Immune sensing of mouse polyomavirus DNA by p204 and cGAS DNA sensors
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33969628
PubMed Central
PMC8596513
DOI
10.1111/febs.15962
Knihovny.cz E-zdroje
- Klíčová slova
- cGAS sensor, immune sensing of DNA, mouse polyomavirus, p204 sensor, pattern recognition receptors,
- MeSH
- DNA virů genetika imunologie MeSH
- fosfoproteiny antagonisté a inhibitory genetika metabolismus MeSH
- fosforylace MeSH
- infekce onkogenními viry imunologie virologie MeSH
- interakce hostitele a patogenu MeSH
- interferon beta metabolismus MeSH
- jaderné proteiny antagonisté a inhibitory genetika metabolismus MeSH
- membránové proteiny antagonisté a inhibitory genetika metabolismus MeSH
- myši MeSH
- nukleotidyltransferasy antagonisté a inhibitory genetika metabolismus MeSH
- polyomavirové infekce imunologie virologie MeSH
- Polyomavirus genetika imunologie MeSH
- přirozená imunita imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cGAS protein, mouse MeSH Prohlížeč
- DNA virů MeSH
- fosfoproteiny MeSH
- Ifi16 protein, mouse MeSH Prohlížeč
- interferon beta MeSH
- jaderné proteiny MeSH
- membránové proteiny MeSH
- nukleotidyltransferasy MeSH
- Sting1 protein, mouse MeSH Prohlížeč
The mechanism by which DNA viruses interact with different DNA sensors and their connection with the activation of interferon (IFN) type I pathway are poorly understood. We investigated the roles of protein 204 (p204) and cyclic guanosine-adenosine synthetase (cGAS) sensors during infection with mouse polyomavirus (MPyV). The phosphorylation of IFN regulatory factor 3 (IRF3) and the stimulator of IFN genes (STING) proteins and the upregulation of IFN beta (IFN-β) and MX Dynamin Like GTPase 1 (MX-1) genes were detected at the time of replication of MPyV genomes in the nucleus. STING knockout abolished the IFN response. Infection with a mutant virus that exhibits defective nuclear entry via nucleopores and that accumulates in the cytoplasm confirmed that replication of viral genomes in the nucleus is required for IFN induction. The importance of both DNA sensors, p204 and cGAS, in MPyV-induced IFN response was demonstrated by downregulation of the IFN pathway observed in p204-knockdown and cGAS-knockout cells. Confocal microscopy revealed the colocalization of p204 with MPyV genomes in the nucleus. cGAS was found in the cytoplasm, colocalizing with viral DNA leaked from the nucleus and with DNA within micronucleus-like bodies, but also with the MPyV genomes in the nucleus. However, 2'3'-Cyclic guanosine monophosphate-adenosine monophosphate synthesized by cGAS was detected exclusively in the cytoplasm. Biochemical assays revealed no evidence of functional interaction between cGAS and p204 in the nucleus. Our results provide evidence for the complex interactions of MPyV and DNA sensors including the sensing of viral genomes in the nucleus by p204 and of leaked viral DNA and micronucleus-like bodies in the cytoplasm by cGAS.
