Apoptotic signaling in mouse odontogenesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
22204278
PubMed Central
PMC3275810
DOI
10.1089/omi.2011.0039
Knihovny.cz E-zdroje
- MeSH
- apoptóza * MeSH
- kaspasy genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- odontogeneze * MeSH
- signální transdukce * MeSH
- zubní zárodek cytologie embryologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kaspasy MeSH
Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members.
Zobrazit více v PubMed
Ahn Y. Sanderson B.W. Klein O.D. Krumlauf R. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development. 2010;127:3221–3231. PubMed PMC
Baratella L. Arana-Chavez V.E. Katchburian E. Apoptosis in the early involuting stellate reticulum of rat molar tooth germs. Anat. Embryol. 1999;200:49–54. PubMed
Bronckers A.L. Lyaruu D.M. Goei W. Litz M. Luo G. Karsenty G., et al. Nuclear DNA fragmentation during postnatal tooth development of mouse and hamster and during dentin repair in the rat. Eur. J. Oral. Sci. 1996;104:102–111. PubMed
Bronckers A.L. Goei S.W. Dumont E. Lyaruu D.M. Wöltgens J.H. Van Heerde W.L., et al. In situ detection of apoptosis in dental and periodontal tissues of the adult mouse using annexin-V-biotin. Histochem. Cell Biol. 2000;113:293–301. PubMed
Buchtova M. Handrigan G.R. Tucker A.S. Scott L. Town L. Fu K., et al. Initiation and patterning of the snake dental lamina are dependent on Sonic hedgehog signaling. Dev. Biol. 2008;319:132–145. PubMed
Catón J. Tucker A.S. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J. Anat. 2009;214:502–515. PubMed PMC
Cecconi F. Alvarez-Bolado G. Meyer B.I. Roth K.A. Gruss P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell. 1998;94:727–737. PubMed
Cerri P.S. Freymuller E. Katchburian E. Apoptosis in the early developing periodontium of rat molars. Anat. Rec. 2000;258:136–144. PubMed
Chlastakova I. Lungova V. Wells K. Tucker A.S. Radlanski R.J. Misek I., et al. Morphogenesis and bone integration of the mouse mandibular third molar. Eur. J. Oral Sci. 2011;119:265–273. PubMed
Cho S.W. Lee H.A. Cai J.L. Lee M.J. Kim J.Y. Ohshima H., et al. The primary enamel knot determines the position of the first buccal cusp in developing mice molars. Differentiation. 2007;75:441–451. PubMed
Cobourne M.T. Sharpe P.T. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Arch. Oral Biol. 2003;48:1–14. PubMed
Cobourne M.T. Sharpe P.T. Sonic hedgehog signaling and the developing tooth. Curr. Top. Dev. Biol. 2005;65:255–287. PubMed
Cobourne M.T. Sharpe P.T. Making up the numbers: the molecular control of mammalian dental formula. Semin. Cell. Dev. Biol. 2010;21:314–324. PubMed
Cobourne M.T. Hardcastle Z. Sharpe P.T. Sonic hedgehog regulates epithelial proliferation and cell survival in the developing tooth germ. J. Dent. Res. 2001;80:1974–1979. PubMed
Cohen G.M. Sun X.M. Fearnhead H. Macfarlane M. Brown D.G. Snowden R.T., et al. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J. Immunol. 1994;153:507–516. PubMed
Coin R. Kieffer S. Lesot H. Vonesch J.L. Ruch J.V. Inhibition of apoptosis in the primary enamel knot does not affect specific tooth crown morphogenesis in the mouse. Int. J. Dev. Biol. 2000;44:389–396. PubMed
Cui R.T. Nguyen T.T. Taube J.H. Stratton S.A. Feuerman M.H. Barton M.C. Family members p53 and p73 act together in chromatin modification and direct repression of alpha-fetoprotein transcription. J. Biol. Chem. 2005;280:39152–39160. PubMed
Deng C. Zhang P. Harper J.W. Elledge S.J. Leder P. Mice lacking p21 cIP11/WAf undergo normal development, but are defective in G1 checkpoint control. Cell. 1995;82:675–684. PubMed
