Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes

. 2006 May ; 80 (9) : 4610-22.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid16611921

Mouse polyomavirus (PyV) virions enter cells by internalization into smooth monopinocytic vesicles, which fuse under the cell membrane with larger endosomes. Caveolin-1 was detected on monopinocytic vesicles carrying PyV particles in mouse fibroblasts and epithelial cells (33). Here, we show that PyV can be efficiently internalized by Jurkat cells, which do not express caveolin-1 and lack caveolae, and that overexpression of a caveolin-1 dominant-negative mutant in mouse epithelial cells does not prevent their productive infection. Strong colocalization of VP1 with early endosome antigen 1 (EEA1) and of EEA1 with caveolin-1 in mouse fibroblasts and epithelial cells suggests that the monopinocytic vesicles carrying the virus (and vesicles containing caveolin-1) fuse with EEA1-positive early endosomes. In contrast to SV40, PyV infection is dependent on the acidic pH of endosomes. Bafilomycin A1 abolished PyV infection, and an increase in endosomal pH by NH4Cl markedly reduced its efficiency when drugs were applied during virion transport towards the cell nucleus. The block of acidification resulted in the retention of a fraction of virions in early endosomes. To monitor further trafficking of PyV, we used fluorescent resonance energy transfer (FRET) to determine mutual localization of PyV VP1 with transferrin and Rab11 GTPase at a 2- to 10-nm resolution. Positive FRET between PyV VP1 and transferrin cargo and between PyV VP1 and Rab11 suggests that during later times postinfection (1.5 to 3 h), the virus meets up with transferrin in the Rab11-positive recycling endosome. These results point to a convergence of the virus and the cargo internalized by different pathways in common transitional compartments.

Zobrazit více v PubMed

Anderson, H. A., Y. Chen, and L. C. Norkin. 1996. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 7:1825-1834. PubMed PMC

Anderson, H. A., Y. Chen, and L. C. Norkin. 1998. MHC class I molecules are enriched in caveolae but do not enter with simian virus 40. J. Gen. Virol. 79:1469-1477. PubMed

Ashok, A., and W. J. Atwood. 2003. Contrasting roles of endosomal pH and the cytoskeleton in infection of human glial cells by JC virus and simian virus 40. J. Virol. 77:1347-1356. PubMed PMC

Bastiaens, P. I. H., and T. M. Jovin. 1998. Fluorescence resonance energy transfer microscopy, p. 136-146. In J. E. Celis (ed.), Cell biology: a laboratory handbook, 2nd ed., vol. 3. Academic Press, New York, N.Y.

Benmerah, A., M. Bayrou, N. Cerf-Bensussan, and A. Dautry-Varsat. 1999. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 112:1303-1311. PubMed

Benmarah, A., C. Lamaze, B. Begue, S. L. Schmid, A. Dautry-Varsat, and N. Cerf-Bensussan. 1998. AP-2/Eps15 interaction is required for receptor-mediated endocytosis. J. Cell Biol. 140:1055-1062. PubMed PMC

Bowman, E. J., A. Siebers, and K. Altendorf. 1988. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. USA 85:7972-7976. PubMed PMC

Breau, W. C., W. J. Atwood, and L. C. Norkin. 1992. Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor. J. Virol. 66:2037-2045. PubMed PMC

Caruso, M., L. Belloni, O. Sthandier, P. Amati, and M.-I. Garcia. 2003. α4β1 integrin acts as a cell receptor for murine polyomavirus at the postattachment level. J. Virol. 77:3913-3921. PubMed PMC

Deeks, E. D., J. P. Cook, P. J. Day, D. C. Smith, L. M. Roberts, and J. M. Lord. 2002. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405-3413. PubMed

Eash, S., W. Querbes, and W. J. Atwood. 2004. Infection of Vero cells by BK virus is dependent on caveolae. J. Virol. 78:11583-11590. PubMed PMC

Gagescu, R., N. Demaurex, R. G. Parton, W. Hunziger, L. A. Huber, and J. Gruenberg. 2000. The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11:2775-2791. PubMed PMC

Gilbert, J. M., and T. L. Benjamin. 2000. Early steps of polyomavirus entry into cells. J. Virol. 74:8582-8588. PubMed PMC

Gilbert, J. M., J. Dahl, J. You, C. Vui, R. Holmes, W. Lencer, and T. L. Benjamin. 2005. Ganglioside GD1a restores infectibility to mouse cells lacking functional receptors for polyomavirus. J. Virol. 79:615-618. PubMed PMC

Gilbert, J. M., I. G. Goldberg, and T. L. Benjamin. 2003. Cell penetration and trafficking of polyomavirus. J. Virol. 77:2615-2622. PubMed PMC

Griffiths, S. L., R. A. Finkelstein, and D. R. Critchley. 1986. Characterization of the receptor for cholera toxin and Escherichia coli heat-labile toxin in rabbit intestinal brush borders. Biochem. J. 238:313-322. PubMed PMC

Janicot, M., F. Fouque, and B. Desbuquois. 1991. Activation of rat liver adenylate cyclase by cholera toxin requires toxin internalization and processing in endosomes. J. Biol. Chem. 266:12858-12865. PubMed

Krauzewicz, N., J. Štokrová, C. Jenkins, M. Elliott, C. F. Higgins, and B. E. Griffin. 2000. Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids. Gene Ther. 7:2122-2131. PubMed

