FasL is a catabolic factor in alveolar bone homeostasis

. 2023 Mar ; 50 (3) : 396-405. [epub] 20221125

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36384160

AIM: Fas ligand (FasL) belongs to the tumour necrosis factor superfamily regulating bone turnover, inflammation, and apoptosis. The appendicular and axial skeleton phenotype of mature Faslgld mice has been reported. The impact of FasL on the alveolar bone providing support for the teeth at mature stages under healthy and induced inflammatory conditions remains unknown. MATERIALS AND METHODS: We performed a phenotypical analysis of mice carrying the homozygous Faslgld mutation and wild-type (WT) mice (C57BL/6) under healthy conditions and upon ligature-induced periodontitis. After 12 days, micro-computed tomography analysis revealed the distance between the cement enamel junction and the alveolar bone crest. Additional structural parameters, such as the bone volume fraction (BV/TV) and the periodontal ligament space volume, were measured. Histological analyses were performed to visualize the catabolic changes at the defect site. RESULTS: Healthy Faslgld mice were found to have more periodontal bone than their WT littermates. Faslgld had no significant effect on inflammatory osteolysis compared to WT controls with ligatures. Histology revealed eroded surfaces at the root and in the inter-proximal bone in both strains. CONCLUSIONS: Our findings suggest that FasL is a catabolic factor in alveolar bone homeostasis but it does not affect the inflammatory osteolysis.

Zobrazit více v PubMed

Apaza Alccayhuaman, K. A. , Heimel, P. , Lee, J. S. , Tangl, S. , Strauss, F. J. , Stahli, A. , Matalova, E. , & Gruber, R. (2021). FasL is required for osseous healing in extraction sockets in mice. Frontiers in Immunology, 12, 678873. 10.3389/fimmu.2021.678873 PubMed DOI PMC

Asgari, R. , Yari, K. , Mansouri, K. , & Bakhtiari, M. (2018). Association analysis of FAS‐670A/G and FASL‐844C/T polymorphisms with risk of generalized aggressive periodontitis disease. Biomedical Reports, 8(4), 391–395. 10.3892/br.2018.1060 PubMed DOI PMC

Bai, L. , Yu, Z. , Wang, C. , Qian, G. , & Wang, G. (2011). Dual role of TGF‐beta1 on Fas‐induced apoptosis in lung epithelial cells. Respiratory Physiology & Neurobiology, 177(3), 241–246. 10.1016/j.resp.2011.04.016 PubMed DOI

Berendsen, A. D. , & Olsen, B. R. (2015). Bone development. Bone, 80, 14–18. 10.1016/j.bone.2015.04.035 PubMed DOI PMC

Brozovic, S. , Sahoo, R. , Barve, S. , Shiba, H. , Uriarte, S. , Blumberg, R. S. , & Kinane, D. F. (2006). Porphyromonas gingivalis enhances FasL expression via up‐regulation of NFkappaB‐mediated gene transcription and induces apoptotic cell death in human gingival epithelial cells. Microbiology, 152(Pt 3), 797–806. 10.1099/mic.0.28472-0 PubMed DOI

Castellarin, P. , Pozzato, G. , Tirelli, G. , Di Lenarda, R. , & Biasotto, M. (2010). Oral lesions and lymphoproliferative disorders. Journal of Oncology, 2010, 1–10. 10.1155/2010/202305 PubMed DOI PMC

Catunda, R. Q. , Ho, K. K. , Patel, S. , & Febbraio, M. (2021). A 2‐plane micro‐computed tomographic alveolar bone measurement approach in mice. Imaging Science in Dentistry, 51(4), 389–398. 10.5624/isd.20210058 PubMed DOI PMC

Crane, J. L. , & Cao, X. (2014). Bone marrow mesenchymal stem cells and TGF‐beta signaling in bone remodeling. The Journal of Clinical Investigation, 124(2), 466–472. 10.1172/JCI70050 PubMed DOI PMC

