BK Polyomavirus Infection of Bladder Microvascular Endothelial Cells Leads to the Activation of the cGAS-STING Pathway
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
This study was supported by the project National Institute of Virology and Bacteriology (Program EXCELES, ID Project No. LX22NPO5103) - Funded by the European Union - Next Generation EU.
PubMed
39487659
PubMed Central
PMC11600483
DOI
10.1002/jmv.70038
Knihovny.cz E-zdroje
- Klíčová slova
- BK polyomavirus, BKPyV reservoir cells, STING, cGAS, interferon response,
- MeSH
- endoteliální buňky * virologie MeSH
- interferony metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- membránové proteiny metabolismus genetika MeSH
- močový měchýř * virologie MeSH
- nukleotidyltransferasy metabolismus genetika MeSH
- polyomavirové infekce virologie imunologie MeSH
- replikace viru MeSH
- signální transdukce * MeSH
- virion MeSH
- virus BK * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cGAS protein, human MeSH Prohlížeč
- interferony MeSH
- membránové proteiny MeSH
- nukleotidyltransferasy MeSH
- STING1 protein, human MeSH Prohlížeč
BK polyomavirus (BKPyV) infection in humans is usually asymptomatic but ultimately results in viral persistence. In immunocompromised hosts, virus reactivation can lead to nephropathy or hemorrhagic cystitis. The urinary tract serves as a silent reservoir for the virus. Recently, it has been demonstrated that human bladder microvascular endothelial cells (HBMVECs) serve as viral reservoirs, given their unique response to infection, which involves interferon (IFN) production. The aim of the present study was to better understand the life cycle of BKPyV in HBMVECs, uncover the molecular pathway leading to IFN production, and to identify the connection between the viral life cycle and the activation of the IFN response. Here, in the early stage of infection, BKPyV virions were found in internalized monopinocytic vesicles, while later they were detected in late endosomes, lysosomes, tubuloreticular structures, and vacuole-like vesicles. The production of viral progeny in these cells started at 36 h postinfection. Increased cell membrane permeability and peaks of virion release coincided with the leakage of viral and cellular DNA into the cytosol at approximately 60 h postinfection. Leaked DNA colocalized with and activated cGAS, leading to the activation of STING and the consequent transcription of IFNB and IFN-related genes; in contrast, the IFN response was attenuated by exposure to the cGAS inhibitor, G140. These findings highlight the importance of the cGAS-STING pathway in the innate immune response of HBMVECs to BKPyV.
Zobrazit více v PubMed
Polyomaviridae Study Group of the International Committee on Taxonomy of Viruses ; Calvignac‐Spencer S., Feltkamp M. C. W., Daugherty M. D., et al., “A Taxonomy Update for the Family Polyomaviridae,” Archives of Virology 161, no. 6 (2016): 1739–1750. PubMed
Kamminga S., van der Meijden E., Pesavento P., Buck C. B., and Feltkamp M. C. W., “Serology Identifies LIPyV as a Feline Rather Than a Human Polyomavirus,” Viruses 15, no. 7 (2023): 1546. PubMed PMC
Kean J. M., Rao S., Wang M., and Garcea R. L., “Seroepidemiology of Human Polyomaviruses,” PLoS Pathogens 5, no. 3 (2009): e1000363. PubMed PMC
Brown P., Tsai T., and Gajdusek D. C., “Seroepidemiology of Human Papovaviruses,” American Journal of Epidemiology 102, no. 4 (1975): 331–340. PubMed
Gardner S. D., “Prevalence in England of Antibody to Human Polyomavirus (B.k.),” British Medical Journal 1, no. 5845 (1973): 77–78. PubMed PMC
Mäntyjärvi R. A., Meurman O. H., Vihma L., and Berglund B., “A Human Papovavirus (B.K.), Biological Properties and Seroepidemiology,” Annals of Clinical Research 5, no. 5 (1973): 283–287. PubMed
Dalianis T. and Hirsch H. H., “Human Polyomaviruses in Disease and Cancer,” Virology 437, no. 2 (2013): 63–72. PubMed
Egli A., Infanti L., Dumoulin A., et al., “Prevalence of Polyomavirus BK and JC Infection and Replication in 400 Healthy Blood Donors,” Journal of Infectious Diseases 199, no. 6 (2009): 837–846. PubMed
