Spatiotemporal monitoring of hard tissue development reveals unknown features of tooth and bone development
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37531427
PubMed Central
PMC10396306
DOI
10.1126/sciadv.adi0482
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované * MeSH
- kosti a kostní tkáň MeSH
- myši MeSH
- vývoj kostí MeSH
- zubní kořen MeSH
- zuby * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mineralized tissues, such as bones or teeth, are essential structures of all vertebrates. They enable rapid movement, protection, and food processing, in addition to providing physiological functions. Although the development, regeneration, and pathogenesis of teeth and bones have been intensely studied, there is currently no tool to accurately follow the dynamics of growth and healing of these vital tissues in space and time. Here, we present the BEE-ST (Bones and tEEth Spatio-Temporal growth monitoring) approach, which allows precise quantification of development, regeneration, remodeling, and healing in any type of calcified tissue across different species. Using mouse teeth as model the turnover rate of continuously growing incisors was quantified, and role of hard/soft diet on molar root growth was shown. Furthermore, the dynamics of bones and teeth growth in lizards, frogs, birds, and zebrafish was uncovered. This approach represents an effective, highly reproducible, and versatile tool that opens up diverse possibilities in developmental biology, bone and tooth healing, tissue engineering, and disease modeling.
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Centre for Craniofacial and Regenerative Biology King's College London London UK
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Orthodontics University of Leipzig Medical Center Leipzig Germany
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
E. F. Morgan, L. C. Gerstenfeld, Chapter 2 - The bone organ system: Form and function, in Marcus and Feldman’s Osteoporosis, D. W. Dempster, J. A. Cauley, M. L. Bouxsein, F. Cosman, Eds. (Academic Press, ed. 5, 2021), pp. 15–35; www.sciencedirect.com/science/article/pii/B9780128130735000022.
M. Kobayashi, Y. Masuda, M. Kishino, T. Ishida, N. Maeda, T. Morimoto, Characteristics of mastication in the anodontic mouse. J. Dent. Res. 81, 594–597 (2002). PubMed
Y. Kim, M. D. Brodt, S. Y. Tang, M. J. Silva, MicroCT for scanning and analysis of mouse bones. Methods Mol. Biol. 2230, 169–198 (2021). PubMed PMC
T. Kubíková, M. Bartoš, Š. Juhas, T. Suchý, P. Sauerová, M. Hubálek-Kalbá̌ová, Z. Tonar, Comparison of ground sections, paraffin sections and micro-CT imaging of bone from the epiphysis of the porcine femur for morphometric evaluation. Ann. Anat. 220, 85–96 (2018). PubMed
L. Zhao, T. Dodge, A. Nemani, H. Yokota, Resonance in the mouse tibia as a predictor of frequencies and locations of loading-induced bone formation. Biomech. Model. Mechanobiol. 13, 141–151 (2014). PubMed PMC
K. A. Apaza Alccayhuaman, P. Heimel, J. S. Lee, S. Tangl, U. Kuchler, J. Marchesan, L. Panahipour, S. Lettner, E. Matalová, R. Gruber, FasL is a catabolic factor in alveolar bone homeostasis. J. Clin. Periodontol. 50, 396–405 (2023). PubMed PMC
W. H. Harris, R. H. Jackson, J. Jowsey, The in vivo distribution of tetracyclines in canine bone. J. Bone Joint Surg. Am. 44-A, 1308–1320 (1962). PubMed
R. A. Milch, D. P. Rall, J. E. Tobie, Fluorescence of tetracycline antibiotics in bone. J. Bone Joint Surg. Am. 40, 897–910 (1958). PubMed
J. Wang, A. M. Muir, Y. Ren, D. Massoudi, D. S. Greenspan, J. Q. Feng, Essential roles of bone morphogenetic protein-1 and mammalian tolloid-like 1 in postnatal root dentin formation. J. Endod. 43, 109–115 (2017). PubMed PMC
H.-H. Hong, T.-A. Chou, A. Hong, Y.-F. Huang, T.-H. Yen, C.-H. Liang, A. Hong, H.-Y. Hsiao, C.-Y. Nien, Calcitriol and enamel matrix derivative differentially regulated cemento-induction and mineralization in human periodontal ligament-derived cells. J. Periodontol. 93, 1553–1565 (2022). PubMed
S. M. van Gaalen, M. C. Kruyt, R. E. Geuze, J. D. de Bruijn, J. Alblas, W. J. A. Dhert, Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng. Part B Rev. 16, 209–217 (2009). PubMed
J. Schmidt, K. Lumniczky, B. D. Tzschaschel, H. L. Guenther, A. Luz, S. Riemann, W. Gimbel, V. Erfle, R. G. Erben, Onset and dynamics of osteosclerosis in mice induced by Reilly-Finkel-Biskis (RFB) murine leukemia virus. Am. J. Pathol. 155, 557–570 (1999). PubMed PMC