Dabiri, D. , Halubai, S. , Layher, M. , Klausner, C. , Makhoul, H. , Lin, G. H. , Eckert, G. , Abuhussein, H. , Kamarajan, P. , & Kapila, Y. (2016). The role of apoptotic factors in assessing progression of periodontal disease. International Journal of Dentistry and Oral Science, 3(9), 318–325. 10.19070/2377-8075-1600064 PubMed DOI PMC

de Molon, R. S. , Park, C. H. , Jin, Q. , Sugai, J. , & Cirelli, J. A. (2018). Characterization of ligature‐induced experimental periodontitis. Microscopy Research and Technique, 81(12), 1412–1421. 10.1002/jemt.23101 PubMed DOI

Donath, K. , & Breuner, G. (1982). A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage‐Schliff (sawing and grinding) technique. Journal of Oral Pathology, 11(4), 318–326. 10.1111/j.1600-0714.1982.tb00172.x PubMed DOI

Eke, P. I. , Dye, B. A. , Wei, L. , Thornton‐Evans, G. O. , Genco, R. J. , & Cdc Periodontal Disease Surveillance Workgroup . (2012). Prevalence of periodontitis in adults in the United States: 2009 and 2010. Journal of Dental Research, 91(10), 914–920. 10.1177/0022034512457373 PubMed DOI

Griffith, T. S. , Brunner, T. , Fletcher, S. M. , Green, D. R. , & Ferguson, T. A. (1995). Fas ligand‐induced apoptosis as a mechanism of immune privilege. Science, 270(5239), 1189–1192. PubMed

Gruber, R. (2019). Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. Journal of Clinical Periodontology, 46(Suppl 21), 52–69. 10.1111/jcpe.13056 PubMed DOI

Hatakeyama, S. , Tomichi, N. , Ohara‐Nemoto, Y. , & Satoh, M. (2000). The immunohistochemical localization of Fas and Fas ligand in jaw bone and tooth germ of human fetuses. Calcified Tissue International, 66(5), 330–337. PubMed

Hienz, S. A. , Paliwal, S. , & Ivanovski, S. (2015). Mechanisms of bone resorption in periodontitis. Journal of Immunology Research, 2015, 615486. 10.1155/2015/615486 PubMed DOI PMC

Huang, X. , Yokota, T. , Iwata, J. , & Chai, Y. (2011). Tgf‐beta‐mediated FasL‐Fas‐caspase pathway is crucial during palatogenesis. Journal of Dental Research, 90(8), 981–987. 10.1177/0022034511408613 PubMed DOI PMC

Katavic, V. , Grcevic, D. , Lukic, I. K. , Vucenik, V. , Kovacic, N. , Kalajzic, I. , & Marusic, A. (2003). Non‐functional Fas ligand increases the formation of cartilage early in the endochondral bone induction by rhBMP‐2. Life Sciences, 74(1), 13–28. 10.1016/j.lfs.2003.06.031 PubMed DOI

Katavic, V. , Lukic, I. K. , Kovacic, N. , Grcevic, D. , Lorenzo, J. A. , & Marusic, A. (2003). Increased bone mass is a part of the generalized lymphoproliferative disorder phenotype in the mouse. Journal of Immunology, 170(3), 1540–1547. PubMed

Kilkenny, C. , Browne, W. J. , Cuthill, I. C. , Emerson, M. , & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8(6), e1000412. 10.1371/journal.pbio.1000412 PubMed DOI PMC

Kim, H. N. , Ponte, F. , Nookaew, I. , Ucer Ozgurel, S. , Marques‐Carvalho, A. , Iyer, S. , Warren, A. , Aykin‐Burns, N. , Krager, K. , Sardao, V. A. , Han, L. , de Cabo, R. , Zhao, H. , Jilka, R. L. , Manolagas, S. C. , & Almeida, M. (2020). Estrogens decrease osteoclast number by attenuating mitochondria oxidative phosphorylation and ATP production in early osteoclast precursors. Scientific Reports, 10(1), 11933. 10.1038/s41598-020-68890-7 PubMed DOI PMC

Kratochvilova, A. , Ramesova, A. , Vesela, B. , Svandova, E. , Lesot, H. , Gruber, R. , & Matalova, E. (2021). Impact of FasL stimulation on sclerostin expression and osteogenic profile in IDG‐SW3 osteocytes. Biology, 10(8), 757. 10.3390/biology10080757 PubMed DOI PMC

