FasL Is Required for Osseous Healing in Extraction Sockets in Mice
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 4072
Austrian Science Fund FWF - Austria
PubMed
34135904
PubMed Central
PMC8200669
DOI
10.3389/fimmu.2021.678873
Knihovny.cz E-zdroje
- Klíčová slova
- bone regenaration, dentistry, fasl, histology, knockout (KO), tooth extraction, µCT,
- MeSH
- biologické markery MeSH
- extrakce zubů * MeSH
- hojení ran fyziologie MeSH
- imunohistochemie MeSH
- kostní denzita MeSH
- ligand Fas genetika metabolismus MeSH
- modely u zvířat MeSH
- myši MeSH
- regenerace kostí * genetika MeSH
- rentgenová mikrotomografie MeSH
- velikost orgánu MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- ligand Fas MeSH
Fas ligand (FasL) is a member of the tumor necrosis factor (TNF) superfamily involved in the activation of apoptosis. Assuming that apoptosis is initiated after tooth extraction it is reasonable to suggest that FasL may play a pivotal role in the healing of extraction sockets. Herein, we tested the hypothesis of whether the lack of FasL impairs the healing of extraction sockets. To this end, we extracted upper right incisors of FasL knockout (KO) mice and their wildtype (WT) littermates. After a healing period of two weeks, bone volume over total volume (BV/TV) via µCT and descriptive histological analyses were performed. µCT revealed that BV/TV in the coronal region of the socket amounted to 39.4% in WT and 21.8% in KO, with a significant difference between the groups (p=0.002). Likewise, in the middle region of the socket, BV/TV amounted to 50.3% in WT and 40.8% in KO (p<0.001). In the apical part, however, no difference was noticed. Consistently, WT mice displayed a significantly higher median trabecular thickness and a lower trabecular separation when compared to the KO group at the coronal and central region of the socket. There was the overall tendency that in both, female and male mice, FasL affects bone regeneration. Taken together, these findings suggest that FasL deficiency may reduce bone regeneration during the healing process of extraction sockets.
Austrian Cluster for Tissue Regeneration Medical University of Vienna Vienna Austria
Clinic of Reconstructive Dentistry University of Zurich Zurich Switzerland
Department of Conservative Dentistry School of Dentistry University of Chile Santiago Chile
Department of Oral Biology Medical University of Vienna Vienna Austria
Department of Periodontology School of Dental Medicine University of Bern Bern Switzerland
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno Czechia
Ludwig Boltzmann Institute for Experimental and Clinical Traumatology Vienna Austria
Zobrazit více v PubMed
Suda T, Takahashi T, Golstein P, Nagata S. Molecular Cloning and Expression of the Fas Ligand, A Novel Member of the Tumor Necrosis Factor Family. Cell (1993) 75:1169–78. 10.1016/0092-8674(93)90326-L PubMed DOI
Tsutsui H, Nakanishi K, Matsui K, Higashino K, Okamura H, Miyazawa Y, et al. . IFN-Gamma-Inducing Factor Up-Regulates Fas Ligand-Mediated Cytotoxic Activity of Murine Natural Killer Cell Clones. J Immunol (1996) 157:3967–73. PubMed
Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas Ligand-Induced Apoptosis as a Mechanism of Immune Privilege. Science (1995) 270:1189–92. 10.1126/science.270.5239.1189 PubMed DOI
Nagata S. Apoptosis by Death Factor. Cell (1997) 88:355–65. 10.1016/S0092-8674(00)81874-7 PubMed DOI
Matalova E, Svandova E, Tucker AS. Apoptotic Signaling in Mouse Odontogenesis. OMICS (2012) 16:60–70. 10.1089/omi.2011.0039 PubMed DOI PMC
Kovacic N, Lukic IK, Grcevic D, Katavic V, Croucher P, Marusic A. The Fas/Fas Ligand System Inhibits Differentiation of Murine Osteoblasts But has a Limited Role in Osteoblast and Osteoclast Apoptosis. J Immunol (2007) 178:3379–89. 10.4049/jimmunol.178.6.3379 PubMed DOI PMC
Josefsen D, Myklebust JH, Lynch DH, Stokke T, Blomhoff HK, Smeland EB. Fas Ligand Promotes Cell Survival of Immature Human Bone Marrow CD34+CD38- Hematopoietic Progenitor Cells by Suppressing Apoptosis. Exp Hematol (1999) 27:1451–9. 10.1016/S0301-472X(99)00073-9 PubMed DOI
