Coat as a dagger: the use of capsid proteins to perforate membranes during non-enveloped DNA viruses trafficking
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
25055856
PubMed Central
PMC4113798
DOI
10.3390/v6072899
PII: v6072899
Knihovny.cz E-zdroje
- MeSH
- Adenoviridae fyziologie MeSH
- buněčná membrána metabolismus virologie MeSH
- buněčné jádro metabolismus virologie MeSH
- endozomy metabolismus virologie MeSH
- eukaryotické buňky metabolismus virologie MeSH
- interakce hostitele a patogenu MeSH
- internalizace viru * MeSH
- lidé MeSH
- Papillomaviridae fyziologie MeSH
- Parvoviridae fyziologie MeSH
- Polyomaviridae fyziologie MeSH
- replikace viru MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- virové plášťové proteiny chemie metabolismus MeSH
- virové receptory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- virové plášťové proteiny MeSH
- virové receptory MeSH
To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection.
Zobrazit více v PubMed
Day P.M., Schelhaas M. Concepts of papillomavirus entry into host cells. Curr. Opin. Virol. 2014;4:24–31. doi: 10.1016/j.coviro.2013.11.002. PubMed DOI PMC
Cerqueira C., Schelhaas M. Principles of polyoma- and papillomavirus uncoating. Med. Microbiol. Immunol. 2012;201:427–436. PubMed
Puntener D., Greber U.F. Dna-tumor virus entry-from plasma membrane to the nucleus. Semin. Cell Dev. Biol. 2009;20:631–642. doi: 10.1016/j.semcdb.2009.03.014. PubMed DOI
Benevento M., Di Palma S., Snijder J., Moyer C.L., Reddy V.S., Nemerow G.R., Heck A.J. Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics. J. Biol. Chem. 2014;289:11421–11430. PubMed PMC
Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. Integrin-alpha-v-beta-3 and integrin-alpha-v-beta-5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319. doi: 10.1016/0092-8674(93)90231-E. PubMed DOI
Mathias P., Wickham T., Moore M., Nemerow G. Multiple adenovirus serotypes use alpha-v integrins for infection. J. Virol. 1994;68:6811–6814. PubMed PMC
Huang S.A., Endo R.I., Nemerow G.R. Up-regulation of integrins alpha-v-beta-3 and alpha-v-beta-5 on human monocytes and t-lymphocytes facilitates adenovirus-mediated gene delivery. J. Virol. 1995;69:2257–2263. PubMed PMC
Davison E., Diaz R.M., Hart I.R., Santis G., Marshall J.F. Integrin alpha 5 beta 1-mediated adenovirus infection is enhanced by the integrin-activating antibody ts2/16. J. Virol. 1997;71:6204–6207. PubMed PMC
Nemerow G.R., Stewart P.L. Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol. Mol. Biol. Rev. 1999;63:725–734. PubMed PMC
Wang K.N., Huang S., Kapoor-Munshi A., Nemerow G. Adenovirus internalization and infection require dynamin. J. Virol. 1998;72:3455–3458. PubMed PMC
Amstutz B., Gastaldelli M., Kalin S., Imelli N., Boucke K., Wandeler E., Mercer J., Hemmi S., Greber U.F. Subversion of ctbp1-controlled macropinocytosis by human adenovirus serotype 3. EMBO J. 2008;27:956–969. doi: 10.1038/emboj.2008.38. PubMed DOI PMC
Imelli N., Ruzsics Z., Puntener D., Gastaldelli M., Greber U.F. Genetic reconstitution of the human adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape. Virol. J. 2009;6:174. doi: 10.1186/1743-422X-6-174. PubMed DOI PMC
Meier O., Boucke K., Hammer S.V., Keller S., Stidwill R.P., Hemmi S., Greber U.F. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 2002;158:1119–1131. doi: 10.1083/jcb.200112067. PubMed DOI PMC
Kaelin S., Amstutz B., Gastaldelli M., Wolfrum N., Boucke K., Havenga M., DiGennaro F., Liska N., Hemmi S., Greber U.F. Macropinocytotic uptake and infection of human epithelial cells with species b2 adenovirus type 35. J. Virol. 2010;84:5336–5350. doi: 10.1128/JVI.02494-09. PubMed DOI PMC
Burckhardt C.J., Suomalainen M., Schoenenberger P., Boucke K., Hemmi S., Greber U.F. Drifting motions of the adenovirus receptor car and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe. 2011;10:105–117. doi: 10.1016/j.chom.2011.07.006. PubMed DOI
Nakano M.Y., Boucke K., Suomalainen M., Stidwill R.P., Greber U.F. The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J. Virol. 2000;74:7085–7095. doi: 10.1128/JVI.74.15.7085-7095.2000. PubMed DOI PMC
