood.V126.23.5549.5549. PubMed DOI PMC
Arndt C, Feldmann A, Koristka S, Schäfer M, Bergmann R, Mitwasi N, Berndt N, Bachmann D, Kegler A, Schmitz M, et al. A theranostic PSMA ligand for PET imaging and retargeting of T cells expressing the universal chimeric antigen receptor UniCAR. Oncoimmunology. 2019. September 7;8(11):1659095. eCollection 2019. PMID: 31646084. doi:10.1080/2162402X.2019.1659095. PubMed DOI PMC
Albert S, Arndt C, Feldmann A, Bergmann R, Bachmann D, Koristka S, Ludwig F, Ziller-Walter P, Kegler A, Gärtner S, et al. A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. Oncoimmunology. 2017. February 6;6(4):e1287246. eCollection 2017. doi:10.1080/2162402X.2017.1287246. PubMed DOI PMC
Albert S, Arndt C, Koristka S, Berndt N, Bergmann R, Feldmann A, Schmitz M, Pietzsch J, Steinbach J, Bachmann M. From mono- to bivalent: improving theranostic properties of target modules for redirection of UniCAR T cells against EGFR-expressing tumor cells in vitro and in vivo. Oncotarget. 2018. May 22;9(39):25597–25616. eCollection 2018 May 22. doi:10.18632/oncotarget.25390. PubMed DOI PMC
Cartellieri M, Feldmann A, Koristka S, Arndt C, Loff S, Ehninger A, von Bonin M, Bejestani EP, Ehninger G, Bachmann MP. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J. 2016. August 12;6(8):e458. doi:10.1038/bcj.2016.61. PubMed DOI PMC
Bachmann D, Aliperta R, Bergmann R, Feldmann A, Koristka S, Arndt C, Loff S, Welzel P, Albert S, Kegler A, et al. Retargeting of UniCAR T cells with an in vivo synthesized target module directed against CD19 positive tumor cells. Oncotarget. 2017. December 21;9(7):7487–7500. eCollection 2018 Jan 26. doi:10.18632/oncotarget.23556. PubMed DOI PMC
Loureiro LR, Feldmann A, Bergmann R, Koristka S, Berndt N, Arndt C, Pietzsch J, Novo C, Videira P, Bachmann M. Development of a novel target module redirecting UniCAR T cells to Sialyl Tn-expressing tumor cells. Blood Cancer J. 2018. August 22;8(9):81. doi:10.1038/s41408-018-0113-4. PubMed DOI PMC
Jureczek J, Bergmann R, Berndt N, Koristka S, Kegler A, Puentes-Cala E, Soto JA, Arndt C, Bachmann M, Feldmann A. An oligo-His-tag of a targeting module does not influence its biodistribution and the retargeting capabilities of UniCAR T cells. Sci Rep. 2019. July 22;9(1):10547. doi:10.1038/s41598-019-47044-4. PubMed DOI PMC
Koristka S, Cartellieri M, Arndt C, Bippes CC, Feldmann A, Michalk I, Wiefel K, Stamova S, Schmitz M, Ehninger G, et al. Retargeting of regulatory T cells to surface-inducible autoantigen La/SS-B. J Autoimmun. 2013. May;42:105–116. Epub 2013 Jan 22. doi:10.1016/j.jaut.2013.01.002. PubMed DOI
Roskoski R Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014. January;79:34–74. Epub 2013 Nov 20. doi:10.1016/j.phrs.2013.11.002.. PubMed DOI
Cantor JM, Ginsberg MH. CD98 at the crossroads of adaptive immunity and cancer. J Cell Sci. 2012. March 15;125(Pt 6):1373–1382. Epub 2012 Apr 12. doi:10.1242/jcs.096040. PubMed DOI PMC
Napolitano L, Scalise M, Galluccio M, Pochini L, Albanese LM, Indiveri C. LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int J Biochem Cell Biol. 2015. October;67:25–33. Epub 2015 Aug 6. doi:10.1016/j.biocel.2015.08.004. PubMed DOI