Randhawa P. S., Finkelstein S., Scantlebury V., et al., “Human Polyoma Virus‐Associated Interstitial Nephritis in the Allograft Kidney,” Transplantation 67, no. 1 (1999): 103–109. PubMed
Ambalathingal G. R., Francis R. S., Smyth M. J., Smith C., and Khanna R., “BK Polyomavirus: Clinical Aspects, Immune Regulation, and Emerging Therapies,” Clinical Microbiology Reviews 30, no. 2 (2017): 503–528. PubMed PMC
Purighalla R., Shapiro R., McCauley J., and Randhawa P., “BK Virus Infection in a Kidney Allograft Diagnosed by Needle Biopsy,” American Journal of Kidney Diseases 26, no. 4 (1995): 671–673. PubMed
Helle F., Brochot E., Handala L., et al., “Biology of the Bkpyv: An Update,” Viruses 9, no. 11 (2017): 327. PubMed PMC
Low J., Humes H. D., Szczypka M., and Imperiale M., “BKV and SV40 Infection of Human Kidney Tubular Epithelial Cells in Vitro,” Virology 323, no. 2 (2004): 182–188. PubMed
Neu U., Allen S. A., Blaum B. S., et al., “A Structure‐Guided Mutation in the Major Capsid Protein Retargets BK Polyomavirus,” PLoS Pathogens 9, no. 10 (2013): e1003688. PubMed PMC
Low J. A., Magnuson B., Tsai B., and Imperiale M. J., “Identification of Gangliosides GD1b and GT1b as Receptors for BK Virus,” Journal of Virology 80, no. 3 (2006): 1361–1366. PubMed PMC
Sinibaldi L., Goldoni P., Pietropaolo V., Longhi C., and Orsi N., “Involvement of Gangliosides in the Interaction Between BK Virus and Vero Cells,” Archives of Virology 113–113, no. 3–4 (1990): 291–296. PubMed
Eash S., Querbes W., and Atwood W. J., “Infection of Vero Cells by BK Virus Is Dependent on Caveolae,” Journal of Virology 78, no. 21 (2004): 11583–11590. PubMed PMC
Moriyama T. and Sorokin A., “Intracellular Trafficking Pathway of BK Virus in Human Renal Proximal Tubular Epithelial Cells,” Virology 371, no. 2 (2008): 336–349. PubMed PMC
Zhao L., Marciano A. T., Rivet C. R., and Imperiale M. J., “Caveolin‐ and Clathrin‐Independent Entry of BKPyV Into Primary Human Proximal Tubule Epithelial Cells,” Virology 492 (2016): 66–72. PubMed PMC
Zhao L. and Imperiale M. J., “Identification of Rab18 as an Essential Host Factor for BK Polyomavirus Infection Using a Whole‐Genome RNA Interference Screen,” mSphere 2, no. 4 (2017): e00291‐17. PubMed PMC
Jiang M., Abend J. R., Tsai B., and Imperiale M. J., “Early Events during BK Virus Entry and Disassembly,” Journal of Virology 83, no. 3 (2009): 1350–1358. PubMed PMC
Geiger R., Andritschke D., Friebe S., et al., “BAP31 and BiP Are Essential for Dislocation of SV40 From the Endoplasmic Reticulum to the Cytosol,” Nature Cell Biology 13, no. 11 (2011): 1305–1314. PubMed
Huérfano S., Ryabchenko B., Španielová H., and Forstová J., “Hydrophobic Domains of Mouse Polyomavirus Minor Capsid Proteins Promote Membrane Association and Virus Exit From the ER,” FEBS Journal 284, no. 6 (2017): 883–902. PubMed
Rainey‐Barger E. K., Magnuson B., and Tsai B., “A Chaperone‐Activated Nonenveloped Virus Perforates the Physiologically Relevant Endoplasmic Reticulum Membrane,” Journal of Virology 81, no. 23 (2007): 12996–13004. PubMed PMC
Magnuson B., Rainey E. K., Benjamin T., Baryshev M., Mkrtchian S., and Tsai B., “ERp29 Triggers a Conformational Change in Polyomavirus to Stimulate Membrane Binding,” Molecular Cell 20, no. 2 (2005): 289–300. PubMed
Daniels R., Rusan N. M., Wadsworth P., and Hebert D. N., “SV40 VP2 and VP3 Insertion Into ER Membranes Is Controlled by the Capsid Protein VP1: Implications for DNA Translocation out of the ER,” Molecular Cell 24, no. 6 (2006): 955–966. PubMed
Bennett S. M., Zhao L., Bosard C., and Imperiale M. J., “Role of a Nuclear Localization Signal on the Minor Capsid Proteins VP2 and VP3 in BKPyV Nuclear Entry,” Virology 474 (2015): 110–116. PubMed PMC
Greber U. F. and Kasamatsu H., “Nuclear Targeting of SV40 and Adenovirus,” Trends in Cell Biology 6, no. 5 (1996): 189–195. PubMed
Soldatova I., Prilepskaja T., Abrahamyan L., Forstová J., and Huérfano S., “Interaction of the Mouse Polyomavirus Capsid Proteins With Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus,” Viruses 10, no. 4 (2018): 165. PubMed PMC
