Immune sensing of mouse polyomavirus DNA by p204 and cGAS DNA sensors

. 2021 Oct ; 288 (20) : 5964-5985. [epub] 20210526

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33969628

The mechanism by which DNA viruses interact with different DNA sensors and their connection with the activation of interferon (IFN) type I pathway are poorly understood. We investigated the roles of protein 204 (p204) and cyclic guanosine-adenosine synthetase (cGAS) sensors during infection with mouse polyomavirus (MPyV). The phosphorylation of IFN regulatory factor 3 (IRF3) and the stimulator of IFN genes (STING) proteins and the upregulation of IFN beta (IFN-β) and MX Dynamin Like GTPase 1 (MX-1) genes were detected at the time of replication of MPyV genomes in the nucleus. STING knockout abolished the IFN response. Infection with a mutant virus that exhibits defective nuclear entry via nucleopores and that accumulates in the cytoplasm confirmed that replication of viral genomes in the nucleus is required for IFN induction. The importance of both DNA sensors, p204 and cGAS, in MPyV-induced IFN response was demonstrated by downregulation of the IFN pathway observed in p204-knockdown and cGAS-knockout cells. Confocal microscopy revealed the colocalization of p204 with MPyV genomes in the nucleus. cGAS was found in the cytoplasm, colocalizing with viral DNA leaked from the nucleus and with DNA within micronucleus-like bodies, but also with the MPyV genomes in the nucleus. However, 2'3'-Cyclic guanosine monophosphate-adenosine monophosphate synthesized by cGAS was detected exclusively in the cytoplasm. Biochemical assays revealed no evidence of functional interaction between cGAS and p204 in the nucleus. Our results provide evidence for the complex interactions of MPyV and DNA sensors including the sensing of viral genomes in the nucleus by p204 and of leaked viral DNA and micronucleus-like bodies in the cytoplasm by cGAS.

Zobrazit více v PubMed

Cook L (2016) Polyomaviruses. Microbiol Spectr 4, 3–9. PubMed

Gheit T, Dutta S, Oliver J, Robitaille A, Hampras S, Combes J‐D, McKay‐Chopin S, Le Calvez‐Kelm F, Fenske N, Cherpelis B et al. (2017) Isolation and characterization of a novel putative human polyomavirus. Virology 506, 45–54. PubMed PMC

Feng H, Shuda M, Chang Y & Moore PS (2008) Clonal integration of a polyomavirus in human merkel cell carcinoma. Science 319, 1096–1100. PubMed PMC

Gardner SD, Field AM, Coleman DV & Hulme B (1971) New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1, 1253–1257. PubMed

van der Meijden E, Janssens RWA, Lauber C, Bouwes Bavinck JN, Gorbalenya AE & Feltkamp MCW (2010) Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog 6, e1001024. PubMed PMC

Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ & Dessel BH (1971) Cultivation of papova‐like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1, 1257–1260. PubMed

Viscidi RP, Rollison DE, Sondak VK, Silver B, Messina JL, Giuliano AR, Fulp W, Ajidahun A & Rivanera D (2011) Age‐specific seroprevalence of merkel cell polyomavirus, BK Virus, and JC virus. Clin Vaccine Immunol 18, 1737–1743. PubMed PMC

Hampras SS, Giuliano AR, Lin H‐Y, Fisher KJ, Abrahamsen ME, McKay‐Chopin S, Gheit T, Tommasino M & Rollison DE (2015) Natural history of polyomaviruses in men: the HPV infection in men (HIM) Study. J Infect Dis 211, 1437–1446. PubMed PMC

Nicol JTJ, Robinot R, Carpentier A, Carandina G, Mazzoni E, Tognon M, Touzé A & Coursaget P (2013) Age‐specific seroprevalences of merkel cell polyomavirus, human polyomaviruses 6, 7, and 9, and trichodysplasia spinulosa‐associated polyomavirus. Clin Vaccine Immunol 20, 363–368. PubMed PMC