Shayakhmetov D.M., Li Z.Y., Gaggar A., Gharwan H., Ternovoi V., Sandig V., Lieber A. Genome size and structure determine efficiency of postinternalization steps and gene transfer of capsid-modified adenovirus vectors in a cell-type-specific manner. J. Virol. 2004;78:10009–10022. doi: 10.1128/JVI.78.18.10009-10022.2004. PubMed DOI PMC
Shayakhmetov D.M., Eberly A.M., Li Z.Y., Lieber A. Deletion of penton rgd motifs affects the efficiency of both the internalization and the endosorne escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs. J. Virol. 2005;79:1053–1061. doi: 10.1128/JVI.79.2.1053-1061.2005. PubMed DOI PMC
Miyazawa N., Crystal R.G., Leopold P.L. Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J. Virol. 2001;75:1387–1400. doi: 10.1128/JVI.75.3.1387-1400.2001. PubMed DOI PMC
Miyazawa N., Leopold P.L., Hackett N.R., Ferris B., Worgall S., Falck-Pedersen E., Crystal R.G. Fiber swap between adenovirus subgroups b and c alters intracellular trafficking of adenovirus gene transfer vectors. J. Virol. 1999;73:6056–6065. PubMed PMC
Martin-Fernandez M., Longshaw S.V., Kirby I., Santis G., Tobin M.J., Clarke D.T., Jones G.R. Adenovirus type-5 entry and disassembly followed in living cells by fret, fluorescence anisotropy, and flim. Biophys. J. 2004;87:1316–1327. doi: 10.1529/biophysj.103.035444. PubMed DOI PMC
Greber U.F., Willetts M., Webster P., Helenius A. Stepwise dismantling of adenovirus-2 during entry into cells. Cell. 1993;75:477–486. doi: 10.1016/0092-8674(93)90382-Z. PubMed DOI
Carey B., Staudt M.K., Bonaminio D., van der Loo J.C.M., Trapnell B.C. Pu.1 redirects adenovirus to lysosomes in alveolar macrophages, uncoupling internalization from infection. J. Immunol. 2007;178:2440–2447. PubMed
Engesaeter B.O., Tveito S., Bonsted A., Engebraaten O., Berg K., Maelandsmo G.M. Photochemical treatment with endosomally localized photosensitizers enhances the number of adenoviruses in the nucleus. J. Gene Med. 2006;8:707–718. doi: 10.1002/jgm.902. PubMed DOI
Maier O., Marvin S.A., Wodrich H., Campbell E.M., Wiethoff C.M. Spatiotemporal dynamics of adenovirus membrane rupture and endosomal escape. J. Virol. 2012;86:10821–10828. doi: 10.1128/JVI.01428-12. PubMed DOI PMC
Gastaldelli M., Imelli N., Boucke K., Amstutz B., Meier O., Greber U.F. Infectious adenovirus type 2 transport through early but not late endosomes. Traffic. 2008;9:2265–2278. doi: 10.1111/j.1600-0854.2008.00835.x. PubMed DOI
Morgan C., Rosenkra H.S., Mednis B. Structure and development of viruses as observed in electron microscope. 10. Entry and uncoating of adenovirus. J. Virol. 1969;4:777–796. PubMed PMC
Seth P. Adenovirus-dependent release of choline from plasma-membrane vesicles at an acidic ph is mediated by the penton base protein. J. Virol. 1994;68:1204–1206. PubMed PMC
Prchla E., Plank C., Wagner E., Blaas D., Fuchs R. Virus-mediated release of endosomal content in-vitro—Different behavior of adenovirus and rhinovirus serotype-2. J. Cell Biol. 1995;131:111–123. doi: 10.1083/jcb.131.1.111. PubMed DOI PMC
Suomalainen M., Luisoni S., Boucke K., Bianchi S., Engel D.A., Greber U.F. A direct and versatile assay measuring membrane penetration of adenovirus in single cells. J. Virol. 2013;87:12367–12379. doi: 10.1128/JVI.01833-13. PubMed DOI PMC
Farr G.A., Zhang L.G., Tattersall P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc. Natl. Acad. Sci. USA. 2005;102:17148–17153. PubMed PMC
Kato S.E., Chahal J.S., Flint S.J. Reduced infectivity of adenovirus type 5 particles and degradation of entering viral genomes associated with incomplete processing of the preterminal protein. J. Virol. 2012;86:13554–13565. doi: 10.1128/JVI.02337-12. PubMed DOI PMC
Wiethoff C.M., Wodrich H., Gerace L., Nemerow G.R. Adenovirus protein vi mediates membrane disruption following capsid disassembly. J. Virol. 2005;79:1992–2000. doi: 10.1128/JVI.79.4.1992-2000.2005. PubMed DOI PMC
Greber U.F., Webster P., Weber J., Helenius A. The role of the adenovirus protease in virus entry into cells. EMBO J. 1996;15:1766–1777. PubMed PMC
Wodrich H., Guan T.L., Cingolani G., Von Seggern D., Nemerow G., Gerace L. Switch from capsid protein import to adenovirus assembly by cleavage of nuclear transport signals. EMBO J. 2003;22:6245–6255. doi: 10.1093/emboj/cdg614. PubMed DOI PMC
Van Oostrum J., Burnett R.M. The structure of the adenovirus capsid. Biophys. J. 1985;47:394A–394A.