Handala L., Blanchard E., Raynal P. I., et al., “BK Polyomavirus Hijacks Extracellular Vesicles for En Bloc Transmission,” Journal of Virology 94, no. 6 (2020): e01834‐19. PubMed PMC
Evans G. L., Caller L. G., Foster V., and Crump C. M., “Anion Homeostasis Is Important for Non‐Lytic Release of BK Polyomavirus From Infected Cells,” Open Biology 5, no. 8 (2015): 150041. PubMed PMC
Manzetti J., Weissbach F. H., Graf F. E., et al., “BK Polyomavirus Evades Innate Immune Sensing by Disrupting the Mitochondrial Network and Promotes Mitophagy,” iScience 23, no. 7 (2020): 101257. PubMed PMC
An P., Sáenz Robles M. T., Duray A. M., Cantalupo P. G., and Pipas J. M., “Human Polyomavirus BKV Infection of Endothelial Cells Results in Interferon Pathway Induction and Persistence,” PLOS Pathogens 15, no. 1 (2019): e1007505. PubMed PMC
Caller L. G., Davies C. T. R., Antrobus R., Lehner P. J., Weekes M. P., and Crump C. M., “Temporal Proteomic Analysis of BK Polyomavirus Infection Reveals Virus‐Induced G2 Arrest and Highly Effective Evasion of Innate Immune Sensing,” Journal of Virology 93, no. 16 (2019): e00595‐19. PubMed PMC
Ryabchenko B., Soldatova I., Šroller V., Forstová J., and Huérfano S., “Immune Sensing of Mouse Polyomavirus DNA by p204 and cGAS DNA Sensors,” FEBS Journal 288, no. 20 (2021): 5964–5985. PubMed PMC
Huérfano S., Šroller V., Bruštíková K., Horníková L., and Forstová J., “The Interplay Between Viruses and Host DNA Sensors,” Viruses 14, no. 4 (2022): 666. PubMed PMC
Ablasser A., Goldeck M., Cavlar T., et al., “cGAS Produces a 2'‐5'‐Linked Cyclic Dinucleotide Second Messenger That Activates STING,” Nature 498, no. 7454 (2013): 380–384. PubMed PMC
Ishikawa H. and Barber G. N., “Sting Is an Endoplasmic Reticulum Adaptor That Facilitates Innate Immune Signalling,” Nature 455, no. 7213 (2008): 674–678. PubMed PMC
Lorentzen E. M., Henriksen S., and Rinaldo C. H., “Modelling BK Polyomavirus Dissemination and Cytopathology Using Polarized Human Renal Tubule Epithelial Cells,” PLoS Pathogens 19, no. 8 (2023): e1011622. PubMed PMC
Du M. and Chen Z. J., “DNA‐Induced Liquid Phase Condensation of cGAS Activates Innate Immune Signaling,” Science 361, no. 6403 (2018): 704–709. PubMed PMC
Lama L., Adura C., Xie W., et al., “Development of Human cGAS‐Specific Small‐Molecule Inhibitors for Repression of dsDNA‐Triggered Interferon Expression,” Nature Communications 10, no. 1 (2019): 2261. PubMed PMC
Drachenberg C. B., Papadimitriou J. C., Wali R., Cubitt C. L., and Ramos E., “BK Polyoma Virus Allograft Nephropathy: Ultrastructural Features From Viral Cell Entry to Lysis,” American Journal of Transplantation 3, no. 11 (2003): 1383–1392. PubMed
Chen X. T., Deng R. H., Yang S. C., et al., “Pathological Characteristics of BK Polyomavirus‐Associated Nephropathy With Glomerular Involvement,” Annals of Translational Medicine 8, no. 15 (2020): 923. PubMed PMC
Yang A. H., Lin B. S., Kuo K. L., Chang C. C., Ng Y. Y., and Yang W. C., “The Clinicopathological Implications of Endothelial Tubuloreticular Inclusions Found in Glomeruli Having Histopathology of Idiopathic Membranous Nephropathy,” Nephrology Dialysis Transplantation 24, no. 11 (2009): 3419–3425. PubMed
Clayson E. T., Brando L. V., and Compans R. W., “Release of Simian Virus 40 Virions From Epithelial Cells Is Polarized and Occurs Without Cell Lysis,” Journal of Virology 63, no. 5 (1989): 2278–2288. PubMed PMC
Bagchi P., Liu X., Cho W. J., and Tsai B., “Lunapark‐Dependent Formation of a Virus‐Induced ER Exit Site Contains Multi‐Tubular ER Junctions That Promote Viral ER‐to‐Cytosol Escape,” Cell Reports 37, no. 10 (2021): 110077. PubMed PMC
Garcia G., Zhang H., Moreno S., et al., “Lipid Homeostasis Is Essential for a Maximal ER Stress Response,” eLife 12 (2023): e83884. PubMed PMC
Zhao G. D., Gao R., Hou X. T., et al., “Endoplasmic Reticulum Stress Mediates Renal Tubular Vacuolation in BK Polyomavirus‐Associated Nephropathy,” Frontiers in Endocrinology 13 (2022): 834187. PubMed PMC
Horníková L., Žíla V., Španielová H., and Forstová J., “Mouse Polyomavirus: Propagation, Purification, Quantification, and Storage,” Current Protocols in Microbiology 38 (2015): 14F.11.11‐26. PubMed