Zobrazit více v PubMed
Cook L (2016) Polyomaviruses. Microbiol Spectr 4, 3–9. PubMed
Gheit T, Dutta S, Oliver J, Robitaille A, Hampras S, Combes J‐D, McKay‐Chopin S, Le Calvez‐Kelm F, Fenske N, Cherpelis B et al. (2017) Isolation and characterization of a novel putative human polyomavirus. Virology 506, 45–54. PubMed PMC
Feng H, Shuda M, Chang Y & Moore PS (2008) Clonal integration of a polyomavirus in human merkel cell carcinoma. Science 319, 1096–1100. PubMed PMC
Gardner SD, Field AM, Coleman DV & Hulme B (1971) New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1, 1253–1257. PubMed
van der Meijden E, Janssens RWA, Lauber C, Bouwes Bavinck JN, Gorbalenya AE & Feltkamp MCW (2010) Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog 6, e1001024. PubMed PMC
Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ & Dessel BH (1971) Cultivation of papova‐like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1, 1257–1260. PubMed
Viscidi RP, Rollison DE, Sondak VK, Silver B, Messina JL, Giuliano AR, Fulp W, Ajidahun A & Rivanera D (2011) Age‐specific seroprevalence of merkel cell polyomavirus, BK Virus, and JC virus. Clin Vaccine Immunol 18, 1737–1743. PubMed PMC
Hampras SS, Giuliano AR, Lin H‐Y, Fisher KJ, Abrahamsen ME, McKay‐Chopin S, Gheit T, Tommasino M & Rollison DE (2015) Natural history of polyomaviruses in men: the HPV infection in men (HIM) Study. J Infect Dis 211, 1437–1446. PubMed PMC
Nicol JTJ, Robinot R, Carpentier A, Carandina G, Mazzoni E, Tognon M, Touzé A & Coursaget P (2013) Age‐specific seroprevalences of merkel cell polyomavirus, human polyomaviruses 6, 7, and 9, and trichodysplasia spinulosa‐associated polyomavirus. Clin Vaccine Immunol 20, 363–368. PubMed PMC
Qin Q, EL Shwetank F, Maru S & Lukacher AE (2016) Type I interferons regulate the magnitude and functionality of mouse polyomavirus‐specific CD8 T cells in a virus strain‐dependent manner. J Virol 90, 5187–5199. PubMed PMC
Chen XS (1998) Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J 17, 3233–3240. PubMed PMC
Stehle T & Harrison SC (1996) Crystal structures of murine polyomavirus in complex with straight‐chain and branched‐chain sialyloligosaccharide receptor fragments. Structure 4, 183–194. PubMed
Carmichael G (2016) Gene regulation and quality control in murine polyomavirus infection. Viruses 8, 284. PubMed PMC
Jakobovits EB, Bratosin S & Aloni Y (1980) A nucleosome‐free region in SV40 minichromosomes. Nature 285, 263–265. PubMed
Saragosti S, Moyne G & Yaniv M (1980) Absence of nucleosomes in a fraction of SV40 chromatin between the origin of replication and the region coding for the late leader RNA. Cell 20, 65–73. PubMed
Varshavsky AJ, Sundin O & Bohn M (1979) A stretch of “late” SV40 viral DNA about 400 bp long which includes the origin of replication is specifically exposed in SV40 minichromosomes. Cell 16, 453–466. PubMed
Liebl D, Difato F, Hornikova L, Mannova P, Stokrova J & Forstova J (2006) Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11‐positive endosomes. J Virol 80, 4610–4622. PubMed PMC
Qian M, Cai D, Verhey KJ & Tsai B (2009) A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 5, e1000465. PubMed PMC
Zila V, Difato F, Klimova L, Huerfano S & Forstova J (2014) Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus. PLoS One 9, e96922. PubMed PMC
Huérfano S, Ryabchenko B, S\ˇpanielová H & Forstová J (2017) Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from the ER. FEBS J 284, 883–902. PubMed
Inoue T & Tsai B (2011) A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog 7, e1002037. PubMed PMC
Magnuson B, Rainey EK, Benjamin T, Baryshev M, Mkrtchian S & Tsai B (2005) ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20, 289–300. PubMed
Soldatova I, Prilepskaja T, Abrahamyan L, Forstová J & Huérfano S (2018) Interaction of the mouse polyomavirus capsid proteins with importins is required for efficient import of viral DNA into the cell nucleus. Viruses 10, 165. PubMed PMC
Chen L & Fluck M (2001) Kinetic analysis of the steps of the polyomavirus lytic cycle. J Virol 75, 8368–8379. PubMed PMC
