Expression of osteogenic factors in FasL-deficient calvarial cells
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36545877
PubMed Central
PMC10069817
DOI
10.33549/physiolres.934945
PII: 934945
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace MeSH
- glykoproteiny * metabolismus MeSH
- kosti a kostní tkáň metabolismus MeSH
- myši MeSH
- osteoblasty MeSH
- osteogeneze * MeSH
- osteoklasty metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykoproteiny * MeSH
During bone development, FasL acts not only through the traditional apoptotic mechanism regulating the amount of bone-resorbing osteoclasts, but there is also growing evidence about its effect on cell differentiation. Expression of osteoblastic factors was followed in non differentiated and differentiating primary calvarial cells obtained from FasL-deficient (gld) mice. The gld cells showed decreased expression of the key osteoblastic molecules osteocalcin (Ocn), osteopontin (Opn), and alkaline phosphatase (Alpl) in both groups. Notably, receptor activator of nuclear factor kappa-B ligand (Rankl) was unchanged in non-differentiated gld vs. wild type (wt) cells but decreased in differentiating gld cells. Osteoprotegerin (Opg) in the gld samples was increased in both groups. Opg vs. Rankl expression levels favored Opg in the case of non-differentiated cells but Rankl in differentiating ones. These results expand information on the involvement of FasL in non-apoptotic cell pathways related to osteoblastogenesis and consequently also osteoclastogenesis and pathologies such as osteoporosis.
Zobrazit více v PubMed
Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30:180–192. doi: 10.1016/j.immuni.2009.01.001. PubMed DOI PMC
Kovacić N, Lukić IK, Grcević D, Katavić V, Croucher P, Marusić A. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis. J Immunol. 2007;178:3379–3389. doi: 10.4049/jimmunol.178.6.3379. PubMed DOI PMC
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–539. doi: 10.1038/cdd.2014.216. PubMed DOI PMC
Svandova E, Vesela B, Lesot H, Sadoine J, Poliard A, Matalova E. FasL modulates expression of Mmp2 in osteoblasts. Front Physiol. 2018;9:1314. doi: 10.3389/fphys.2018.01314. PubMed DOI PMC
Wang L, Liu S, Zhao Y, Liu D, Liu Y, Chen C, Karray S, Shi S, Jin Y. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ. 2015;22:1654–1664. doi: 10.1038/cdd.2015.14. PubMed DOI PMC
Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG pathway: A mechanism involved in exercise-induced bone remodeling. Biomed Res Int. 2020;2020:6910312. doi: 10.1155/2020/6910312. PubMed DOI PMC
Cohen PL, Eisenberg RA. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol. 1991;9:243–269. doi: 10.1146/annurev.iy.09.040191.001331. PubMed DOI
Katavić V, Lukić IK, Kovacić N, Grcević D, Lorenzo JA, Marusić A. Increased bone mass is a part of the generalized lymphoproliferative disorder phenotype in the mouse. J Immunol. 2003;170:1540–1547. doi: 10.4049/jimmunol.170.3.1540. PubMed DOI
Ayturk UM, Scollan JP, Goz Ayturk D, Sung Suh E, Vesprey A, Jacobsen CM, Divieti Pajevic P, Warman ML. Single-cell RNA sequencing of calvarial and long-bone endocortical cells. J Bone Miner Res. 2020;35:1981–1991. doi: 10.1002/jbmr.4052. PubMed DOI PMC
Jonason JH, O’Keefe RJ. Isolation and culture of neonatal mouse calvarial osteoblasts. Methods Mol Biol. 2014;1130:295–305. doi: 10.1007/978-1-62703-989-5_22. PubMed DOI PMC
Zhong ZA, Ethen NJ, Williams BO. Use of primary calvarial osteoblasts to evaluate the function of Wnt signaling in osteogenesis. Methods Mol Biol. 2016;1481:119–125. doi: 10.1007/978-1-4939-6393-5_13. PubMed DOI
Kobayashi Y, Udagawa N, Takahashi N. Action of RANKL and OPG for osteoclastogenesis. Crit Rev Eukaryot Gene Expr. 2009;19:61–72. doi: 10.1615/CritRevEukarGeneExpr.v19.i1.30. PubMed DOI
Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR. Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. J Theor Biol. 2010;262:306–316. doi: 10.1016/j.jtbi.2009.09.021. PubMed DOI
Marcadet L, Bouredji Z, Argaw A, Frenette J. The roles of RANK/RANKL/OPG in cardiac, skeletal, and smooth muscles in health and disease. Front Cell Dev Biol. 2022;10:903657. doi: 10.3389/fcell.2022.903657. PubMed DOI PMC
Svandova E, Sadoine J, Vesela B, Djoudi A, Lesot H, Poliard A, Matalova E. Growth-dependent phenotype in FasL-deficient mandibular/alveolar bone. J Anat. 2019;235:256–261. doi: 10.1111/joa.13015. PubMed DOI PMC
Kratochvilova A, Ramesova A, Vesela B, Svandova E, Lesot H, Gruber R, Matalova E. Impact of FasL stimulation on sclerostin expression and osteogenic profile in IDG-SW3 osteocytes. Biology (Basel) 2021;10:757. doi: 10.3390/biology10080757. PubMed DOI PMC
Apaza Alccayhuaman KA, Heimel P, Lee JS, Tangl S, Strauss FJ, Stähli A, Matalová E, Gruber R. FasL is required for osseous healing in extraction sockets in mice. Front Immunol. 2021;12:678873. doi: 10.3389/fimmu.2021.678873. PubMed DOI PMC
Liu W, Xu C, Zhao H, Xia P, Song R, Gu J, Liu X, Bian J, Yuan Y, Liu Z. Osteoprotegerin induces apoptosis of osteoclasts and osteoclast precursor cells via the Fas/Fas ligand pathway. PLoS One. 2015;10:e0142519. doi: 10.1371/journal.pone.0142519. PubMed DOI PMC
Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9:2073. doi: 10.3390/cells9092073. PubMed DOI PMC
Jones DR. A potential osteoporosis target in the FAS ligand/FAS pathway of osteoblast to osteoclast signaling. Ann Transl Med. 2015;3:189. doi: 10.3978/j.issn.2305-5839.2015.07.01. PubMed DOI PMC
Zofkova I, Blahos J. New molecules modulating bone metabolism - new perspectives in the treatment of osteoporosis. Physiol Res. 2017;66(Suppl 3):S341–S347. doi: 10.33549/physiolres.933720. PubMed DOI