Deveraux Q.L. Reed J.C. IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;13:239–252. PubMed
Diep L. Matalova E. Mitsiadis T.A. Tucker A.S. Contribution of the tooth bud mesenchyme to alveolar bone. J. Exp. Zool. Part B Mol. Dev. Evol. 2009;312B:510–517. PubMed
Donehower L.A. Harvey M. Slagle B.L. McArthur M.J. Montgomery C.A. Butel J.S., et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–221. PubMed
Doseff A.I. Apoptosis: the sculptor of development. Stem Cells Dev. 2004;13:473–483. PubMed
Du C. Fang M. Li Y. Li L. Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42. PubMed
Ekert P.G. Silke J. Hawkins C.J. Verhagen A.M. Vaux D.L. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J. Cell Biol. 2001;152:483–490. PubMed PMC
Elliot J. Scarpello J.H. Morgan N.G. Effects of tyrosine kinase inhibitors on cell death induced by sodium fluoride and pertusis toxin in the pancreatic beta-cell line, R1Nm5F. Br. J. Pharmacol. 2001;132:119–126. PubMed PMC
Fleischmannova J. Matalova E. Tucker A.S. Sharpe P.T. Mouse models of tooth abnormalities. Eur. J. Oral Sci. 2008;116:1–10. PubMed
Fleischmannova J. Matalova E. Sharpe P.T. Misek I. Radlanski R.J. Formation of the tooth–bone interface. J. Dent. Res. 2010;89:108–115. PubMed
French L.E. Hahne M. Viard I. Fas and Fas Ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and co-expression in adult tissues characterized by apoptotic cell turnover. J. Cell Biol. 1996;133:335–343. PubMed PMC
Goga Y. Chiba M. Shimizu Y. Mitani H. Compressive force induces osteoblast apoptosis via caspase-8. J. Dent. Res. 2006;85:240–244. PubMed
Goldberg M. Lasfargues J.J. Legrand J.M. Clinical testing of dental materials—histological considerations. J. Dent. 1994;22:25–28. PubMed
Golpon H.A. Fadok V.A. Taraseviciene-Stewart L. Scerbavicius R. Sauer C. Welte, et al. Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J. 2004;18:1716–1718. PubMed
Govorko D.K. Becic T. Vukojevic K. Mardesic-Brakus S. Biocina-Lukenda D. Saraga-Babic M. Spatial and temporal distribution of Ki-67 proliferation marker, Bcl-2 and Bax proteins in the developing human tooth. Arch. Oral Biol. 2010;55:1007–1016. PubMed
Handrigan G.R. Richman J.M. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snake and lizards (Squamata) Dev. Biol. 2010;337:171–186. PubMed
Hatakeyama S. Tomichi N. Ohara-Nemoto Y. Satoh M. The immunohistochemical localistaion of Fas and Fas ligand in jaw bone and tooth germ of human fetuses. Calcif. Tissue Int. 2000;66:330–337. PubMed
Headon D.J. Emmal S.A. Ferguson B.M. Tucker A.S. Justice M.J. Sharpe P.T., et al. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature. 2001;414:913–916. PubMed
Hengartner M.O. The biochemistry of apoptosis. Nature. 2000;407:770–776. PubMed
Hughes D.E. Boyce B.F. Apoptosis in bone physiology and disease. Mol. Pathol. 1997;50:132–137. PubMed PMC
Irmler M. Thome M. Hahne M. Schneider P. Hofmann K. Steiner V., et al. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388:190–195. PubMed
Jacinto-Alema L.F. Hernandez-Guerrero J.C. Trejo-Solıs C. Jimenez-Farfan M.D. Fernández-Presas A.M. In vitro effect of sodium fluoride on antioxidative enzymes and apoptosis during murine odontogenesis. J. Oral Pathol. Med. 2010;39:709–714. PubMed
Jernvall J. Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 2000;92:19–29. PubMed
Jernvall J. Åberg T. Kettunen P. Keranen S. Thesleff I. The life history of an embryonic signalling center: BMP-4 induces p-21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125:161–169. PubMed
Jernvall J. Keranen S.V.E. Thesleff I. Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc. Natl. Acad. Sci. USA. 2000;97:14444–14448. PubMed PMC