Qin Q, EL Shwetank F, Maru S & Lukacher AE (2016) Type I interferons regulate the magnitude and functionality of mouse polyomavirus‐specific CD8 T cells in a virus strain‐dependent manner. J Virol 90, 5187–5199. PubMed PMC

Chen XS (1998) Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J 17, 3233–3240. PubMed PMC

Stehle T & Harrison SC (1996) Crystal structures of murine polyomavirus in complex with straight‐chain and branched‐chain sialyloligosaccharide receptor fragments. Structure 4, 183–194. PubMed

Carmichael G (2016) Gene regulation and quality control in murine polyomavirus infection. Viruses 8, 284. PubMed PMC

Jakobovits EB, Bratosin S & Aloni Y (1980) A nucleosome‐free region in SV40 minichromosomes. Nature 285, 263–265. PubMed

Saragosti S, Moyne G & Yaniv M (1980) Absence of nucleosomes in a fraction of SV40 chromatin between the origin of replication and the region coding for the late leader RNA. Cell 20, 65–73. PubMed

Varshavsky AJ, Sundin O & Bohn M (1979) A stretch of “late” SV40 viral DNA about 400 bp long which includes the origin of replication is specifically exposed in SV40 minichromosomes. Cell 16, 453–466. PubMed

Liebl D, Difato F, Hornikova L, Mannova P, Stokrova J & Forstova J (2006) Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11‐positive endosomes. J Virol 80, 4610–4622. PubMed PMC

Qian M, Cai D, Verhey KJ & Tsai B (2009) A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 5, e1000465. PubMed PMC

Zila V, Difato F, Klimova L, Huerfano S & Forstova J (2014) Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus. PLoS One 9, e96922. PubMed PMC

Huérfano S, Ryabchenko B, S\ˇpanielová H & Forstová J (2017) Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from the ER. FEBS J 284, 883–902. PubMed

Inoue T & Tsai B (2011) A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog 7, e1002037. PubMed PMC

Magnuson B, Rainey EK, Benjamin T, Baryshev M, Mkrtchian S & Tsai B (2005) ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20, 289–300. PubMed

Soldatova I, Prilepskaja T, Abrahamyan L, Forstová J & Huérfano S (2018) Interaction of the mouse polyomavirus capsid proteins with importins is required for efficient import of viral DNA into the cell nucleus. Viruses 10, 165. PubMed PMC

Chen L & Fluck M (2001) Kinetic analysis of the steps of the polyomavirus lytic cycle. J Virol 75, 8368–8379. PubMed PMC

Ahmad‐Nejad P, Häcker H, Rutz M, Bauer S, Vabulas RM & Wagner H (2002) Bacterial CpG‐DNA and lipopolysaccharides activate Toll‐like receptors at distinct cellular compartments. Eur J Immunol 32, 1958. PubMed

Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H & Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species‐specific CpG motif recognition. Proc Natl Acad Sci USA 98, 9237–9242. PubMed PMC

Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al. (2000) A Toll‐like receptor recognizes bacterial DNA. Nature 408, 740–745. PubMed

Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K et al. (2007) DAI (DLM‐1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505. PubMed

Chiu Y‐H, MacMillan JB & Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces Type I interferons through the RIG‐I pathway. Cell 138, 576–591. PubMed PMC

Hornung V, Ablasser A, Charrel‐Dennis M, Bauernfeind F, Horvath G, DanielR C, Latz E & Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase‐1‐activating inflammasome with ASC. Nature 458, 514–518. PubMed PMC

Horan KA, Hansen K, Jakobsen MR, Holm CK, Soby S, Unterholzner L, Thompson M, West JA, Iversen MB, Rasmussen SB et al. (2013) Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J Immunol 190, 2311–2319. PubMed PMC

Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS et al. (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11, 997–1004. PubMed PMC

Zhu W, Liu P, Yu L, Chen Q, Liu Z, Yan K, Lee WM, Cheng CY & Han D (2014) p204‐Initiated Innate Antiviral Response in Mouse Leydig Cells1. Biol Reprod 91. PubMed

Yang P, An H, Liu X, Wen M, Zheng Y, Rui Y & Cao X (2010) The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β‐catenin‐dependent pathway. Nat Immunol 11, 487–494. PubMed

Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, Lidie KB, Imamichi H, Huang D‐W, Lempicki RA, Baseler MW et al. (2011) Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186, 4541–4545. PubMed PMC

Kim T, Pazhoor S, Bao M, Zhang Z, Hanabuchi S, Facchinetti V, Bover L, Plumas J, Chaperot L, Qin J et al. (2010) Aspartate‐glutamate‐alanine‐histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci USA 107, 15181–15186. PubMed PMC

Zhang Z, Yuan B, Bao M, Lu N, Kim T & Liu Y‐J (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12, 959–965. PubMed PMC

Sun L, Wu J, Du F, Chen X & Chen ZJ (2013) Cyclic GMP‐AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791. PubMed PMC

Wu J, Sun L, Chen X, Du F, Shi H, Chen C & Chen ZJ (2013) Cyclic GMP‐AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830. PubMed PMC

Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J & Cristea IM (2015) The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 11, 787. PubMed PMC

Li T, Diner BA, Chen J & Cristea IM (2012) Acetylation modulates cellular distribution and DNA sensing ability of interferon‐inducible protein IFI16. Proc Natl Acad Sci USA 109, 10558–10563. PubMed PMC

Orzalli MH, DeLuca NA & Knipe DM (2012) Nuclear IFI16 induction of IRF‐3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci USA 109, E3008–E3017. PubMed PMC

Storek KM, Gertsvolf NA, Ohlson MB & Monack DM (2015) cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella Infection. J Immunol 194, 3236–3245. PubMed PMC

Gentili M, Lahaye X, Nadalin F, Nader GPF, Puig Lombardi E, Herve S, De Silva NS, Rookhuizen DC, Zueva E, Goudot C et al. (2019) The N‐terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep 26, 2377–2393.e13. PubMed PMC

Stratmann SA, Morrone SR, van Oijen AM & Sohn J 2015) The innate immune sensor IFI16 recognizes foreign DNA in the nucleus by scanning along the duplex. eLife 4, e11721. PubMed PMC

Liu H, Zhang H, Wu X, Ma D, Wu J, Wang L, Jiang Y, Fei Y, Zhu C, Tan R et al. (2018) Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563, 131–136. PubMed

Seo GJ, Kim C, Shin W‐J, Sklan EH, Eoh H & Jung JU (2018) TRIM56‐mediated monoubiquitination of cGAS for cytosolic DNA sensing. Nat Commun 9, 613. PubMed PMC

Song B, Greco TM, Lum KK, Taber CE & Cristea IM (2020) The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling. Mol Cell Proteomics 19, 1193–1208. PubMed PMC

Volkman HE, Cambier S, Gray EE & Stetson DB (2019) Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife 8, e47491. PubMed PMC

Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ & Sohn J (2014) Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc Natl Acad Sci USA 111, E62–E71. PubMed PMC

Seo GJ, Yang A, Tan B, Kim S, Liang Q, Choi Y, Yuan W, Feng P, Park H‐S & Jung JU (2015) Akt kinase‐mediated checkpoint of cGAS DNA sensing pathway. Cell Rep 13, 440–449. PubMed PMC

Ni X, Ru H, Ma F, Zhao L, Shaw N, Feng Y, Ding W, Gong W, Wang Q, Ouyang S et al. (2016) New insights into the structural basis of DNA recognition by HINa and HINb domains of IFI16. J Mol Cell Biol 8, 51–61. PubMed

Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L, Uruma N, Hirai S, Funabiki H & Kurumizaka H (2020) Structural basis for the inhibition of cGAS by nucleosomes. Science 370, 455–458. PubMed PMC

Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, Tian Y & Fan Z (2016) Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat Immunol 17, 369–378. PubMed

Dai J, Huang Y‐J, He X, Zhao M, Wang X, Liu Z‐S, Xue W, Cai H, Zhan X‐Y, Huang S‐Y et al. (2019) Acetylation blocks cGAS activity and inhibits self‐DNA‐induced autoimmunity. Cell 176, 1447–1460.e14. PubMed PMC

