FasL Modulates Expression of Mmp2 in Osteoblasts
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
30283358
PubMed Central
PMC6157335
DOI
10.3389/fphys.2018.01314
Knihovny.cz E-resources
- Keywords
- Fas ligand, Mmp2, intramembranous bone, non-apoptotic, osteogenesis,
- Publication type
- Journal Article MeSH
FasL is a well-known actor in the apoptotic pathways but recent reports have pointed to its important novel roles beyond cell death, as observed also for bone cells. This is supported by non-apoptotic appearance of FasL during osteogenesis and by significant bone alterations unrelated to apoptosis in FasL deficient (gld) mice. The molecular mechanism behind this novel role has not yet been revealed. In this report, intramembranous bone, where osteoblasts differentiate directly from mesenchymal precursors without intermediary chondrogenic step, was investigated. Mouse mandibular bone surrounding the first lower molar was used as a model. The stage where a complex set of bone cells (osteoblasts, osteocytes, osteoclasts) is first present during development was selected for an initial examination. Immunohistochemical staining detected FasL in non-apoptotic cells at this stage. Further, FasL deficient vs. wild type samples subjected to osteogenic PCR Array analysis displayed a significantly decreased expression of Mmp2 in gld bone. To examine the possibility of this novel FasL-Mmp2 relationship, intramembranous bone-derived osteoblastic cells (MC3T3-E1) were treated with anti-FasL antibody or rmFasL. Indeed, the FasL neutralization caused a decreased expression of Mmp2 and rmFasL added to the cells resulted in the opposite effect. Since Mmp2 -/- mice display age-dependent alterations in the intramembranous bone, early stages of gld mandibular bone were examined and age-dependent phenotype was confirmed also in gld mice. Taken together, the present in vivo and in vitro findings point to a new non-apoptotic function of FasL in bone development associated with Mmp2 expression.
Department of Physiology University of Veterinary and Pharmaceutical Sciences Brno Czechia
Faculté de Chirurgie Dentaire Université Paris Descartes Paris France
See more in PubMed
Alfaqeeh S. A., Gaete M., Tucker A. S. (2013). Interactions of the tooth and bone during development. J. Dent. Res. 92 1129–1135. 10.1177/0022034513510321 PubMed DOI
Blavier L., Delaisse J. M. (1995). Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. J. Cell Sci. 108 3649–3659. PubMed
Bouxsein M. L., Boyd S. K., Christiansen B. A., Guldberg R. E., Jepsen K. J., Müller R. (2010). Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25 1468–1486. 10.1002/jbmr.141 PubMed DOI
Delgado-Calle J., Amy Y., Bellido T. (2017). Role and mechanism of action of sclerostin in bone. Bone 96 29–37. 10.1016/j.bone.2016.10.007 PubMed DOI PMC
Feng P., Zhang H., Zhang Z., Dai X., Mao T., Fan Y., et al. (2016). The interaction of MMP-2/B7-H3 in human osteoporosis. Clin. Immunol. 162 118–124. 10.1016/j.clim.2015.11.009 PubMed DOI
Franz-Odendaal T. A. (2011). Induction and patterning of intramembranous bone. Front. Biosci. 16 2734–2746. 10.2741/3882 PubMed DOI
Gack S., Vallon R., Schmidt J., Grigoriadis A., Tuckermann J., Schenkel J., et al. (1995). Expression of interstitial collagenase during skeletal development of the mouse is restricted to osteoblast-like cells and hypertrophic chondrocytes. Cell Growth Differ. 6 759–767. PubMed
Glass D. A., Bialek P., Ahn J. D., Starbuck M., Patel M. S., Clevers H., et al. (2005). Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8 751–764. 10.1016/j.devcel.2005.02.017 PubMed DOI
Griffith T. S., Brunner T., Fletcher S. M., Green D. R., Ferguson T. A. (1995). Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270 1189–1192. 10.1126/science.270.5239.1189 PubMed DOI
Hatakeyama S., Tomichi N., Ohara-Nemoto Y., Satoh M. (2000). The immunohistochemical localization of Fas and Fas ligand in jaw bone and tooth germ of human fetuses. Calcif. Tissue Int. 66 330–337. 10.1007/s002230010069 PubMed DOI
Inoue K., Mikuni-Takagaki Y., Oikawa K., Itoh T., Inada M., Noguchi T., et al. (2006). Crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J. Biol. Chem. 281 33814–33824. 10.1074/jbc.M607290200 PubMed DOI
Josefsen D., Myklebust J. H., Lynch D. H., Stokke T., Blomhoff H. K., Smeland E. B. (1999). Fas ligand promotes cell survival of immature human bone marrow CD34 + CD38- hematopoietic progenitor cells by suppressing apoptosis. Exp. Hematol. 27 1451–1459. 10.1016/S0301-472X(99)00073-9 PubMed DOI