Rippo MR, Babini L, Prattichizzo F, Graciotti L, Fulgenzi G, Tomassoni Ardori F, et al. . Low FasL Levels Promote Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells, Higher Levels Inhibit Their Differentiation Into Adipocytes. Cell Death Dis (2013) 4:e594. 10.1038/cddis.2013.115 PubMed DOI PMC
Hatakeyama S, Tomichi N, Ohara-Nemoto Y, Satoh M. The Immunohistochemical Localization of Fas and Fas Ligand in Jaw Bone and Tooth Germ of Human Fetuses. Calcif Tissue Int (2000) 66:330–7. 10.1007/s002230010069 PubMed DOI
Katavic V, Lukic IK, Kovacic N, Grcevic D, Lorenzo JA, Marusic A. Increased Bone Mass Is a Part of the Generalized Lymphoproliferative Disorder Phenotype in the Mouse. J Immunol (2003) 170:1540–7. 10.4049/jimmunol.170.3.1540 PubMed DOI
Katavic V, Grcevic D, Lukic IK, Vucenik V, Kovacic N, Kalajzic I, et al. . Non-Functional Fas Ligand Increases the Formation of Cartilage Early in the Endochondral Bone Induction by rhBMP-2. Life Sci (2003) 74:13–28. 10.1016/j.lfs.2003.06.031 PubMed DOI
Mori S, Nose M, Chiba M, Narita K, Kumagai M, Kosaka H, et al. . Enhancement of Ectopic Bone Formation in Mice With a Deficit in Fas-Mediated Apoptosis. Pathol Int (1997) 47:112–6. 10.1111/j.1440-1827.1997.tb03729.x PubMed DOI
Krum SA, Miranda-Carboni GA, Hauschka PV, Carroll JS, Lane TF, Freedman LP, et al. . Estrogen Protects Bone by Inducing Fas Ligand in Osteoblasts to Regulate Osteoclast Survival. EMBO J (2008) 27:535–45. 10.1038/sj.emboj.7601984 PubMed DOI PMC
Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, et al. . Estrogen Prevents Bone Loss Via Estrogen Receptor Alpha and Induction of Fas Ligand in Osteoclasts. Cell (2007) 130:811–23. 10.1016/j.cell.2007.07.025 PubMed DOI
Wang L, Liu S, Zhao Y, Liu D, Liu Y, Chen C, et al. . Osteoblast-Induced Osteoclast Apoptosis by Fas Ligand/FAS Pathway Is Required for Maintenance of Bone Mass. Cell Death Differ (2015) 22:1654–64. 10.1038/cdd.2015.14 PubMed DOI PMC
Jung RE, Zembic A, Pjetursson BE, Zwahlen M, Thoma DS. Systematic Review of the Survival Rate and the Incidence of Biological, Technical, and Aesthetic Complications of Single Crowns on Implants Reported in Longitudinal Studies With a Mean Follow-Up of 5 Years. Clin Oral Implants Res (2012) 23(Suppl 6):2–21. 10.1111/j.1600-0501.2012.02547.x PubMed DOI
Couso-Queiruga E, Stuhr S, Tattan M, Chambrone L, Avila-Ortiz G. Post-Extraction Dimensional Changes: A Systematic Review and Meta-Analysis. J Clin Periodontol (2021) 48:126–44. 10.1111/jcpe.13390 PubMed DOI
Tan WL, Wong TL, Wong MC, Lang NP. A Systematic Review of Post-Extractional Alveolar Hard and Soft Tissue Dimensional Changes in Humans. Clin Oral Implants Res (2012) 23(Suppl 5):1–21. 10.1111/j.1600-0501.2011.02375.x PubMed DOI
Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone Healing and Soft Tissue Contour Changes Following Single-Tooth Extraction: A Clinical and Radiographic 12-Month Prospective Study. Int J Periodontics Restorative Dent (2003) 23:313–23. 10.1016/j.prosdent.2003.10.022 PubMed DOI
Koo TH, Song YW, Cha JK, Jung UW, Kim CS, Lee JS. Histologic Analysis Following Grafting of Damaged Extraction Sockets Using Deproteinized Bovine or Porcine Bone Mineral: A Randomized Clinical Trial. Clin Oral Implants Res (2020) 31:93–102. 10.1111/clr.13557 PubMed DOI
Einhorn TA, Gerstenfeld LC. Fracture Healing: Mechanisms and Interventions. Nat Rev Rheumatol (2015) 11:45–54. 10.1038/nrrheum.2014.164 PubMed DOI PMC
Gruber R, Koch H, Doll BA, Tegtmeier F, Einhorn TA, Hollinger JO. Fracture Healing in the Elderly Patient. Exp Gerontol (2006) 41:1080–93. 10.1016/j.exger.2006.09.008 PubMed DOI
Claes L, Recknagel S, Ignatius A. Fracture Healing Under Healthy and Inflammatory Conditions. Nat Rev Rheumatol (2012) 8:133–43. 10.1038/nrrheum.2012.1 PubMed DOI
Al-Sebaei MO, Daukss DM, Belkina AC, Kakar S, Wigner NA, Cusher D, et al. . Role of Fas and Treg Cells in Fracture Healing as Characterized in the Fas-Deficient (Lpr) Mouse Model of Lupus. J Bone Miner Res (2014) 29:1478–91. 10.1002/jbmr.2169 PubMed DOI PMC