Kere J. Srivasta A.K. Montonen O. Zonana J. Thomas N. Ferguson B., et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by a mutation in a novel transmembrane protein. Nat. Genet. 1996;13:409–416. PubMed
Kerr J.F. Wyllie A.H. Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 1972;26:239–257. PubMed PMC
Kieffer S. Peterková R. Vonesch J.L. Ruch J.V. Peterka M. Lesot H. Morphogenesis of the lower incisor in the mouse from the bud to early bell stage. Int. J. Dev. Biol. 1999;43:531–539. PubMed
Kim J.Y. Cha Y.G. Cho S.W. Kim E.J. Lee M.J. Lee J.M., et al. Inhibition of apoptosis in early tooth development alters tooth shape and size. J. Dent. Res. 2006;85:530–535. PubMed
Kitamura C. Kimura K. Nakayama T. Toyoshima K. Terashita M. Primary and secondary induction of apoptosis in odontoblasts after cavity preparation of rat molars. J. Dent. Res. 2001;80:1530–1534. PubMed
Kobayashi Y. Hashimoto F. Miyamoto H. Kanaoka K. Miyazaki-Kawashita Y. Nakashima T., et al. Force-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor beta and osteoprotegerin expression. J. Bone Miner. Res. 2000;15:1924–1934. PubMed
Kondo S. Tamura Y. Bawden J.W. Tanase S. The immunohistochemical localization of Bax and Bcl-2 and their relation to apoptosis during amelogenesis in developing rat molars. Arch. Oral Biol. 2001;46:557–568. PubMed
Kuida K. Zheng T.S. Na S. Kuan C. Yang C.D. Karasumaya H., et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 1996;384:368–372. PubMed
Kuida K. Haydar T.F. Kuan C.Y. Gu Y. Taya C. Karasuyama H., et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell. 1998;94:325–337. PubMed
Kuranaga E. Caspase signaling in animal development. Dev. Growth Diff. 2011;53:137–148. PubMed
Lacasse E.C. Baird S. Korneluk R.G. Mackenzie A.E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene. 1998;17:3247–3259. PubMed
Lamkanfi M. Kanneganti T.D. Franchi L. Núńez G. Caspase-1 inflammasomes in infection and inflammation. J. Leukoc. Biol. 2007;82:1–6. PubMed
Lavrik I.N. Golks A. Krammer P.H. Caspases: pharmacological manipulation of cell death. J. Clin. Invest. 2005;115:2665–2672. PubMed PMC
Lechguer N.A. Kuchler-Bopp S. Hu B. Haïkel Y. Lesot H. Vascularization of engineered teeth. J. Dent. Res. 2008;87:1138–1143. PubMed
Lesot H. Vonesch J.L. Peterka M. Turecková J. Peterková R. Ruch J.V. Mouse molar morphogenesis revisited by threedimensional reconstruction. II. Spatial distribution of mitoses and apoptosis in cap to bell staged first and second upper molar teeth. Int. J. Dev. Biol. 1996;40:1017–1031. PubMed
Li L. Yuan G. Liu C. Zhang L. Zhang Y. Chen Y., et al. Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigal tooth ex vivo. Dev. Dyn. online March. 2011:15. PubMed PMC
Lungová V. Radlanski R.J. Tucker A.S. Renz H. Míšek I. Matalová E. Tooth-bone morphogenesis during postnatal stages of mouse first molar development. J. Anat. 2011;218:699–715. PubMed PMC
Luukko K. Loes S. Furmanek T. Fjeld K. Kvinnsland I.H. Kettunen P. Identification of a novel putative signaling center, the tertiary enamel knot in the postnatal mouse molar tooth. Mech. Dev. 2003;120:270–276. PubMed
Martin S.J. Green D.R. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995;82:349–352. PubMed
Martin S.J. Reutelingsperger C.P. McGahon A J. Rader J.A. Van Schie R.C. Laface D.M., et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 1995;182:1545–1556. PubMed PMC
Martins C.A. Rivero E.R.C. Dufloth R.M. Figueiredo C.P. Vieira D.S.C. Immunohistochemical detection of factors related to cellular proliferation and apoptosis in radicular and dentigerous cysts. J. Endod. 2011;37:36–39. PubMed
Matalova E. Tucker Sharpe P.T. Death in the life of a tooth. J. Dent. Res. 2004;83:11–16. PubMed