Lin, P. , Niimi, H. , Ohsugi, Y. , Tsuchiya, Y. , Shimohira, T. , Komatsu, K. , Liu, A. , Shiba, T. , Aoki, A. , Iwata, T. , & Katagiri, S. (2021). Application of ligature‐induced periodontitis in mice to explore the molecular mechanism of periodontal disease. International Journal of Molecular Sciences, 22(16), 8900. 10.3390/ijms22168900 PubMed DOI PMC

Marchesan, J. , Girnary, M. S. , Jing, L. , Miao, M. Z. , Zhang, S. , Sun, L. , Morelli, T. , Schoenfisch, M. H. , Inohara, N. , Offenbacher, S. , & Jiao, Y. (2018). An experimental murine model to study periodontitis. Nature Protocols, 13(10), 2247–2267. 10.1038/s41596-018-0035-4 PubMed DOI PMC

Mbalaviele, G. , Novack, D. V. , Schett, G. , & Teitelbaum, S. L. (2017). Inflammatory osteolysis: A conspiracy against bone. The Journal of Clinical Investigation, 127(6), 2030–2039. 10.1172/JCI93356 PubMed DOI PMC

McElhaney, J. H. , Fogle, J. L. , Melvin, J. W. , Haynes, R. R. , Roberts, V. L. , & Alem, N. M. (1970). Mechanical properties on cranial bone. Journal of Biomechanics, 3(5), 495–511. 10.1016/0021-9290(70)90059-x PubMed DOI

Mori, S. , Nose, M. , Chiba, M. , Narita, K. , Kumagai, M. , Kosaka, H. , & Teshima, T. (1997). Enhancement of ectopic bone formation in mice with a deficit in Fas‐mediated apoptosis. Pathology International, 47(2–3), 112–116. PubMed

Nagata, S. (1997). Apoptosis by death factor. Cell, 88(3), 355–365. PubMed

O'Connell, J. (2000). Immune privilege or inflammation? The paradoxical effects of Fas ligand. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 48(2), 73–79. PubMed

Park, H. , Jung, Y. K. , Park, O. J. , Lee, Y. J. , Choi, J. Y. , & Choi, Y. (2005). Interaction of Fas ligand and Fas expressed on osteoclast precursors increases osteoclastogenesis. Journal of Immunology, 175(11), 7193–7201. 10.4049/jimmunol.175.11.7193 PubMed DOI

Paul, R. , Angele, B. , Sporer, B. , Pfister, H. W. , & Koedel, U. (2004). Inflammatory response during bacterial meningitis is unchanged in Fas‐ and Fas ligand‐deficient mice. Journal of Neuroimmunology, 152(1–2), 78–82. 10.1016/j.jneuroim.2004.04.004 PubMed DOI

Pihlstrom, B. L. , Michalowicz, B. S. , & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366(9499), 1809–1820. 10.1016/S0140-6736(05)67728-8 PubMed DOI

Qiu, M. , Chen, Y. , Chen, L. , Zeng, J. , & Liu, J. (2017). Transforming growth factor beta1 and Fas ligand synergistically enhance immune tolerance in dendritic cells in liver transplantation. The Journal of Surgical Research, 218, 180–193. 10.1016/j.jss.2017.05.040 PubMed DOI

R Core Team . (2022). R: A language and environment for statistical computing . http://www.R-project.org

Ramsdell, F. , Seaman, M. S. , Miller, R. E. , Tough, T. W. , Alderson, M. R. , & Lynch, D. H. (1994). Gld/gld mice are unable to express a functional ligand for Fas. European Journal of Immunology, 24(4), 928–933. 10.1002/eji.1830240422 PubMed DOI

Reardon, C. , Wang, A. , & McKay, D. M. (2008). Transient local depletion of Foxp3+ regulatory T cells during recovery from colitis via Fas/Fas ligand‐induced death. Journal of Immunology, 180(12), 8316–8326. 10.4049/jimmunol.180.12.8316 PubMed DOI

Risso, V. , Lafont, E. , & Le Gallo, M. (2022). Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death & Disease, 13(3), 248. 10.1038/s41419-022-04688-x PubMed DOI PMC