Lehmberg E., Traina J.A., Chakel J.A., Chang R.J., Parkman M., McCaman M.T., Murakami P.K., Lahidji V., Nelson J.W., Hancock W.S., et al. Reversed-phase high-performance liquid chromatographic assay for the adenovirus type 5 proteome. J. Chrom. B Biomed. Sci. Appl. 1999;732:411–423. doi: 10.1016/S0378-4347(99)00316-3. PubMed DOI
Saban S.D., Nepomuceno R.R., Gritton L.D., Nemerow G.R., Stewart P.L. Cryoem structure at 9 angstrom resolution of an adenovirus vector targeted to hematopoietic cells. J. Mol. Biol. 2005;349:526–537. doi: 10.1016/j.jmb.2005.04.034. PubMed DOI
Silvestry M., Lindert S., Smith J.G., Maier O., Wiethoff C.M., Nemerow G.R., Stewart P.L. Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect. J. Virol. 2009;83:7375–7383. doi: 10.1128/JVI.00331-09. PubMed DOI PMC
Liu H.R., Jin L., Koh S.B.S., Atanasov I., Schein S., Wu L., Zhou Z.H. Atomic structure of human adenovirus by cryo-em reveals interactions among protein networks. Science. 2010;329:1038–1043. doi: 10.1126/science.1187433. PubMed DOI PMC
Mangel W.F., McGrath W.J., Toledo D.L., Anderson C.W. Viral-dna and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature. 1993;361:274–275. doi: 10.1038/361274a0. PubMed DOI
Wodrich H., Henaff D., Jammart B., Segura-Morales C., Seelmeir S., Coux O., Ruzsics Z., Wiethoff C.M., Kremer E.J. A capsid-encoded ppxy-motif facilitates adenovirus entry. PLoS Pathog. 2010;6:e1000808. doi: 10.1371/journal.ppat.1000808. PubMed DOI PMC
Moyer C.L., Wiethoff C.M., Maier O., Smith J.G., Nemerow G.R. Functional genetic and biophysical analyses of membrane disruption by human adenovirus. J. Virol. 2011;85:2631–2641. doi: 10.1128/JVI.02321-10. PubMed DOI PMC
Moyer C.L., Nemerow G.R. Disulfide-bond formation by a single cysteine mutation in adenovirus protein vi impairs capsid release and membrane lysis. Virology. 2012;428:41–47. doi: 10.1016/j.virol.2012.03.024. PubMed DOI PMC
Maier O., Galan D.L., Wodrich H., Wiethoff C.M. An n-terminal domain of adenovirus protein vi fragments membranes by inducing positive membrane curvature. Virology. 2010;402:11–19. doi: 10.1016/j.virol.2010.03.043. PubMed DOI PMC
Ganz T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 2003;3:710–720. doi: 10.1038/nri1180. PubMed DOI
Nguyen E.K., Nemerow G.R., Smith J.G. Direct evidence from single-cell analysis that human alpha-defensins block adenovirus uncoating to neutralize infection. J. Virol. 2010;84:4041–4049. doi: 10.1128/JVI.02471-09. PubMed DOI PMC
Smith J.G., Silvestry M., Lindert S., Lu W.Y., Nemerow G.R., Stewart P.L. Insight into the mechanisms of adenovirus capsid disassembly from studies of defensin neutralization. PLoS Pathog. 2010;6:e1000959. doi: 10.1371/journal.ppat.1000959. PubMed DOI PMC
Flatt J.W., Kim R., Smith J.G., Nemerow G.R., Stewart P.L. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS One. 2013;8:e61571. PubMed PMC
Snijder J., Reddy V.S., May E.R., Roos W.H., Nemerow G.R., Wuite G.J.L. Integrin and defensin modulate the mechanical properties of adenovirus. J. Virol. 2013;87:2756–2766. PubMed PMC
Bremner K.H., Scherer J., Yi J.L., Vershinin M., Gross S.P., Vallee R.B. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe. 2009;6:523–535. doi: 10.1016/j.chom.2009.11.006. PubMed DOI PMC
Suomalainen M., Nakano M.Y., Boucke K., Keller S., Greber U.F. Adenovirus-activated pka and p38/mapk pathways boost microtubule-mediated nuclear targeting of virus. EMBO J. 2001;20:1310–1319. doi: 10.1093/emboj/20.6.1310. PubMed DOI PMC
Saphire A.C.S., Guan T.L., Schirmer E.C., Nemerow G.R., Gerace L. Nuclear import adenovirus dna in vitro involves the nuclear protein import pathway and hsc70. J. Biol. Chem. 2000;275:4298–4304. PubMed