Katavic V., Lukic I. K., Kovacic N., Grcevic D., Lorenzo J. A., Marusic A. (2003). Increased bone mass is a part of the generalized lymphoproliferative disorder phenotype in the mouse. J. Immunol. 170 1540–1547. 10.4049/jimmunol.170.3.1540 PubMed DOI
Kawakami A., Eguchi K., Matsuoka N., Tsuboi M., Koji T., Urayama S., et al. (1997). Fas and Fas ligand interaction is necessary for human osteoblast apoptosis. J. Bone Miner. Res. 12 1637–1646. 10.1359/jbmr.1997.12.10.1637 PubMed DOI
Kovacic N., Grcevic D., Katavic V., Lukic I. K., Marusic A. (2010). Targeting Fas in osteoresorptive disorders. Expert Opin. Ther. Targets 14 1121–1134. 10.1517/14728222.2010.522347 PubMed DOI PMC
Kovacic N., Lukic I. K., Grcevic D., Katavic V., Croucher P., Marusic A. (2007). The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis. J. Immunol. 178 3379–3389. 10.4049/jimmunol.178.6.3379 PubMed DOI PMC
Krum S. A., Miranda-Carboni G. A., Hauschka P. V., Carroll J. S., Lane T. F., Freedman L. P., et al. (2008). Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J. 27 535–545. 10.1038/sj.emboj.7601984 PubMed DOI PMC
Kusano K., Miyaura C., Inada M., Tamura T., Ito A., Nagase H., et al. (1998). Regulation of matrix metalloproteinases (MMP-2, -3, -9, and -13) by interleukin-1 and interleukin-6 in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 139 1338–1345. 10.1210/endo.139.3.5818 PubMed DOI
Mizutani A., Sugiyama I., Kuno E., Matsunaga S., Tsukagoshi N. (2001). Expression of matrix metalloproteinases during ascorbate-induced differentiation of osteoblastic MC3T3-E1 cells. J. Bone Miner. Res. 162043–2049. 10.1359/jbmr.2001.16.11.2043 PubMed DOI
Nakamura T., Imai Y., Matsumoto T., Sato S., Takeuchi K., Igarashi K., et al. (2007). Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130 811–823. 10.1016/j.cell.2007.07.025 PubMed DOI
Ozeki N., Mogi M., Nakamura H., Togari A. (2002). Differential expression of the Fas-Fas ligand system on cytokine-induced apoptotic cell death in mouse osteoblastic cells. Arch. Oral Biol. 47 511–517. 10.1016/S0003-9969(02)00035-3 PubMed DOI
Park H., Jung Y. K., Park O. J., Lee Y. J., Choi J. Y., Choi Y. (2005). Interaction of Fas ligand and Fas expressed on osteoclast precursors increases osteoclastogenesis. J. Immunol. 175 7193–7201. 10.4049/jimmunol.175.11.7193 PubMed DOI
Rippo M. R., Babini L., Prattichizzo F., Graciotti L., Fulgenzi G., Tomassoni Ardori F., et al. (2013). Low FasL levels promote proliferation of human bone marrow-derived mesenchymal stem cells, higher levels inhibit their differentiation into adipocytes. Cell Death Dis. 4:e594. 10.1038/cddis.2013.115 PubMed DOI PMC
Stetler-Stevenson W. G. (1999). Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103 1237–1241. 10.1172/JCI6870 PubMed DOI PMC
Suda T., Takahashi T., Golstein P., Nagata S. (1993). Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75 1169–1178. 10.1016/0092-8674(93)90326-L PubMed DOI
Svandova E., Lesot H., Vanden Berghe T., Tucker A. S., Sharpe P. T., Vandenabeele P., et al. (2014). Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 5:e1366. 10.1038/cddis.2014.330 PubMed DOI PMC
Svandova E., Vesela B., Tucker A. S., Matalova E. (2018). Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front. Physiol. 9:174. 10.3389/fphys.2018.00174 PubMed DOI PMC
Tsutsui H., Nakanishi K., Matsui K., Higashino K., Okamura H., Miyazawa Y., et al. (1996). IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J. Immunol. 1573967–3973. PubMed
Udagawa N., Takahashi N., Jimi E., Matsuzaki K., Tsurukai T., Itoh K., et al. (1999). Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor. Bone 25 517–523. 10.1016/S8756-3282(99)00210-0 PubMed DOI
Wang L., Liu S., Zhao Y., Liu D., Liu Y., Chen C., et al. (2015). Osteoblast-induced osteoclast apoptosis by FAS ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ. 22 1654–1664. 10.1038/cdd.2015.14 PubMed DOI PMC
Wisniewski P., Ellert-Miklaszewska A., Kwiatkowska A., Kaminska B. (2010). Non-apoptotic Fas signaling regulates invasiveness of glioma cells and modulates MMP-2 activity via NFkappaB-TIMP-2 pathway. Cell. Signal. 22 212–220. 10.1016/j.cellsig.2009.09.016 PubMed DOI
Zhao W., Byrne M. H., Wang Y., Krane S. M. (2000). Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J. Clin. Investig. 106 941–949. 10.1172/JCI10158 PubMed DOI PMC
Expression of osteogenic factors in FasL-deficient calvarial cells
Impact of FasL Stimulation on Sclerostin Expression and Osteogenic Profile in IDG-SW3 Osteocytes
FasL Is Required for Osseous Healing in Extraction Sockets in Mice
Growth-dependent phenotype in FasL-deficient mandibular/alveolar bone