M. Takumida, D. M. Zhang, K. Yajin, Y. Harada, Polychromatic labeling of otoconia for the investigation of calcium turnover. ORL J. Otorhinolaryngol Relat. Spec. 59, 4–9 (1997). PubMed
T. Jinno, V. M. Goldberg, D. Davy, S. Stevenson, Osseointegration of surface-blasted implants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model. J. Biomed. Mater. Res. 42, 20–29 (1998). PubMed
C. Paddock, T. Youngs, E. Eriksen, R. Boyce, Validation of wall thickness estimates obtained with polarized light microscopy using multiple fluorochrome labels: Correlation with erosion depth estimates obtained by lamellar counting. Bone 16, 381–383 (1995). PubMed
H. Francillon, J. Castanet, Experimental demonstration of the annual characteristic of the lines of arrest of skeletal growth in Rana esculenta (Amphibia, anura). C. R. Acad. Sci. III 300, 327–332 (1985). PubMed
D. Jing, Y. Yi, W. Luo, S. Zhang, Q. Yuan, J. Wang, E. Lachika, Z. Zhao, H. Zhao, Tissue clearing and its application to bone and dental tissues. J. Dent. Res. 98, 621–631 (2019). PubMed PMC
N. Renier, Z. Wu, D. J. Simon, J. Yang, P. Ariel, M. Tessier-Lavigne, iDISCO: A simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159, 896–910 (2014). PubMed
R. Tomer, L. Ye, B. Hsueh, K. Deisseroth, Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014). PubMed PMC
K. Matsumoto, T. T. Mitani, S. A. Horiguchi, J. Kaneshiro, T. C. Murakami, T. Mano, H. Fujishima, A. Konno, T. M. Watanabe, H. Hirai, H. R. Ueda, Advanced CUBIC tissue clearing for whole-organ cell profiling. Nat. Protoc. 14, 3506–3537 (2019). PubMed
W. Luo, Y. Yi, D. Jing, S. Zhang, Y. Men, W.-P. Ge, H. Zhao, Investigation of postnatal craniofacial bone development with tissue clearing-based three-dimensional imaging. Stem Cells Dev. 28, 1310–1321 (2019). PubMed PMC
S. Hong, J. Lee, J. M. Kim, S.-Y. Kim, H.-R. Kim, P. Kim, 3D cellular visualization of intact mouse tooth using optical clearing without decalcification. Int. J. Oral Sci. 11, 25 (2019). PubMed PMC
Y. Yi, Y. Men, D. Jing, W. Luo, S. Zhang, J. Q. Feng, J. Liu, W.-P. Ge, J. Wang, H. Zhao, 3-dimensional visualization of implant-tissue interface with the polyethylene glycol associated solvent system tissue clearing method. Cell Prolif. 52, e12578 (2019). PubMed PMC
K. Becker, N. Jährling, S. Saghafi, H.-U. Dodt, Immunostaining, dehydration, and clearing of mouse embryos for ultramicroscopy. Cold Spring Harb. Protoc. 2013, 743–744 (2013). PubMed
M. Acar, K. S. Kocherlakota, M. M. Murphy, J. G. Peyer, H. Oguro, C. N. Inra, C. Jaiyeola, Z. Zhao, K. Luby-Phelps, S. J. Morrison, Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126–130 (2015). PubMed PMC
J. Krivanek, R. A. Soldatov, M. E. Kastriti, T. Chontorotzea, A. N. Herdina, J. Petersen, B. Szarowska, M. Landova, V. K. Matejova, L. I. Holla, U. Kuchler, I. V. Zdrilic, A. Vijaykumar, A. Balic, P. Marangoni, O. D. Klein, V. C. M. Neves, V. Yianni, P. T. Sharpe, T. Harkany, B. D. Metscher, M. Bajénoff, M. Mina, K. Fried, P. V. Kharchenko, I. Adameyko, Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat. Commun. 11, 4816 (2020). PubMed PMC
J. Lavicky, M. Kolouskova, D. Prochazka, V. Rakultsev, M. Gonzalez-Lopez, K. Steklikova, M. Bartos, A. Vijaykumar, J. Kaiser, P. Pořízka, M. Hovorakova, M. Mina, J. Krivanek, The development of dentin microstructure is controlled by the type of adjacent epithelium. J. Bone Miner. Res. 37, 323–339 (2022). PubMed PMC
R. M. Pauli, Achondroplasia: A comprehensive clinical review. Orphanet J. Rare Dis. 14, 1 (2019). PubMed PMC
F. Di Rocco, A. Rothenbuhler, V. Cormier Daire, J. Bacchetta, C. Adamsbaum, G. Baujat, M. Rossi, A. Lingart, Craniosynostosis and metabolic bone disorder. A review. Neurochirurgie 65, 258–263 (2019). PubMed
L. Guo, Z. Liang, L. Yang, W. Du, T. Yu, H. Tang, C. Li, H. Qiu, The role of natural polymers in bone tissue engineering. J. Control. Release 338, 571–582 (2021). PubMed
Z. Wang, Y. Wang, J. Yan, K. Zhang, F. Lin, L. Xiang, L. Deng, Z. Guan, W. Cui, H. Zhang, Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv. Drug Deliv. Rev. 174, 504–534 (2021). PubMed
L. N. Borodinsky, Xenopus laevis as a model organism for the study of spinal cord formation, development, function and regeneration. Front. Neural Circuits 11, 90 (2017). PubMed PMC
L. Medina-Cuadra, A. H. Monsoro-Burq, Xenopus, an emerging model for studying pathologies of the neural crest. Curr. Top. Dev. Biol. 145, 313–348 (2021). PubMed
P. D. Nieuwkoop, J. Faber, Normal Table of Xenopus Laevis (Daudin). A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis (Garland Pub., 1994).