Rosell A, Meury M, Álvarez-Marimon E, Costa M, Pérez-Cano L, Zorzano A, Fernández-Recio J, Palacín M, Fotiadis D. Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc Natl Acad Sci U S A. 2014. February 25;111(8):2966–2971. Epub 2014 Feb 10. doi:10.1073/pnas.1323779111. PubMed DOI PMC
Digomann D, Kurth I, Tyutyunnykova A, Chen O, Löck S, Gorodetska I, Peitzsch C, Skvortsova II, Negro G, Aschenbrenner B, et al. The CD98 heavy chain is a marker and regulator of head and neck squamous cell carcinoma radiosensitivity. Clin Cancer Res. 2019. May 15;25(10):3152–3163. Epub 2019 Jan 22. doi:10.1158/1078-0432.CCR-18-2951. PubMed DOI
Rubin Grandis J, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, Drenning SD, Tweardy DJ. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998;90(11):824–832. doi:10.1093/jnci/90.11.824. PubMed DOI
Ang KK, Andratschke NH, Milas L. Epidermal growth factor receptor and response of head-and-neck carcinoma to therapy. Int J Radiat Oncol Biol Phys. 2004;58(3):959–965. doi:10.1016/j.ijrobp.2003.07.010. PubMed DOI
Eriksen JG, Steiniche T, Askaa J, Alsner J, Overgaard J. The prognostic value of epidermal growth factor receptor is related to tumor differentiation and the overall treatment time of radiotherapy in squamous cell carcinomas of the head and neck. Int J Radiat Oncol Biol Phys. 2004;58(2):561–566. doi:10.1016/j.ijrobp.2003.09.043. PubMed DOI
Ang KK, Berkey BA, Tu X, Zhang H-Z, Katz R, Hammond EH, Fu KK, Milas L. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002;62:7350–7356. PubMed
Martens-de Kemp SR, Brink A, Stigter-van Walsum M, Damen JM, Rustenburg F, Wu T, van Wieringen WN, Schuurhuis GJ, Braakhuis BJ, Slijper M, et al. CD98 marks a subpopulation of head and neck squamous cell carcinoma cells with stem cell properties. Stem Cell Res. 2013. May;10(3):477–488. Epub 2013 Feb 18. doi:10.1016/j.scr.2013.02.004. PubMed DOI
Liang K, Ang KK, Milas L, Hunter N, Fan Z. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys. 2003;57(1):246–254. doi:10.1016/S0360-3016(03)00511-X. PubMed DOI
Bonner JA, Maihle NJ, Folven BR, Christianson TJ, Spain K. The interaction of epidermal growth factor and radiation in human head and neck squamous cell carcinoma cell lines with vastly different radiosensitivities. Int J Radiat Oncol Biol Phys. 1994;29(2):243–247. doi:10.1016/0360-3016(94)90269-0. PubMed DOI
Feldmann A, Stamova S, Bippes CC, Bartsch H, Wehner R, Schmitz M, Temme A, Cartellieri M, Bachmann M. Retargeting of T cells to prostate stem cell antigen expressing tumor cells: comparison of different antibody formats. Prostate. 2011. June 15;71(9):998–1011. Epub 2010 Dec 28. doi:10.1002/pros.21315. PubMed DOI
Feldmann A, Arndt C, Töpfer K, Stamova S, Krone F, Cartellieri M, Koristka S, Michalk I, Lindemann D, Schmitz M, et al. Novel humanized and highly efficient bispecific antibodies mediate killing of prostate stem cell antigen-expressing tumor cells by CD8+ and CD4+ T cells. J Immunol. 2012. September 15;189(6):3249–3259. Epub 2012 Aug 8. doi:10.4049/jimmunol.1200341. PubMed DOI
Stamova S, Cartellieri M, Feldmann A, Arndt C, Koristka S, Bartsch H, Bippes CC, Wehner R, Schmitz M, von Bonin M, et al. Unexpected recombinations in single chain bispecific anti-CD3-anti-CD33 antibodies can be avoided by a novel linker module. Mol Immunol. 2011. December;49(3):474–482. Epub 2011 Oct 19. doi:10.1016/j.molimm.2011.09.019. PubMed DOI