Trotman L.C., Mosberger N., Fornerod M., Stidwill R.P., Greber U.F. Import of adenovirus dna involves the nuclear pore complex receptor can/nup214 and histone h1. Nat. Cell Biol. 2001;3:1092–1100. doi: 10.1038/ncb1201-1092. PubMed DOI
Hindley C.E., Lawrence F.J., Matthews D.A. A role for transportin in the nuclear import of adenovirus core proteins and dna. Traffic. 2007;8:1313–1322. doi: 10.1111/j.1600-0854.2007.00618.x. PubMed DOI PMC
Strunze S., Trotman L.C., Boucke K., Greber U.F. Nuclear targeting of adenovirus type 2 requires crm1-mediated nuclear export. Mol. Biol. Cell. 2005;16:2999–3009. doi: 10.1091/mbc.E05-02-0121. PubMed DOI PMC
Ozawa K., Young N. Characterization of capsid and noncapsid proteins of b19 parvovirus propagated in human erythroid bone-marrow cell-cultures. J. Virol. 1987;61:2627–2630. PubMed PMC
Tattersall P., Cawte P.J., Shatkin A.J., Ward D.C. 3 structural polypeptides coded for by minute virus of mice, a parvovirus. J. Virol. 1976;20:273–289. PubMed PMC
Cotmore S.F., Tattersall P. The autonomously replicating parvoviruses of vertebrates. Adv. Virus Res. 1987;33:91–174. doi: 10.1016/S0065-3527(08)60317-6. PubMed DOI
Paradiso P.R., Rhode S.L., Singer II. Canine parvovirus—A biochemical and ultrastructural characterization. J. Gen. Virol. 1982;62:113–125. PubMed
Rose J.A., Maizel J.V., Inman J.K., Shatkin A.J. Structural proteins of adenovirus-associated viruses. J. Virol. 1971;8:766–770. PubMed PMC
Bartlett J.S., Wilcher R., Samulski R.J. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J. Virol. 2000;74:2777–2785. doi: 10.1128/JVI.74.6.2777-2785.2000. PubMed DOI PMC
Summerford C., Samulski R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 1998;72:1438–1445. PubMed PMC
Parker J.S.L., Murphy W.J., Wang D., O'Brien S.J., Parrish C.R. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J. Virol. 2001;75:3896–3902. doi: 10.1128/JVI.75.8.3896-3902.2001. PubMed DOI PMC
Hueffer K., Parker J.S.L., Weichert W.S., Geisel R.E., Sgro J.Y., Parrish C.R. The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. J. Virol. 2003;77:1718–1726. doi: 10.1128/JVI.77.3.1718-1726.2003. PubMed DOI PMC
Johnson F.B., Fenn L.B., Owens T.J., Faucheux L.J., Blackburn S.D. Attachment of bovine parvovirus to sialic acids on bovine cell membranes. J. Gen. Virol. 2004;85:2199–2207. doi: 10.1099/vir.0.79899-0. PubMed DOI
Brown K.E., Anderson S.M., Young N.S. Erythrocyte-p antigen—Cellular receptor for b19 parvovirus. Science. 1993;262:114–117. PubMed
Munakata Y., Saito-Ito T., Kumura-Ishii K., Huang J., Kodera T., Ishii T., Hirabayashi Y., Koyanagi Y., Sasaki T. Ku80 autoantigen as a cellular coreceptor for human parvovirus b19 infection. Blood. 2005;106:3449–3456. doi: 10.1182/blood-2005-02-0536. PubMed DOI
Weigel-Kelley K.A., Yoder M.C., Srivastava A. Alpha 5 beta 1 integrin as a cellular coreceptor for human parvovirus b19: Requirement of functional activation of beta 1 integrin for viral entry. Blood. 2003;102:3927–3933. doi: 10.1182/blood-2003-05-1522. PubMed DOI
Duan D.S., Li Q., Kao A.W., Yue Y.P., Pessin J.E., Engelhardt J.F. Dynamin is required for recombinant adeno-associated virus type 2 infection. J. Virol. 1999;73:10371–10376. PubMed PMC
Parker J.S.L., Parrish C.R. Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J. Virol. 2000;74:1919–1930. doi: 10.1128/JVI.74.4.1919-1930.2000. PubMed DOI PMC
Bantel-Schaal U., Hub B., Kartenbeck J. Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the golgi compartment. J. Virol. 2002;76:2340–2349. doi: 10.1128/jvi.76.5.2340-2349.2002. PubMed DOI PMC
Dudleenamjil E., Lin C.-Y., Dredge D., Murray B.K., Robison R.A., Johnson F.B. Bovine parvovirus uses clathrin-mediated endocytosis for cell entry. J. Gen. Virol. 2010;91:3032–3041. doi: 10.1099/vir.0.024133-0. PubMed DOI