H. Katow, Structure and formation of ankylosis in Xenopus laevis. J. Morphol. 162, 327–341 (1979). PubMed
K. Dietrich, I. A. Fiedler, A. Kurzyukova, A. C. López-Delgado, L. M. McGowan, K. Geurtzen, C. L. Hammond, B. Busse, F. Knopf, Skeletal biology and disease modeling in zebrafish. J. Bone Miner. Res. 36, 436–458 (2021). PubMed
J. M. Bahr, The chicken as a model organism, in Sourcebook of Models for Biomedical Research, P. M. Conn, Ed. (Humana Press, 2008), pp. 161–167; 10.1007/978-1-59745-285-4_18. DOI
J. Rueckel, M. Stockmar, F. Pfeiffer, J. Herzen, Spatial resolution characterization of a x-ray microCT system. Appl. Radiat. Isot. 94, 230–234 (2014). PubMed
E. Newham, P. G. Gill, P. Brewer, M. J. Benton, V. Fernandez, N. J. Gostling, D. Haberthür, J. Jernvall, T. Kankaanpää, A. Kallonen, C. Navarro, A. Pacureanu, K. Richards, K. R. Brown, P. Schneider, H. Suhonen, P. Tafforeau, K. A. Williams, B. Zeller-Plumhoff, I. J. Corfe, Reptile-like physiology in early Jurassic stem-mammals. Nat. Commun. 11, 5121 (2020). PubMed PMC
C. Pautke, S. Vogt, T. Tischer, G. Wexel, H. Deppe, S. Milz, M. Schieker, A. Kolk, Polychrome labeling of bone with seven different fluorochromes: Enhancing fluorochrome discrimination by spectral image analysis. Bone 37, 441–445 (2005). PubMed
T. Nishikawa, K. Masuno, K. Tominaga, Y. Koyama, T. Yamada, K. Takakuda, M. Kikuchi, J. Tanaka, A. Tanaka, Bone repair analysis in a novel biodegradable hydroxyapatite/collagen composite implanted in bone. Implant Dent. 14, 252–260 (2005). PubMed
V. Oralova, E. Matalova, M. Killinger, L. Knopfova, J. Smarda, M. Buchtova, Osteogenic potential of the transcription factor c-MYB. Calcif. Tissue Int. 100, 311–322 (2017). PubMed
C. Witzel, U. Kierdorf, K. Frölich, H. Kierdorf, The pay-off of hypsodonty - timing and dynamics of crown growth and wear in molars of Soay sheep. BMC Evol. Biol. 18, 207 (2018). PubMed PMC
S. Emken, C. Witzel, U. Kierdorf, K. Frölich, H. Kierdorf, Characterization of short-period and long-period incremental markings in porcine enamel and dentine—Results of a fluorochrome labelling study in wild boar and domestic pigs. J. Anat. 239, 1207–1220 (2021). PubMed PMC
K. S. Brink, J. I. Henríquez, T. M. Grieco, J. R. Martin del Campo, K. Fu, J. M. Richman, Tooth removal in the leopard gecko and the de novo formation of replacement teeth. Front. Physiol. 12, 576816 (2021). PubMed PMC
M. Lingner, R. Seidling, L. J. Lehmann, E. Mauermann, U. Obertacke, M. L. R. Schwarz, Osseointegrative effect of rhBMP-2 covalently bound on a titan-plasma-spray-surface after modification with chromosulfuric acid in a large animal bone gap-healing model with the Göttingen minipig. J. Orthop. Surg. Res. 13, 219 (2018). PubMed PMC
K. Gurzawska, K. Dirscherl, B. Jørgensen, T. Berglundh, N. R. Jørgensen, K. Gotfredsen, Pectin nanocoating of titanium implant surfaces - An experimental study in rabbits. Clin. Oral Implants Res. 28, 298–307 (2017). PubMed
F. Bashey, A comparison of the suitability of alizarin red S and calcein for inducing a nonlethally detectable mark in juvenile guppies. Trans. Am. Fish. Soc. 133, 1516–1523 (2004).
A. J. Stuart, D. A. Smith, Use of the fluorochromes xylenol orange, calcein green, and tetracycline to document bone deposition and remodeling in healing fractures in chickens. Avian Dis. 36, 447–449 (1992). PubMed
M. Goldberg, O. Kellermann, S. Dimitrova-Nakov, Y. Harichane, A. Baudry, Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity. Front. Physiol. 5, 359 (2014). PubMed PMC
Z. An, M. Sabalic, R. F. Bloomquist, T. E. Fowler, T. Streelman, P. T. Sharpe, A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat. Commun. 9, 378 (2018). PubMed PMC
V. Hamburger, H. L. Hamilton, A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951). PubMed