Arndt C, Koristka S, Feldmann A, Bergmann R, Bachmann M. Coomassie brilliant blue staining of polyacrylamide gels. Methods Mol Biol. 2018;1853:27–30. doi:10.1007/978-1-4939-8745-0_4. PubMed DOI
Arndt C, Feldmann A, Töpfer K, Koristka S, Cartellieri M, Temme A, Ehninger A, Ehninger G, Bachmann M. Redirection of CD4+ and CD8+ T lymphocytes via a novel antibody-based modular targeting system triggers efficient killing of PSCA+ prostate tumor cells. Prostate. 2014. September;74(13):1347–1358. Epub 2014 Jul 22. doi:10.1002/pros.22851. PubMed DOI
Cartellieri M, Koristka S, Arndt C, Feldmann A, Stamova S, von Bonin M, Töpfer K, Krüger T, Geib M, Michalk I, et al. A novel ex vivo isolation and expansion procedure for chimeric antigen receptor engrafted human T cells. PLoS One. 2014. April 3;9(4):e93745. eCollection 2014. doi:10.1371/journal.pone.0093745. PubMed DOI PMC
Feldmann A, Arndt C, Bergmann R, Loff S, Cartellieri M, Bachmann D, Aliperta R, Hetzenecker M, Ludwig F, Albert S, et al. Retargeting of T lymphocytes to PSCA- or PSMA positive prostate cancer cells using the novel modular chimeric antigen receptor platform technology “UniCAR”. Oncotarget. 2017. May 9;8(19):31368–31385. doi:10.18632/oncotarget.15572. PubMed DOI PMC
Mitwasi N, Feldmann A, Bergmann R, Berndt N, Arndt C, Koristka S, Kegler A, Jureczek J, Hoffmann A, Ehninger A, et al. Development of novel target modules for retargeting of UniCAR T cells to GD2 positive tumor cells. Oncotarget. 2017. September 18;8(65):108584–108603. eCollection 2017 Dec 12. doi:10.18632/oncotarget.21017. PubMed DOI PMC
Koristka S, Kegler A, Bergmann R, Arndt C, Feldmann A, Albert S, Cartellieri M, Ehninger A, Ehninger G, Middeke JM, et al. Engrafting human regulatory T cells with a flexible modular chimeric antigen receptor technology. J Autoimmun. 2018. June;90:116–131. Epub 2018 Mar 2. doi:10.1016/j.jaut.2018.02.006. PubMed DOI
Koristka S, Ziller-Walter P, Bergmann R, Arndt C, Feldmann A, Kegler A, Cartellieri M, Ehninger A, Ehninger G, Bornhäuser M, et al. Anti-CAR-engineered T cells for epitope-based elimination of autologous CAR T cells. Cancer Immunol Immunother. 2019. August 14;68(9):1401–1415. Epub ahead of print. doi:10.1007/s00262-019-02376-y. PubMed DOI PMC
Fasslrinner F, Arndt C, Koristka S, Feldmann A, Altmann H, von Bonin M, Schmitz M, Bornhäuser M, Bachmann M. Midostaurin abrogates CD33-directed UniCAR and CD33-CD3 bispecific antibody therapy in acute myeloid leukaemia. Br J Haematol. 2019. September;186(5):735–740. Epub 2019 May 23. doi:10.1111/bjh.15975. PubMed DOI
Arndt C, Feldmann A, von Bonin M, Cartellieri M, Ewen EM, Koristka S, Michalk I, Stamova S, Berndt N, Gocht A, et al. Costimulation improves the killing capability of T cells redirected to tumor cells expressing low levels of CD33: description of a novel modular targeting system. Leukemia. 2014. January;28(1):59–69. Epub 2013 Aug 20. doi:10.1038/leu.2013.243. PubMed DOI
Minn I, Rowe SP, Pomper MG. Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncol. 2019. August;20(8):e443–e451. Epub 2019 Jul 29. doi:10.1016/S1470-2045(19)30461-9. PubMed DOI