Matalova E. Tucker A.S. Misek I. Apoptosis-related factors (Fas receptor, Fas ligand, FADD) in early tooth development of the field vole (Microtus agrestis) Arch. Oral Biol. 2005;50:165–169. PubMed
Matalova E. Sharpe P.T. Lakhani S.A. Roth K.A. Flavell R.A. Setkova J., et al. Molar tooth development in caspase-3 deficient mice. Int. J. Dev. Biol. 2006;50:491–497. PubMed
Matalova E. Dubska L. Fleischmannova J. Chlastakova I. Janeckova E. Tucker A.S. Cell proliferation and apoptosis in the primary enamel knot measured by flow cytometry of laser microdissected symplex. Arch. Oral Biol. 2010;55:570–575. PubMed
Meier P. Finch A. Evan G. Apoptosis in development. Nature. 2000;407:796–801. PubMed
Mikkola M.L. p63 in skin appendage development. Cell Cycle. 2007;6:285–290. PubMed
Mills A.A. Zheng B. Wang X.J. Vogel H. Roop D.R. Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–713. PubMed
Mitsiadis T.A. Couble P. Dicou E. Rudkin B.B. Magloire H. Patterns of nerve growth factor (NGF) proNGF, and p75, NGF receptor expression in the rat incisor: comparison with expression in the molar. Differentiation. 1993;54:161–175. PubMed
Mitsiadis T.A. De Bari C. About I. Apoptosis in developmental and repair-related human tooth remodeling: a view from the inside. Exp. Cell Res. 2008;314:869–877. PubMed
Monteiro J. Day P. Duggal M. Morgan C. Pulpal status of human primary teeth with physiological root resorption. Int. J. Paediatr. Dent. 2009;19:16–25. PubMed
Montero J.A. Hurle J.M. Sculpturing digit shape by cell death. Apoptosis. 2010;15:365–375. PubMed
Montero J.A. Macias D. Ganan Y. Merino R. Chimal-Monroy J. Hurle J.M. Interactions between FGFs and BMPs in the control of programmed cell death in the developing limb. Int. J. Dev. Biol. 2001;45:S113–S114.
Moriguchi M. Yamada M. Miake Y. Yanagisawa T. Transforming growth factor beta inducible apoptotic cascade in epithelial cells during rat molar tooth eruptions. Anat. Sci. Int. 2010;85:92–101. PubMed
Munne P.M. Tummers M. Jarvinen E. Thesleff I. Jernvall J. Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesecnhyme in limiting tooth number. Development. 2009;136:393–402. PubMed
Nicholson D.W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Diff. 1999;6:1028–1042. PubMed
Nishikawa S. Sasaki F. Apoptosis of dental pulp cells and their elimination by macrophages and MHC class II-expressing dendritic cells. J. Histochem. Cytochem. 1999;47:303–312. PubMed
Ohazama A. Sharpe P.T. TNF signalling in tooth development. Curr. Opin. Genet. Dev. 2004;14:513–519. PubMed
Ohazama A. Haycraft C.J. Seppala M. Blackburn J. Ghafoor S. Cobourne M., et al. Primary cilia regulate Shh activity in the control of molar tooth number. Development. 2009;136:897–903. PubMed PMC
Peterkova R. Peterka M. Vonesch J.L. Ruch J.V. Multiple developmental origin of the upper incisor in mouse: histological and computer assisted 3D reconstruction. Int. J. Dev. Biol. 1993;37:581–588. PubMed
Peterkova R. Peterka M. Vonesch J.L. Tureckova J. Viriot L. Ruch J.V., et al. Correlation between apoptosis distribution and BMP-2 and BMP-4 expression in vestigial tooth primordia in mice. Eur. J. Oral Sc. 1998;106:667–670. PubMed
Peterkova R. Peterka M. Viriot L. Lesot H. Dentition development and budding morphogenesis. J. Craniofac. Genet. Dev. Biol. 2000;20:158–172. PubMed
Peterková R. Peterka L. Viriot L. Lessot H. Development of the vestigial tooth primordia as a part of mouse odontogenesis. Connect. Tissue Res. 2002;43:120–128. PubMed
Peterková R. Peterka M. Lesot H. The developing mouse dentition: a new tool for apoptosis study. Ann. N. Y. Acad. Sci. 2003;1010:453–466. PubMed