Li, G., and P. D. Stahl. 1993. Structure-function relationship of the small GTPase rab5. J. Biol. Chem. 268:24445-24480. PubMed

Mannová, P., and J. Forstová. 2003. Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of COPI vesicle transport. J. Virol. 77:1672-1681. PubMed PMC

McCann, J. A., J. A. Mertz, J. Czworkowski, and W. D. Pickin. 1997. Conformational changes in cholera toxin B subunit-ganglioside GM1 complexes are elicited by environmental pH and evoke changes in membrane structure. Biochemistry 36:9169-9178. PubMed

Mundy, D. I., T. Machleidt, Y. S. Ying, R. G. Anderson, and G. S. Bloom. 2002. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J. Cell Sci. 115:4327-4339. PubMed

Nakano, M. Y., K. Boucke, M. Suomalainen, P. Stidwell, and U. G. Grebe. 2000. The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J. Virol. 74:7085-7095. PubMed PMC

Nathke, I. S., J. Heuser, A. Lupas, J. Stock, C. W. Turck, and F. M. Brodsky. 1992. Folding and trimerization of clathrin subunits at the triskelion hub. Cell 68:899-910. PubMed

Norkin, L. C., H. A. Anderson, W. A. Scott, and A. Oppenheim. 2002. Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J. Virol. 76:5156-5166. PubMed PMC

Orlandi, P. A., and P. H. Fishman. 1998. Filipin dependent inhibition of cholera toxin: evidence for toxin internalisation and activation through caveolae like domains. J. Cell Biol. 141:905-915. PubMed PMC

Pasqualato, S., F. Senic-Matuglia, L. Renault, B. Goud, J. Salamero, and J. Cherfils. 2004. The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. J. Biol. Chem. 279:11480-11488. PubMed

Pelkmans, L., T. Burli, M. Zerial, and A. Helenius. 2004. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767-780. PubMed

Pelkmans, L., J. Kartenbeck, and A. Helenius. 2001. Caveolar endocytosis of simian virus 40 revealed a new two step vesicular transport pathway to the endoplasmic reticulum. Nat. Cell Biol. 3:473-483. PubMed

Pho, M. T., A. Ashok, and W. J. Atwood. 2000. JC virus enters human glial cells by clathrin-dependent, receptor-mediated endocytosis. J. Virol. 74:2288-2292. PubMed PMC

Prchla, E., C. Plank, E. Wagner, D. Blaas, and R. Fuchs. 1995. Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2. J. Cell Biol. 131:111-123. PubMed PMC

Richards, A. A., E. Stang, R. Pepperkok, and R. G. Parton. 2002. Inhibitors of COP-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol. Biol. Cell 13:1750-1764. PubMed PMC

Richterová, Z., D. Liebl, M. Horák, Z. Palková, J. Štokrová, P. Hozák, J. Korb, and J. Forstová. 2001. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J. Virol. 75:10880-10891. PubMed PMC

Sharma, D. K., A. Choudhury, R. D. Singh, C. L. Wheatley, D. L. Marks, and R. E. Paganos. 2003. Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling. J. Biol. Chem. 278:7564-7572. PubMed

Shimura, H., Y. Umeno, and G. Kimura. 1987. Effects of inhibitors of the cytoplasmic structures and functions on the early phase of infection of cultured cells with simian virus 40. Virology 158:34-43. PubMed

Trouet, D., D. Hermans, G. Droogmans, B. Nilus, and J. Eggermont. 2001. Inhibition of volume-regulated anion channels by dominant-negative caveolin-1. Biochem. Biophys. Res. Commun. 284:461-465. PubMed

Tsai, B., J. M. Gilbert, S. Stehle, W. Lencer, T. L. Benjamin, and T. A. Rapoport. 2003. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22:4346-4355. PubMed PMC

Upcroft, P. 1987. Simian virus 40 infection is not mediated by lysosomal activation. J. Gen. Virol. 68:2477-2480. PubMed

Yochimori, T., A. Yamamoto, Y. Moriyama, M. Futai, and Y. Tashiro. 1991. Bafilomycin A1, a specific inhibitor of vacuolar type H+ ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266:17707-17712. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mouse polyomavirus infection induces lamin reorganisation

. 2024 Dec ; 291 (23) : 5133-5155. [epub] 20240917

The Interplay between Viruses and Host DNA Sensors

. 2022 Mar 23 ; 14 (4) : . [epub] 20220323

Immune sensing of mouse polyomavirus DNA by p204 and cGAS DNA sensors

. 2021 Oct ; 288 (20) : 5964-5985. [epub] 20210526

TLR4-Mediated Recognition of Mouse Polyomavirus Promotes Cancer-Associated Fibroblast-Like Phenotype and Cell Invasiveness

. 2021 Apr 25 ; 13 (9) : . [epub] 20210425

Microtubules in Polyomavirus Infection

. 2020 Jan 18 ; 12 (1) : . [epub] 20200118

Interaction of the Mouse Polyomavirus Capsid Proteins with Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus

. 2018 Mar 31 ; 10 (4) : . [epub] 20180331

Coat as a dagger: the use of capsid proteins to perforate membranes during non-enveloped DNA viruses trafficking

. 2014 Jul 23 ; 6 (7) : 2899-937. [epub] 20140723

Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus

. 2014 ; 9 (5) : e96922. [epub] 20140508

Nuclear actin and lamins in viral infections

. 2012 Mar ; 4 (3) : 325-47. [epub] 20120228

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...