Ahmad‐Nejad P, Häcker H, Rutz M, Bauer S, Vabulas RM & Wagner H (2002) Bacterial CpG‐DNA and lipopolysaccharides activate Toll‐like receptors at distinct cellular compartments. Eur J Immunol 32, 1958. PubMed
Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H & Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species‐specific CpG motif recognition. Proc Natl Acad Sci USA 98, 9237–9242. PubMed PMC
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al. (2000) A Toll‐like receptor recognizes bacterial DNA. Nature 408, 740–745. PubMed
Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K et al. (2007) DAI (DLM‐1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505. PubMed
Chiu Y‐H, MacMillan JB & Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces Type I interferons through the RIG‐I pathway. Cell 138, 576–591. PubMed PMC
Hornung V, Ablasser A, Charrel‐Dennis M, Bauernfeind F, Horvath G, DanielR C, Latz E & Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase‐1‐activating inflammasome with ASC. Nature 458, 514–518. PubMed PMC
Horan KA, Hansen K, Jakobsen MR, Holm CK, Soby S, Unterholzner L, Thompson M, West JA, Iversen MB, Rasmussen SB et al. (2013) Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J Immunol 190, 2311–2319. PubMed PMC
Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS et al. (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11, 997–1004. PubMed PMC
Zhu W, Liu P, Yu L, Chen Q, Liu Z, Yan K, Lee WM, Cheng CY & Han D (2014) p204‐Initiated Innate Antiviral Response in Mouse Leydig Cells1. Biol Reprod 91. PubMed
Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y & Cao X (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β‐catenin‐dependent pathway. Nat Immunol 11, 487–494. PubMed
Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, Lidie KB, Imamichi H, Huang D‐W, Lempicki RA, Baseler MW et al. (2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186, 4541–4545. PubMed PMC
Kim T, Pazhoor S, Bao M, Zhang Z, Hanabuchi S, Facchinetti V, Bover L, Plumas J, Chaperot L, Qin J et al. (2010) Aspartate‐glutamate‐alanine‐histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci USA 107, 15181–15186. PubMed PMC
Zhang Z, Yuan B, Bao M, Lu N, Kim T & Liu Y‐J (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12, 959–965. PubMed PMC
Sun L, Wu J, Du F, Chen X & Chen ZJ (2013) Cyclic GMP‐AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791. PubMed PMC
Wu J, Sun L, Chen X, Du F, Shi H, Chen C & Chen ZJ (2013) Cyclic GMP‐AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830. PubMed PMC
Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J & Cristea IM (2015) The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 11, 787. PubMed PMC
Li T, Diner BA, Chen J & Cristea IM (2012) Acetylation modulates cellular distribution and DNA sensing ability of interferon‐inducible protein IFI16. Proc Natl Acad Sci USA 109, 10558–10563. PubMed PMC
Orzalli MH, DeLuca NA & Knipe DM (2012) Nuclear IFI16 induction of IRF‐3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci USA 109, E3008–E3017. PubMed PMC
Storek KM, Gertsvolf NA, Ohlson MB & Monack DM (2015) cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella Infection. J Immunol 194, 3236–3245. PubMed PMC
Gentili M, Lahaye X, Nadalin F, Nader GPF, Puig Lombardi E, Herve S, De Silva NS, Rookhuizen DC, Zueva E, Goudot C et al. (2019) The N‐terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep 26, 2377–2393.e13. PubMed PMC
Stratmann SA, Morrone SR, van Oijen AM & Sohn J 2015) The innate immune sensor IFI16 recognizes foreign DNA in the nucleus by scanning along the duplex. eLife 4, e11721. PubMed PMC
Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, Jiang Y, Fei Y, Zhu C, Tan R et al. (2018) Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136. PubMed
Seo GJ, Kim C, Shin W‐J, Sklan EH, Eoh H & Jung JU (2018) TRIM56‐mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun 9, 613. PubMed PMC
Song B, Greco TM, Lum KK, Taber CE & Cristea IM (2020) The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling. Mol Cell Proteomics 19, 1193–1208. PubMed PMC
Volkman HE, Cambier S, Gray EE & Stetson DB (2019) Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife 8, e47491. PubMed PMC
Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ & Sohn J (2014) Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc Natl Acad Sci USA 111, E62–E71. PubMed PMC
Seo GJ, Yang A, Tan B, Kim S, Liang Q, Choi Y, Yuan W, Feng P, Park H‐S & Jung JU (2015) Akt kinase‐mediated checkpoint of cGAS DNA sensing pathway. Cell Rep 13, 440–449. PubMed PMC
Ni X, Ru H, Ma F, Zhao L, Shaw N, Feng Y, Ding W, Gong W, Wang Q, Ouyang S et al. (2016) New insights into the structural basis of DNA recognition by HINa and HINb domains of IFI16. J Mol Cell Biol 8, 51–61. PubMed
Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H & Kurumizaka H (2020) Structural basis for the inhibition of cGAS by nucleosomes. Science 370, 455–458. PubMed PMC
Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, Tian Y & Fan Z (2016) Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 17, 369–378. PubMed
Dai J, Huang Y‐J, He X, Zhao M, Wang X, Liu Z‐S, Xue W, Cai H, Zhan X‐Y, Huang S‐Y et al. (2019) Acetylation blocks cGAS activity and inhibits self‐DNA‐induced autoimmunity. Cell 176, 1447–1460.e14. PubMed PMC
Ansari MA, Dutta S, Veettil MV, Dutta D, Iqbal J, Kumar B, Roy A, Chikoti L, Singh VV & Chandran B (2015) Herpesvirus genome recognition induced acetylation of nuclear IFI16 is essential for its cytoplasmic translocation, inflammasome and IFN‐β responses. PLOS Pathog 11, e1005019. PubMed PMC
Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM & Knipe DM (2015) cGAS‐mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci USA 112, E1773–E1781. PubMed PMC
Fan X, Jiang J, Zhao D, Chen F, Ma H, Smith P, Unterholzner L, Xiao TS & Jin T (2021) Structural mechanism of DNA recognition by the p204 HIN domain. Nucleic Acids Res 49, 2959–2972. PubMed PMC
Lum KK, Howard TR, Pan C & Cristea IM (2019) Charge‐mediated pyrin oligomerization nucleates antiviral IFI16 sensing of herpesvirus DNA. MBio 10, e01428‐19. PubMed PMC
Almine JF, O’Hare CAJ, Dunphy G, Haga IR, Naik RJ, Atrih A, Connolly DJ, Taylor J, Kelsall IR, Bowie AG et al. (2017) IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun 8, 14392. PubMed PMC
Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu Y‐T, Grishin NV et al. (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630. PubMed
Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G et al. (2013) Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA‐activated cyclic GMP‐AMP synthase. Cell 153, 1094–1107. PubMed PMC
Huerfano S, Ryabchenko B & Forstová J (2013) Nucleofection of expression vectors induces a robust interferon response and inhibition of cell proliferation. DNA Cell Biol 32, 467–479. PubMed PMC
Semenova N, Bosnjak M, Markelc B, Znidar K, Cemazar M & Heller L (2019) Multiple cytosolic DNA sensors bind plasmid DNA after transfection. Nucleic Acids Res 47, 10235–10246. PubMed PMC
Hua K & Ferland RJ (2017) Fixation methods can differentially affect ciliary protein immunolabeling. Cilia 6, 5. PubMed PMC
Ma Z, Ni G & Damania B (2018) Innate sensing of DNA virus genomes. Annu Rev Virol 5, 341–362. PubMed PMC
Carbone M, Ascione G, Chichiarelli S, Garcia M‐I, Eufemi M & Amati P (2004) Chromosome‐Protein interactions in polyomavirus virions . J Virol 78, 513–519. PubMed PMC
Jiang M, Abend JR, Tsai B & Imperiale MJ (2009) Early events during BK virus entry and disassembly. J Virol 83, 1350–1358. PubMed PMC
Sun C, Luecke S, Bodda C, Jønsson KL, Cai Y, Zhang B‐C, Jensen SB, Nordentoft I, Jensen JM, Jakobsen MR et al. (2019) Cellular requirements for sensing and elimination of incoming HSV‐1 DNA and capsids. J Interferon Cytokine Res 39, 191–204. PubMed
Kumar S, Morrison JH, Dingli D & Poeschla E (2018) HIV‐1 activation of innate immunity depends strongly on the intracellular level of TREX1 and sensing of incomplete reverse transcription products. J Virol 92, e00001–18. PubMed PMC
Herrera FJ & Triezenberg SJ (2004) VP16‐dependent association of chromatin‐modifying coactivators and underrepresentation of histones at immediate‐early gene promoters during herpes simplex virus infection. J Virol 78, 9689–9696. PubMed PMC
Oh J & Fraser NW (2008) Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J Virol 82, 3530–3537. PubMed PMC