Peterkova R. Churava S. Lesot H. Rothova M. Prochazka J. Peterka M., et al. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. J. Exp. Zool. Part B Mol. Dev. Evol. 2009;312B:292–308. PubMed PMC
Piattelli A. Rubini C. Fioroni M. Ciavarelli L. De Fazio P. Bcl-2, p53, and MIB-1 in human adult dental pulp. J. Endod. 2000;26:225–227. PubMed
Pouliot F. Labrie C. Role of Smad1 and Smad4 in the induction of p21WAF1, Cip1 during bone morphogenetic protein-induced growth arrest in human breast cancer cells. J. Endocrinol. 2002;72:187–198. PubMed
Prochazka J. Pantalacci S. Churava S. Rothova M. Lambert A. Lesot H., et al. Patterning by heritage in mouse molar row development. Proc. Natl. Acad. Sci. USA. 2010;107:15497–15502. PubMed PMC
Pycroft J.M. Hann A. Moxham B.J. Apoptosis in the connective tissues of the periodontal ligament and gingivae of rat incisor and molar teeth at various stages of development. Connect. Tissue Res. 2002;43:265–279. PubMed
Ranger A.M. Malynn B.A. Kosmeyer S.J. Mouse model of cell death. Nat. Genet. 2001;28:113–118. PubMed
Ray C.A. Black R.A. Kronheim S.R. Greenstreet T.A. Sleath P.R. Salvesen G.S., et al. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell. 1992;69:597–604. PubMed
Riedl S.J. Renatus M. Schwarzenbacher R. Zhou Q. Sun C. Fesik S.W., et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell. 2001;104:791–800. PubMed
Robinson C. Connell S. Kirkham J. Brookes S.J. Shore R.C. Smith A.M. The effect of fluoride on the developing tooth. Caries Res. 2004;38:268–276. PubMed
Satchell P.G. Gutmann J.L. Witherspoon D.E. Apoptosis: an introduction for the endodontist. Int. Endod. J. 2003;36:237–245. PubMed
Savill J. Fadok V. Corpse clearance defines the meaning of cell death. Nature. 2000;407:784–788. PubMed
Savill J. Fadok V. Henson P. Haslety C. Phagocytic recognition of cells undergoing apoptosis. Immunol. Today. 1993;14:131–136. PubMed
Setkova J. Lesot H. Matalova E. Witter K. Matulova P. Misek I. Proliferation and apoptosis in early molar morphogenesis—voles as models in odontogenesis. Int. J. Dev. Biol. 2006;50:481–489. PubMed
Setkova J. Matalova E. Sharpe P.T. Misek I. Tucker A. Primary enamel knot cell death in Apaf-1 and caspase-9 deficient mice. Arch. Oral Biol. 2007;52:15–19. PubMed
Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell. 2002;9:459–470. PubMed
Shigemura N. Kiyoshima T. Sakai T. Matsuo K. Momoi T. Yamaza H., et al. Localization of activated caspase-3-positive and apoptotic cells in the developing tooth germ of the mouse lower forst molar. Histochem. J. 2001;33:253–258. PubMed
Slootweg P.J. de Weger R.A. Immunohistochemical demonstration of bcl-2 protein in human tooth germs. Arch. Oral Biol. 1994;39:545–550. PubMed
Smith C.E. Cellular and chemical events during enamel maturation. Crit. Rev. Oral Biol. Med. 1998;9:128–161. PubMed
Suliman A. Lam A. Datta R. Srivastava R.K. Intracellular mechanism of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene. 2001;20:2122–2133. PubMed
Sun C. Cai M. Gunasekera A.H. Meadows R.P. Wang H. Chen J., et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature. 1999;401:818–821. PubMed
Szymczyk K.H. Freeman T.A. Adams C.S. Srinivas V. Steinbeck M.J. Active caspase-3 is required for osteoclast differentiation. J. Cell. Physiol. 2006;209:836–844. PubMed
Takahashi R. Deveraux Q. Tamm I. Welsh K. Assamunt N. Salvesen G.S., et al. A single bir domain of xiap sufficient for inhibiting caspases. J. Biol. Chem. 1998;273:7787–7790. PubMed
Ten Cate A.R. Dentinogenesis. In: Ten Cate A.R., editor. Oral Histology: Development, Structure, and Function. 5th. CV Mosby; St. Louis, MO: 1998. pp. 128–149.