Li Y, Takemura G, Kosai K, Takahashi T, Okada H, Miyata S, et al. . Critical Roles for the Fas/Fas Ligand System in Postinfarction Ventricular Remodeling and Heart Failure. Circ Res (2004) 95:627–36. 10.1161/01.RES.0000141528.54850.bd PubMed DOI
Guan DW, Ohshima T, Kondo T. Immunohistochemical Study on Fas and Fas Ligand in Skin Wound Healing. Histochem J (2000) 32:85–91. 10.1023/A:1004058010500 PubMed DOI
Strauss FJ, Stähli A, Kobatake R, Tangl S, Heimel P, Apaza Alccayhuaman KA, et al. . miRNA-21 Deficiency Impairs Alveolar Socket Healing in Mice. J Periodontol (2020) 91(12):1664–72. 10.1002/JPER.19-0567 PubMed DOI PMC
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PloS Biol (2010) 8:e1000412. 10.1371/journal.pbio.1000412 PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. . Fiji: An Open-Source Platform for Biological-Image Analysis. Nat Methods (2012) 9:676–82. 10.1038/nmeth.2019 PubMed DOI PMC
Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ Ecosystem: An Open Platform for Biomedical Image Analysis. Mol Reprod Dev (2015) 82:518–29. 10.1002/mrd.22489 PubMed DOI PMC
Donath K, Breuner G. A Method for the Study of Undecalcified Bones and Teeth With Attached Soft Tissues. The Sage-Schliff (Sawing and Grinding) Technique. J Oral Pathol (1982) 11:318–26. 10.1111/j.1600-0714.1982.tb00172.x PubMed DOI
Svandova E, Sadoine J, Vesela B, Djoudi A, Lesot H, Poliard A, et al. . Growth-Dependent Phenotype in FasL-Deficient Mandibular/Alveolar Bone. J Anat (2019) 235:256–61. 10.1111/joa.13015 PubMed DOI PMC
Svandova E, Vesela B, Lesot H, Sadoine J, Poliard A, Matalova E. Fasl Modulates Expression of Mmp2 in Osteoblasts. Front Physiol (2018) 9:1314. 10.3389/fphys.2018.01314 PubMed DOI PMC
Kim HN, Ponte F, Nookaew I, Ucer Ozgurel S, Marques-Carvalho A, Iyer S, et al. . Estrogens Decrease Osteoclast Number by Attenuating Mitochondria Oxidative Phosphorylation and ATP Production in Early Osteoclast Precursors. Sci Rep (2020) 10:11933. 10.1038/s41598-020-68890-7 PubMed DOI PMC
Vieira AE, Repeke CE, Ferreira Junior Sde B, Colavite PM, Biguetti CC, Oliveira RC, et al. . Intramembranous Bone Healing Process Subsequent to Tooth Extraction in Mice: Micro-Computed Tomography, Histomorphometric and Molecular Characterization. PloS One (2015) 10:e0128021. 10.1371/journal.pone.0128021 PubMed DOI PMC
Sivaraj KK, Adams RH. Blood Vessel Formation and Function in Bone. Development (2016) 143:2706–15. 10.1242/dev.136861 PubMed DOI
Chodorge M, Zuger S, Stirnimann C, Briand C, Jermutus L, Grutter MG, et al. . A Series of Fas Receptor Agonist Antibodies That Demonstrate an Inverse Correlation Between Affinity and Potency. Cell Death Differ (2012) 19:1187–95. 10.1038/cdd.2011.208 PubMed DOI PMC
Yang J, Jones SP, Suhara T, Greer JJ, Ware PD, Nguyen NP, et al. . Endothelial Cell Overexpression of Fas Ligand Attenuates Ischemia-Reperfusion Injury in the Heart. J Biol Chem (2003) 278:15185–91. 10.1074/jbc.M211707200 PubMed DOI
Scibetta AC, Morris ER, Liebowitz AB, Gao X, Lu A, Philippon MJ, et al. . Characterization of the Chondrogenic and Osteogenic Potential of Male and Female Human Muscle-Derived Stem Cells: Implication for Stem Cell Therapy. J Orthop Res (2019) 37:1339–49. 10.1002/jor.24231 PubMed DOI
He YX, Liu Z, Pan XH, Tang T, Guo BS, Zheng LZ, et al. . Deletion of Estrogen Receptor Beta Accelerates Early Stage of Bone Healing in a Mouse Osteotomy Model. Osteoporos Int (2012) 23:377–89. 10.1007/s00198-011-1812-x PubMed DOI
He YX, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, et al. . Impaired Bone Healing Pattern in Mice With Ovariectomy-Induced Osteoporosis: A Drill-Hole Defect Model. Bone (2011) 48:1388–400. 10.1016/j.bone.2011.03.720 PubMed DOI
Vasak C, Busenlechner D, Schwarze UY, Leitner HF, Munoz Guzon F, Hefti T, et al. . Early Bone Apposition to Hydrophilic and Hydrophobic Titanium Implant Surfaces: A Histologic and Histomorphometric Study in Minipigs. Clin Oral Implants Res (2014) 25:1378–85. 10.1111/clr.12277 PubMed DOI
Expression of osteogenic factors in FasL-deficient calvarial cells
FasL is a catabolic factor in alveolar bone homeostasis
Impact of FasL Stimulation on Sclerostin Expression and Osteogenic Profile in IDG-SW3 Osteocytes