Schindelin, J. , Arganda‐Carreras, I. , Frise, E. , Kaynig, V. , Longair, M. , Pietzsch, T. , Preibisch, S. , Rueden, C. , Saalfeld, S. , Schmid, B. , Tinevez, J. Y. , White, D. J. , Hartenstein, V. , Eliceiri, K. , Tomancak, P. , & Cardona, A. (2012). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9(7), 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Semenoff, T. A. , Semenoff‐Segundo, A. , Bosco, A. F. , Nagata, M. J. , Garcia, V. G. , & Biasoli, E. R. (2008). Histometric analysis of ligature‐induced periodontitis in rats: A comparison of histological section planes. Journal of Applied Oral Science, 16(4), 251–256. 10.1590/s1678-77572008000400005 PubMed DOI PMC

Suda, T. , Takahashi, T. , Golstein, P. , & Nagata, S. (1993). Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell, 75(6), 1169–1178. PubMed

Svandova, E. , Sadoine, J. , Vesela, B. , Djoudi, A. , Lesot, H. , Poliard, A. , & Matalova, E. (2019). Growth‐dependent phenotype in FasL‐deficient mandibular/alveolar bone. Journal of Anatomy, 235(2), 256–261. 10.1111/joa.13015 PubMed DOI PMC

Tsutsui, H. , Nakanishi, K. , Matsui, K. , Higashino, K. , Okamura, H. , Miyazawa, Y. , & Kaneda, K. (1996). IFN‐gamma‐inducing factor up‐regulates Fas ligand‐mediated cytotoxic activity of murine natural killer cell clones. Journal of Immunology, 157(9), 3967–3973. PubMed

Wang, L. , Liu, S. , Zhao, Y. , Liu, D. , Liu, Y. , Chen, C. , Karray, S. , Shi, S. , & Jin, Y. (2015). Osteoblast‐induced osteoclast apoptosis by FAS ligand/FAS pathway is required for maintenance of bone mass. Cell Death and Differentiation, 22(10), 1654–1664. 10.1038/cdd.2015.14 PubMed DOI PMC

Wilensky, A. , Gabet, Y. , Yumoto, H. , Houri‐Haddad, Y. , & Shapira, L. (2005). Three‐dimensional quantification of alveolar bone loss in Porphyromonas gingivalis‐infected mice using micro‐computed tomography. Journal of Periodontology, 76(8), 1282–1286. 10.1902/jop.2005.76.8.1282 PubMed DOI

Wohlfahrt, J. C. , Wu, T. , Hodges, J. S. , Hinrichs, J. E. , & Michalowicz, B. S. (2006). No association between selected candidate gene polymorphisms and severe chronic periodontitis. Journal of Periodontology, 77(3), 426–436. 10.1902/jop.2006.050058 PubMed DOI

Wu, X. , Pan, G. , McKenna, M. A. , Zayzafoon, M. , Xiong, W. C. , & McDonald, J. M. (2005). RANKL regulates Fas expression and Fas‐mediated apoptosis in osteoclasts. Journal of Bone and Mineral Research, 20(1), 107–116. 10.1359/JBMR.041022 PubMed DOI

Wu, Y. H. , Taya, Y. , Kuraji, R. , Ito, H. , Soeno, Y. , & Numabe, Y. (2020). Dynamic microstructural changes in alveolar bone in ligature‐induced experimental periodontitis. Odontology, 108(3), 339–349. 10.1007/s10266-019-00471-1 PubMed DOI

Yu, T. , Liu, D. , Zhang, T. , Zhou, Y. , Shi, S. , & Yang, R. (2019). Inhibition of Tet1‐ and Tet2‐mediated DNA demethylation promotes immunomodulation of periodontal ligament stem cells. Cell Death & Disease, 10(10), 780. 10.1038/s41419-019-2025-z PubMed DOI PMC

Yuan, X. , Chen, J. , Van Brunt, L. A. , Grauer, J. , Xu, Q. , Pei, X. , Wang, L. , Zhao, Y. , & Helms, J. A. (2020). Formation and regeneration of a Wnt‐responsive junctional epithelium. Journal of Clinical Periodontology, 47(12), 1476–1484. 10.1111/jcpe.13371 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Spatiotemporal monitoring of hard tissue development reveals unknown features of tooth and bone development

. 2023 Aug 02 ; 9 (31) : eadi0482. [epub] 20230802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...