Ansari MA, Dutta S, Veettil MV, Dutta D, Iqbal J, Kumar B, Roy A, Chikoti L, Singh VV & Chandran B (2015) Herpesvirus genome recognition induced acetylation of nuclear IFI16 is essential for its cytoplasmic translocation, inflammasome and IFN‐β responses. PLOS Pathog 11, e1005019. PubMed PMC

Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM & Knipe DM (2015) cGAS‐mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci USA 112, E1773–E1781. PubMed PMC

Fan X, Jiang J, Zhao D, Chen F, Ma H, Smith P, Unterholzner L, Xiao TS & Jin T (2021) Structural mechanism of DNA recognition by the p204 HIN domain. Nucleic Acids Res 49, 2959–2972. PubMed PMC

Lum KK, Howard TR, Pan C & Cristea IM (2019) Charge‐mediated pyrin oligomerization nucleates antiviral IFI16 sensing of herpesvirus DNA. MBio 10, e01428‐19. PubMed PMC

Almine JF, O’Hare CAJ, Dunphy G, Haga IR, Naik RJ, Atrih A, Connolly DJ, Taylor J, Kelsall IR, Bowie AG et al. (2017) IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun 8, 14392. PubMed PMC

Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu Y‐T, Grishin NV et al. (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630. PubMed

Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G et al. (2013) Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA‐activated cyclic GMP‐AMP synthase. Cell 153, 1094–1107. PubMed PMC

Huerfano S, Ryabchenko B & Forstová J (2013) Nucleofection of expression vectors induces a robust interferon response and inhibition of cell proliferation. DNA Cell Biol 32, 467–479. PubMed PMC

Semenova N, Bosnjak M, Markelc B, Znidar K, Cemazar M & Heller L (2019) Multiple cytosolic DNA sensors bind plasmid DNA after transfection. Nucleic Acids Res 47, 10235–10246. PubMed PMC

Hua K & Ferland RJ (2017) Fixation methods can differentially affect ciliary protein immunolabeling. Cilia 6, 5. PubMed PMC

Ma Z, Ni G & Damania B (2018) Innate sensing of DNA virus genomes. Annu Rev Virol 5, 341–362. PubMed PMC

Carbone M, Ascione G, Chichiarelli S, Garcia M‐I, Eufemi M & Amati P (2004) Chromosome‐Protein interactions in polyomavirus virions . J Virol 78, 513–519. PubMed PMC

Jiang M, Abend JR, Tsai B & Imperiale MJ (2009) Early events during BK virus entry and disassembly. J Virol 83, 1350–1358. PubMed PMC

Sun C, Luecke S, Bodda C, Jønsson KL, Cai Y, Zhang B‐C, Jensen SB, Nordentoft I, Jensen JM, Jakobsen MR et al. (2019) Cellular requirements for sensing and elimination of incoming HSV‐1 DNA and capsids. J Interferon Cytokine Res 39, 191–204. PubMed

Kumar S, Morrison JH, Dingli D & Poeschla E (2018) HIV‐1 activation of innate immunity depends strongly on the intracellular level of TREX1 and sensing of incomplete reverse transcription products. J Virol 92, e00001–18. PubMed PMC

Herrera FJ & Triezenberg SJ (2004) VP16‐dependent association of chromatin‐modifying coactivators and underrepresentation of histones at immediate‐early gene promoters during herpes simplex virus infection. J Virol 78, 9689–9696. PubMed PMC

Oh J & Fraser NW (2008) Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J Virol 82, 3530–3537. PubMed PMC

Dutta D, Dutta S, Veettil MV, Roy A, Ansari MA, Iqbal J, Chikoti L, Kumar B, Johnson KE & Chandran B (2015) BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon‐β responses. PLoS Pathog 11, e1005030. PubMed PMC

Iqbal J, Ansari MA, Kumar B, Dutta D, Roy A, Chikoti L, Pisano G, Dutta S, Vahedi S, Veettil MV et al. (2016) Histone H2B‐IFI16 recognition of nuclear herpesviral genome induces cytoplasmic interferon‐β responses. PLoS Pathog 12, e1005967. PubMed PMC