Bantel-Schaal U., Braspenning-Wesch I., Kartenbeck J. Adeno-associated virus type 5 exploits two different entry pathways in human embryo fibroblasts. J. Gen. Virol. 2009;90:317–322. doi: 10.1099/vir.0.005595-0. PubMed DOI
Boisvert M., Fernandes S., Tijssen P. Multiple pathways involved in porcine parvovirus cellular entry and trafficking toward the nucleus. J. Virol. 2010;84:7782–7792. doi: 10.1128/JVI.00479-10. PubMed DOI PMC
Suikkanen S., Saarjarvi K., Hirsimaki J., Valilehto O., Reunanen H., Vihinen-Ranta M., Vuento M. Role of recycling endosomes and lysosomes in dynein-dependent entry of canine parvovirus. J. Virol. 2002;76:4401–4411. doi: 10.1128/JVI.76.9.4401-4411.2002. PubMed DOI PMC
VihinenRanta M., Kalela A., Makinen P., Kakkola L., Marjomaki V., Vuento M. Intracellular route of canine parvovirus entry. J. Virol. 1998;72:802–806. PubMed PMC
Vihinen-Ranta M., Yuan W., Parrish C.R. Cytoplasmic trafficking of the canine parvovirus capsid and its role in infection and nuclear transport. J. Virol. 2000;74:4853–4859. doi: 10.1128/JVI.74.10.4853-4859.2000. PubMed DOI PMC
Vendeville A., Ravallec M., Jousset F.X., Devise M., Mutuel D., Lopez-Ferber M., Fournier P., Dupressoir T., Ogliastro M. Densovirus infectious pathway requires clathrin-mediated endocytosis followed by trafficking to the nucleus. J. Virol. 2009;83:4678–4689. doi: 10.1128/JVI.02401-08. PubMed DOI PMC
Sanlioglu S., Benson P.K., Yang J.S., Atkinson E.M., Reynolds T., Engelhardt J.F. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J. Virol. 2000;74:9184–9196. PubMed PMC
Pakkanen K., Karttunen J., Virtanen S., Vuento M. Sphingomyelin induces structural alteration in canine parvovirus capsid. Virus Res. 2008;132:187–191. doi: 10.1016/j.virusres.2007.10.008. PubMed DOI
Mani B., Baltzer C., Valle N., Almendral J.M., Kempf C., Ros C. Low ph-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the vp1n-terminal sequence (n-vp1), n-vp2 cleavage, and uncoating of the full-length genome. J. Virol. 2006;80:1015–1024. doi: 10.1128/JVI.80.2.1015-1024.2006. PubMed DOI PMC
Ros C., Baltzer C., Mani B., Kempf C. Parvovirus uncoating in vitro reveals a mechanism of dna release without capsid disassembly and striking differences in encapsidated dna stability. Virology. 2006;345:137–147. doi: 10.1016/j.virol.2005.09.030. PubMed DOI
Suikkanen S., Antila M., Jaatinen A., Vihinen-Ranta M., Vuento M. Release of canine parvovirus from endocytic vesicles. Virology. 2003;316:267–280. doi: 10.1016/j.virol.2003.08.031. PubMed DOI
Sonntag F., Bleker S., Leuchs B., Fischer R., Kleinschmidt J.A. Adeno-associated virus type 2 capsids with externalized vp1/vp2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol. 2006;80:11040–11054. doi: 10.1128/JVI.01056-06. PubMed DOI PMC
Farr G.A., Cotmore S.F., Tattersall P. Vp2 cleavage and the leucine ring at the base of the fivefold cylinder control ph-dpendent externalization of both the vp1 n terminus and the genome of minute virus of mice. J. Virol. 2006;80:161–171. doi: 10.1128/JVI.80.1.161-171.2006. PubMed DOI PMC
Weichert W.S., Parker J.S.L., Wahid A.T.M., Chang S.F., Meier E., Parrish C.R. Assaying for structural variation in the parvovirus capsid and its role in infection. Virology. 1998;250:106–117. doi: 10.1006/viro.1998.9352. PubMed DOI
Cotmore S.F., Hafenstein S., Tattersall P. Depletion of virion-associated divalent cations induces parvovirus minute virus of mice to eject its genome in a 3'-to-5' direction from an otherwise intact viral particle. J. Virol. 2010;84:1945–1956. PubMed PMC
Vihinen-Ranta M., Yuan W., Weichert W., Vuento M., Parrish C.R. The vp1n-terminal sequence of canine parvovirus is important for efficient cell infection. Mol. Biol. Cell. 2000;11:291A–291A.