Dutta D, Dutta S, Veettil MV, Roy A, Ansari MA, Iqbal J, Chikoti L, Kumar B, Johnson KE & Chandran B (2015) BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon‐β responses. PLoS Pathog 11, e1005030. PubMed PMC
Iqbal J, Ansari MA, Kumar B, Dutta D, Roy A, Chikoti L, Pisano G, Dutta S, Vahedi S, Veettil MV et al. (2016) Histone H2B‐IFI16 recognition of nuclear herpesviral genome induces cytoplasmic interferon‐β responses. PLoS Pathog 12, e1005967. PubMed PMC
Diner BA, Lum KK, Toettcher JE & Cristea IM (2016) Viral DNA sensors IFI16 and cyclic GMP‐AMP synthase possess distinct functions in regulating viral gene expression, immune defenses, and apoptotic responses during herpesvirus, infection. MBio 7, e01553‐16. PubMed PMC
Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL, Jakobsen MR, Nevels MM, Bowie AG & Unterholzner L (2018) Non‐canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF‐κB signaling after nuclear DNA damage. Mol Cell 71, 745–760.e5. PubMed PMC
Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner K‐P, Ludwig J & Hornung V (2013) cGAS produces a 2′‐5′‐linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384. PubMed PMC
Glück S, Guey B, Gulen MF, Wolter K, Kang T‐W, Schmacke NA, Bridgeman A, Rehwinkel J, Zender L & Ablasser A (2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19, 1061–1070. PubMed PMC
Chen Q, Sun L & Chen ZJ (2016) Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 17, 1142–1149. PubMed
Zierhut C, Yamaguchi N, Paredes M, Luo J‐D, Carroll T & Funabiki H (2019) The Cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178, 302–315.e23. PubMed PMC
Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, Sohn J, Sung P & Gekara NO (2019) Chromatin‐bound cgas is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J 38, e102718. PubMed PMC
Mackenzie KJ, Carroll P, Martin C‐A, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A et al. (2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465. PubMed PMC
Cheong HSJ, Seth I, Joiner MC & Tucker JD (2013) Relationships among micronuclei, nucleoplasmic bridges and nuclear buds within individual cells in the cytokinesis‐block micronucleus assay. Mutagenesis 28, 433–440. PubMed
Raab M, Gentili M, de Belly H, Thiam H‐R, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon‐Dumenil A‐M, Manel N et al. (2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362. PubMed
Liu S, Kwon M, Mannino M, Yang N, Renda F, Khodjakov A & Pellman D (2018) Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555. PubMed PMC
Dey D, Dahl J, Cho S & Benjamin TL (2002) Induction and bypass of p53 during productive infection by polyomavirus. J Virol 76, 9526–9532. PubMed PMC
Justice JL, Needham JM & Thompson SR (2019) BK Polyomavirus Activates the DNA Damage Response To Prolong S Phase. J Virol 93, e00130–19, /jvi/93/14/JVI.00130‐19.atom. PubMed PMC
Huerfano S, Z\ˇíla V, Bouřa E, S\ˇpanielová H, S\ˇtokrová J & Forstová J (2010) Minor capsid proteins of mouse polyomavirus are inducers of apoptosis when produced individually but are only moderate contributors to cell death during the late phase of viral infection. FEBS J 277, 1270–1283. PubMed
Verma S, Ziegler K, Ananthula P, Co JKG, Frisque RJ, Yanagihara R & Nerurkar VR (2006) JC virus induces altered patterns of cellular gene expression: Interferon‐inducible genes as major transcriptional targets. Virology 345, 457–467. PubMed
An P, Sáenz Robles MT, Duray AM, Cantalupo PG & Pipas JM (2019) Human polyomavirus BKV infection of endothelial cells results in interferon pathway induction and persistence. PLoS Pathog 15, e1007505. PubMed PMC
Horníková L, Z\ˇíla V, S\ˇpanielová H & Forstová J (2015) Mouse polyomavirus: propagation, purification, quantification, and storage. Curr Protoc Microbiol 38, 14F.1.1–14F.1.26. PubMed
Nabbi A & Riabowol K (2015) Rapid isolation of nuclei from cells in vitro . Cold Spring Harb Protoc 2015, pdb.prot083733. PubMed
Solovei I & Cremer M (2010) 3D‐FISH on cultured cells combined with immunostaining. In Fluorescence in situ Hybridization (FISH) (Bridger JM & Volpi EV, eds), pp. 117–126.Humana Press, Totowa, NJ. PubMed
RefSeq
AF442959.1