Tsuchiya M. Sharma R. Tye C.E. Sugiyama T. Bartlett J.D. Transforming growth factor-b1 expression is up-regulated in maturation-stage enamel organ and may induce ameloblast apoptosis. Eur. J. Oral Sci. 2009;117:105–112. PubMed PMC
Tucker A.S. Sharpe P.T. Molecular genetics of tooth morphogenesis and patterning, the right shape in the right place. J. Dent. Res. 1999;78:826–834. PubMed
Tucker A. Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat. Rev. Genet. 2004;5:499–508. PubMed
Tucker A.S. Headon D.J. Schneider P. Ferguson B.M. Overbeek P. Tschopp J., et al. Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis. Development. 2000;127:4691–4700. PubMed
Tureckova J. Lesot H. Vonesh J.L. Peterka M. Peterková R. Ruch J.V. Apoptosis is involved in disapearance of the diastemal dental primordia in mouse embryo. Int. J. Dev. Biol. 1996;40:483–489. PubMed
Vaahtokari A. Åberg T. Thesleff I. Apoptosis in developing tooth: association with an embryonic signalling center and suppression of EGF and FGF-4. Development. 1996;122:121–129. PubMed
Varfolomeev E.E. Schuchmann M. Luria V. Chiannilkulchai N. Beckmann J.S. Mett I.L., et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1 and DR3 and is lethal prenatally. Immunity. 1998;9:267–276. PubMed
Verhagen A.M. Ekert P.G. Pakusch M. Silke J. Connolly L.M. Reid G.E., et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000;102:43–53. PubMed
Watanabe-Fukunaga R. Brannan C.I. Itoh N. Yonehara S. Copeland N.G. Jenkins N. A., et al. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 1992;148:1274–1279. PubMed
Wood D.E. Newcomb E.W. Cleavage of Bax enhances its cell death function. Exp. Cell Res. 2000;256:375–382. PubMed
Yoshioka C. Muraki Y. Fukuda J. Haneji T. Kobayashi N. Identification of the Fas antigen in human gingiva. J. Dent. Res. 1996;75:1353–1357. PubMed
Zahradnicek O. Horacek I. Tucker A.S. Viperous fangs: molecular evidence for the infolding theory of venom-canal development. Mech. Dev. 2008;125:786–796. PubMed
Zakeri Z. Lockshin R.A. Criado-Rodrigues L.M. Martinez A.C. A generalized caspase inhibitor disrupts early mammalian development. Int J. Dev. Biol. 2005;49:43–47. PubMed
Zhang W. Ju J. Gronowicz G. Odontoblast-targeted Bcl-2 overexpression impairs dentin formation. J. Cell. Biochem. 2010;111:425–432. PubMed PMC
Zheng T.S. Hunot S. Kuida K. Flavell R.A. Caspase knockouts: matters of life and death. Cell Death Diff. 1999;6:1043–1053. PubMed
Zheng X.M. Resnick R.J. Shalloway D. A phosphotyrosine displacement mechanism for activation of Src by PTP. EMBO J. 2000;19:964–978. PubMed PMC
Zimmermann K.C. Bonzon C. Green D.R. The machinery of programmed cell death. Pharmacol. Ther. 2001;92:57–70. PubMed
Zou H. Henzel W.J. Liu X. Lutschg A. Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405–413. PubMed