Vihinen-Ranta M., Wang D., Weichert W.S., Parrish C.R. The vp1n-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection. J. Virol. 2002;76:1884–1891. doi: 10.1128/JVI.76.4.1884-1891.2002. PubMed DOI PMC
Farr G.A., Tattersall P. A conserved leucine that constricts the pore through the capsid fivefold cylinder plays a central role in parvoviral infection. Virology. 2004;323:243–256. doi: 10.1016/j.virol.2004.03.006. PubMed DOI
Cotmore S.F., D'Abramo A.M., Ticknor C.M., Tattersall P. Controlled conformational transitions in the mvm virion expose the vp1 n-terminus and viral genome without particle disassembly. Virology. 1999;254:169–181. doi: 10.1006/viro.1998.9520. PubMed DOI
Akache B., Grimm D., Shen X., Fuess S., Yant S.R., Glazer D.S., Park J., Kay M.A. A two-hybrid screen identifies cathepsins b and l as uncoating factors for adeno-associated virus 2 and 8. Mol. Ther. 2007;15:330–339. doi: 10.1038/sj.mt.6300053. PubMed DOI PMC
Dorsch S., Liebisch G., Kaufmann B., von Landenberg P., Hoffmann J.H., Drobnik W., Modrow S. The vp1 unique region of parvovirus b19 and its constituent phospholipase a2-like activity. J. Virol. 2002;76:2014–2018. doi: 10.1128/JVI.76.4.2014-2018.2002. PubMed DOI PMC
Girod A., Wobus C.E., Zadori Z., Ried M., Leike K., Tijssen P., Kleinschmidt J.A., Hallek M. The vp1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase a2 domain required for virus infectivity. J. Gen. Virol. 2002;83:973–978. PubMed
VihinenRanta M., Kakkola L., Kalela A., Vilja P., Vuento M. Characterization of a nuclear localization signal of canine parvovirus capsid proteins. Eur. J. Biochem. 1997;250:389–394. PubMed
Zadori Z., Szelei J., Lacoste M.C., Li Y., Gariepy S., Raymond P., Allaire M., Nabi I.R., Tijssen P. A viral phospholipase a(2) is required for parvovirus infectivity. Dev. Cell. 2001;1:291–302. doi: 10.1016/S1534-5807(01)00031-4. PubMed DOI
Canaan S., Zadori Z., Ghomashchi F., Bollinger J., Sadilek M., Moreau M.E., Tijssen P., Gelb M.H. Interfacial enzymology of parvovirus phospholipases a(2) J. Biol. Chem. 2004;279:14502–14508. doi: 10.1074/jbc.M312630200. PubMed DOI
Lu J., Zhi N., Wong S., Brown K.E. Activation of synoviocytes by the secreted phospholipase a(2) motif in the vp1-unique region of parvovirus b19 minor capsid protein. J. Infect. Dis. 2006;193:582–590. doi: 10.1086/499599. PubMed DOI
Murakami M., Kudo I. Recent advances in molecular biology and physiology of the prostaglandin e-2-biosynthetic pathway. Prog. Lipid Res. 2004;43:3–35. doi: 10.1016/S0163-7827(03)00037-7. PubMed DOI
Martel-Pelletier J., Pelletier J.P., Fahmi H. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin. Arthritis Rheum. 2003;33:155–167. doi: 10.1016/S0049-0172(03)00134-3. PubMed DOI
Stahnke S., Lux K., Uhrig S., Kreppel F., Hosel M., Coutelle O., Ogris M., Hallek M., Buning H. Intrinsic phospholipase a2 activity of adeno-associated virus is involved in endosomal escape of incoming particles. Virology. 2011;409:77–83. doi: 10.1016/j.virol.2010.09.025. PubMed DOI
Filippone C., Zhi N., Wong S., Lu J., Kajigaya S., Gallinella G., Kakkola L., Soderlund-Venenno M., Young N.S., Brown K.E. Vp1u phospholipase activity is critical for infectivity of full-length parvovirus b19 genomic clones. Virology. 2008;374:444–452. doi: 10.1016/j.virol.2008.01.002. PubMed DOI PMC
Deng X.F., Dong Y.M., Yi Q.H., Huang Y., Zhao D., Yang Y.B., Tijssen P., Qiu J.M., Liu K.Y., Li Y. The determinants for the enzyme activity of human parvovirus b19 phospholipase a2 (pla2) and its influence on cultured cells. PLoS One. 2013;8:e61440. PubMed PMC
Pakkanen K., Kirjavainen S., Makela A.R., Rintanen N., Oker-Blom C., Jalonen T.O., Vuento M. Parvovirus capsid disorders cholesterol-rich membranes. Biochem. Biophys. Res. Comm. 2009;379:562–566. doi: 10.1016/j.bbrc.2008.12.116. PubMed DOI