DeSelm C, Palomba ML, Yahalom J, Hamieh M, Eyquem J, Rajasekhar VK, Sadelain M. Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol Ther. 2018. November 7;26(11):2542–2552. Epub 2018 Sep 13. doi:10.1016/j.ymthe.2018.09.008. PubMed DOI PMC
Weiss T, Weller M, Guckenberger M, Sentman CL, Roth P. NKG2D-based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res. 2018. February 15;78(4):1031–1043. Epub 2017 Dec 8. doi:10.1158/0008-5472.CAN-17-1788. PubMed DOI
Lo Nigro C, Denaro N, Merlotti A, Merlano M. Head and neck cancer: improving outcomes with a multidisciplinary approach. Cancer Manag Res. 2017. August 18;9:363–371. eCollection 2017. doi:10.2147/CMAR.S115761. PubMed DOI PMC
Saloura V, Cohen EE, Licitra L, Billan S, Dinis J, Lisby S, Gauler TC. An open-label single-arm, phase II trial of zalutumumab, a human monoclonal anti-EGFR antibody, in patients with platinum-refractory squamous cell carcinoma of the head and neck. Cancer Chemother Pharmacol. 2014. June;73(6):1227–1239. Epub 2014 Apr 9. doi:10.1007/s00280-014-2459-z. PubMed DOI
Ling DC, Bakkenist CJ, Ferris RL, Clump DA. Role of immunotherapy in head and neck cancer. Semin Radiat Oncol. 2018. January;28(1):12–16. doi:10.1016/j.semradonc.2017.08.009. PubMed DOI
Hwang WY1, Foote J. Immunogenicity of engineered antibodies. Methods. 2005. May;36(1):3–10. doi:10.1016/j.ymeth.2005.01.001. PubMed DOI
Haynes BF, Hemler ME, Mann DL, Eisenbarth GS, Shelhamer J, Mostowski HS, Thomas CA, Strominger JL, Fauci AS. Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J Immunol. 1981. April;126(4):1409–1414. PubMed
Krupka C, Kufer P, Kischel R, Zugmaier G, Bögeholz J, Köhnke T, Lichtenegger FS, Schneider S, Metzeler KH, Fiegl M, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014. January 16;123(3):356–365. Epub 2013 Dec 3. doi:10.1182/blood-2013-08-523548. PubMed DOI
Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006. February 9;354(6):567–578. doi:10.1056/NEJMoa053422. PubMed DOI
Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, Raben D, Baselga J, Spencer SA, Zhu J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010. January;11(1):21–28. Epub 2009 Nov 10. doi:10.1016/S1470-2045(09)70311-0. PubMed DOI
Flynn JP, O’Hara MH, Gandhi SJ. Preclinical rationale for combining radiation therapy and immunotherapy beyond checkpoint inhibitors (i.e., CART). Transl Lung Cancer Res. 2017. April;6(2):159–168. doi:10.21037/tlcr.2017.03.07. PubMed DOI PMC
Eckert F, Gaipl US, Niedermann G, Hettich M, Schilbach K, Huber SM, Zips D. Beyond checkpoint inhibition - Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol. 2017. February 4;2:29–35. eCollection 2017 Feb. doi:10.1016/j.ctro.2016.12.006. PubMed DOI PMC
Xiaoqing L, Weihong C. Mechanisms of failure of chimeric antigen receptor T-cell therapy. Curr Opin Hematol. 2019. November;26(6):427–433. doi:10.1097/MOH.0000000000000548. PubMed DOI PMC
Timmers M, Roex G, Wang Y, Campillo-Davo D, Van Tendeloo VFI, Chu Y, Berneman ZN, Luo F, Van Acker HH, Anguille S. Chimeric antigen receptor-modified T cell therapy in multiple myeloma: beyond B cell maturation antigen. Front Immunol. 2019. July 16;10:1613. eCollection 2019. doi:10.3389/fimmu.2019.01613. PubMed DOI PMC
Targeting CD10 on B-Cell Leukemia Using the Universal CAR T-Cell Platform (UniCAR)