Diner BA, Lum KK, Toettcher JE & Cristea IM (2016) Viral DNA sensors IFI16 and cyclic GMP‐AMP synthase possess distinct functions in regulating viral gene expression, immune defenses, and apoptotic responses during herpesvirus, infection. MBio 7, e01553‐16. PubMed PMC

Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL, Jakobsen MR, Nevels MM, Bowie AG & Unterholzner L (2018) Non‐canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF‐κB signaling after nuclear DNA damage. Mol Cell 71, 745–760.e5. PubMed PMC

Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner K‐P, Ludwig J & Hornung V (2013) cGAS produces a 2′‐5′‐linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384. PubMed PMC

Glück S, Guey B, Gulen MF, Wolter K, Kang T‐W, Schmacke NA, Bridgeman A, Rehwinkel J, Zender L & Ablasser A (2017) Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19, 1061–1070. PubMed PMC

Chen Q, Sun L & Chen ZJ (2016) Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 17, 1142–1149. PubMed

Zierhut C, Yamaguchi N, Paredes M, Luo J‐D, Carroll T & Funabiki H (2019) The Cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178, 302–315.e23. PubMed PMC

Jiang H, Xue X, Panda S, Kawale A, Hooy RM, Liang F, Sohn J, Sung P & Gekara NO (2019) Chromatin‐bound cgas is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J 38, e102718. PubMed PMC

Mackenzie KJ, Carroll P, Martin C‐A, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A et al. (2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465. PubMed PMC

Cheong HSJ, Seth I, Joiner MC & Tucker JD (2013) Relationships among micronuclei, nucleoplasmic bridges and nuclear buds within individual cells in the cytokinesis‐block micronucleus assay. Mutagenesis 28, 433–440. PubMed

Raab M, Gentili M, de Belly H, Thiam H‐R, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon‐Dumenil A‐M, Manel N et al. (2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362. PubMed

Liu S, Kwon M, Mannino M, Yang N, Renda F, Khodjakov A & Pellman D (2018) Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555. PubMed PMC

Dey D, Dahl J, Cho S & Benjamin TL (2002) Induction and bypass of p53 during productive infection by polyomavirus. J Virol 76, 9526–9532. PubMed PMC

Justice JL, Needham JM & Thompson SR (2019) BK Polyomavirus Activates the DNA Damage Response To Prolong S Phase. J Virol 93, e00130–19, /jvi/93/14/JVI.00130‐19.atom. PubMed PMC

Huerfano S, Z\ˇíla V, Bouřa E, S\ˇpanielová H, S\ˇtokrová J & Forstová J (2010) Minor capsid proteins of mouse polyomavirus are inducers of apoptosis when produced individually but are only moderate contributors to cell death during the late phase of viral infection. FEBS J 277, 1270–1283. PubMed

Verma S, Ziegler K, Ananthula P, Co JKG, Frisque RJ, Yanagihara R & Nerurkar VR (2006) JC virus induces altered patterns of cellular gene expression: Interferon‐inducible genes as major transcriptional targets. Virology 345, 457–467. PubMed

An P, Sáenz Robles MT, Duray AM, Cantalupo PG & Pipas JM (2019) Human polyomavirus BKV infection of endothelial cells results in interferon pathway induction and persistence. PLoS Pathog 15, e1007505. PubMed PMC

Horníková L, Z\ˇíla V, S\ˇpanielová H & Forstová J (2015) Mouse polyomavirus: propagation, purification, quantification, and storage. Curr Protoc Microbiol 38, 14F.1.1–14F.1.26. PubMed

Nabbi A & Riabowol K (2015) Rapid isolation of nuclei from cells in vitro . Cold Spring Harb Protoc 2015, pdb.prot083733. PubMed

Solovei I & Cremer M (2010) 3D‐FISH on cultured cells combined with immunostaining. In Fluorescence in situ Hybridization (FISH) (Bridger JM & Volpi EV, eds), pp. 117–126.Humana Press, Totowa, NJ. PubMed

Zobrazit více v PubMed

RefSeq
AF442959.1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...