Bonsch C., Kempf C., Ros C. Interaction of parvovirus b19 with human erythrocytes alters virus structure and cell membrane integrity. J. Virol. 2008;82:11784–11791. doi: 10.1128/JVI.01399-08. PubMed DOI PMC
Lupescu A., Bock C.T., Lang P.A., Aberle S., Kaiser H., Kandolf R., Lang F. Phospholipase a2 activity-dependent stimulation of ca2+ entry by human parvovirus b19 capsid protein vp1. J. Virol. 2006;80:11370–11380. doi: 10.1128/JVI.01041-06. PubMed DOI PMC
Almilaji A., Szteyn K., Fein E., Pakladok T., Munoz C., Elvira B., Towhid S.T., Alesutan I., Shumilina E., Bock C.T., et al. Down-regulation of na+/k+ atpase activity by human parvovirus b19 capsid protein vp1. Cell. Physiol. Biochem. 2013;31:638–648. doi: 10.1159/000350083. PubMed DOI
Venkatakrishnan B., Yarbrough J., Domsic J., Bennett A., Bothner B., Kozyreva O.G., Samulski R.J., Muzyczka N., McKenna R., Agbandje-McKenna M. Structure and dynamics of adeno-associated virus serotype 1 vp1-unique n-terminal domain and its role in capsid trafficking. J. Virol. 2013;87:4974–4984. doi: 10.1128/JVI.02524-12. PubMed DOI PMC
Lux K., Goerlitz N., Schlemminger S., Perabo L., Goldnau D., Endell J., Leike K., Kofler D.M., Finke S., Hallek M., et al. Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J. Virol. 2005;79:11776–11787. doi: 10.1128/JVI.79.18.11776-11787.2005. PubMed DOI PMC
Cohen S., Behzad A.R., Carroll J.B., Pante N. Parvoviral nuclear import: Bypassing the host nuclear-transport machinery. J. Gen. Virol. 2006;87:3209–3213. doi: 10.1099/vir.0.82232-0. PubMed DOI
Cohen S., Marr A.K., Garcin P., Pante N. Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle. J. Virol. 2011;85:4863–4874. doi: 10.1128/JVI.01999-10. PubMed DOI PMC
Hansen J., Qing K., Srivastava A. Infection of purified nuclei by adeno-associated virus 2. Mol. Ther. 2001;4:289–296. doi: 10.1006/mthe.2001.0457. PubMed DOI
Nicolson S.C., Samulski R.J. Adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. Mol. Ther. 2013;21:S30–S30. PubMed PMC
Baker T.S., Newcomb W.W., Olson N.H., Cowsert L.M., Olson C., Brown J.C. Structures of bovine and human papillomaviruses—Analysis by cryoelectron microscopy and 3-dimensional image-reconstruction. Biophys. J. 1991;60:1445–1456. doi: 10.1016/S0006-3495(91)82181-6. PubMed DOI PMC
Giroglou T., Florin L., Schafer F., Streeck R.E., Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J. Virol. 2001;75:1565–1570. doi: 10.1128/JVI.75.3.1565-1570.2001. PubMed DOI PMC
Joyce J.G., Tung J.S., Przysiecki C.T., Cook J.C., Lehman E.D., Sands J.A., Jansens K.U., Keller P.M. The l1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J. Biol. Chem. 1999;274:5810–5822. PubMed
Gambhira R., Karanam B., Jagu S., Roberts J.N., Buck C.B., Bossis I., Alphs H., Culp T., Christensen N.D., Roden R.B.S. A protective and broadly cross-neutralizing epitope of human papillomavirus l2. J. Virol. 2007;81:13927–13931. doi: 10.1128/JVI.00936-07. PubMed DOI PMC
Richards R.M., Lowy D.R., Schiller J.T., Day P.M. Cleavage of the papillomavirus minor capsid protein, l2, at a furin consensus site is necessary for infection. Proc. Natl. Acad. Sci. USA. 2006;103:1522–1527. doi: 10.1073/pnas.0508815103. PubMed DOI PMC
Chen X., Liu H., Zhang T., Liu Y., Xie X., Wang Z., Xu X. A vaccine of l2 epitope repeats fused with a modified igg1 fc induced cross-neutralizing antibodies and protective immunity against divergent human papillomavirus types. PLoS One. 2014;9:e95448. PubMed PMC
Bienkowska-Haba M., Patel H.D., Sapp M. Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLoS Pathog. 2009;5:e1000524. doi: 10.1371/journal.ppat.1000524. PubMed DOI PMC
Kines R.C., Thompson C.D., Lowy D.R., Schiller J.T., Day P.M. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc. Natl. Acad. Sci. USA. 2009;106:20458–20463. doi: 10.1073/pnas.0908502106. PubMed DOI PMC
Horvath C.A.J., Boulet G.A.V., Renoux V.M., Delvenne P.O., Bogers J.P.J. Mechanisms of cell entry by human papillomaviruses: An overview. Virol. J. 2010;7:11. doi: 10.1186/1743-422X-7-11. PubMed DOI PMC
Laniosz V., Holthusen K.A., Meneses P.I. Bovine papillomavirus type 1: From clathrin to caveolin. J. Virol. 2008;82:6288–6298. doi: 10.1128/JVI.00569-08. PubMed DOI PMC
Smith J.L., Campos S.K., Ozbun M.A. Human papillomavirus type 31 uses a caveolin 1-and dynamin 2-mediated entry pathway for infection of human keratinocytes. J. Virol. 2007;81:9922–9931. doi: 10.1128/JVI.00988-07. PubMed DOI PMC
Bousarghin L., Touze A., Sizaret P.Y., Coursaget P. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J. Virol. 2003;77:3846–3850. PubMed PMC
Day P.M., Lowy D.R., Schiller J.T. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology. 2003;307:1–11. doi: 10.1016/S0042-6822(02)00143-5. PubMed DOI
Spoden G., Freitag K., Husmann M., Boller K., Sapp M., Lambert C., Florin L. Clathrin- and caveolin-independent entry of human papillomavirus type 16-involvement of tetraspanin-enriched microdomains (tems) PLoS One. 2008;3:e3313. doi: 10.1371/journal.pone.0003313. PubMed DOI PMC
Schelhaas M., Shah B., Holzer M., Blattmann P., Kuhling L., Day P.M., Schiller J.T., Helenius A. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog. 2012;8:e1002657. doi: 10.1371/journal.ppat.1002657. PubMed DOI PMC
Spoden G., Kuhling L., Cordes N., Frenzel B., Sapp M., Boller K., Florin L., Schelhaas M. Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry. J. Virol. 2013;87:7765–7773. doi: 10.1128/JVI.00370-13. PubMed DOI PMC
Lipovsky A., Popa A., Pimienta G., Wyler M., Bhan A., Kuruvilla L., Guie M.A., Poffenberger A.C., Nelson C.D.S., Atwood W.J., et al. Genome-wide sirna screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc. Natl. Acad. Sci. USA. 2013;110:7452–7457. doi: 10.1073/pnas.1302164110. PubMed DOI PMC
Bossis L., Roden R.B.S., Gambhira R., Yang R., Tagaya M., Howley P.A., Meneses P.I. Interaction of tsnare syntaxin 18 with the papillomavirus minor capsid protein mediates infection. J. Virol. 2005;79:6723–6731. doi: 10.1128/JVI.79.11.6723-6731.2005. PubMed DOI PMC
Laniosz V., Dabydeen S.A., Havens M.A., Meneses P.I. Human papillomavirus type 16 infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin a sensitive. J. Virol. 2009;83:8221–8232. doi: 10.1128/JVI.00576-09. PubMed DOI PMC
Karanam B., Peng S.W., Li T., Buck C., Day P.M., Roden R.B.S. Papillomavirus infection requires gamma secretase. J. Virol. 2010;84:10661–10670. doi: 10.1128/JVI.01081-10. PubMed DOI PMC
Campos S.K., Chapman J.A., Deymier M.J., Bronnimann M.P., Ozbun M.A. Opposing effects of bacitracin on human papillomavirus type 16 infection: Enhancement of binding and entry and inhibition of endosomal penetration. J. Virol. 2012;86:4169–4181. doi: 10.1128/JVI.05493-11. PubMed DOI PMC
Selinka H.C., Giroglou T., Sapp M. Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology. 2002;299:279–287. doi: 10.1006/viro.2001.1493. PubMed DOI
Dabydeen S.A., Meneses P.I. The role of nh(4)cl and cysteine proteases in human papillomavirus type 16 infection. Virol. J. 2009;6:109. doi: 10.1186/1743-422X-6-109. PubMed DOI PMC
Muller K.H., Spoden G.A., Scheffer K.D., Brunnhofer R., De Brabander J.K., Maier M.E., Florin L., Muller C.P. Inhibition by cellular vacuolar atpase impairs human papillomavirus uncoating and infection. Antimicrob. Agents Chemother. 2014;58:2905–2911. doi: 10.1128/AAC.02284-13. PubMed DOI PMC
Selinka H.C., Giroglou T., Nowak T., Christensen N.D., Sapp M. Further evidence that papillomavirus capsids exist in two distinct conformations. J. Virol. 2003;77:12961–12967. doi: 10.1128/JVI.77.24.12961-12967.2003. PubMed DOI PMC
Finnen R.L., Erickson K.D., Chen X.J.S., Garcea R.L. Interactions between papillomavirus l1 and l2 capsid proteins. J. Virol. 2003;77:4818–4826. doi: 10.1128/JVI.77.8.4818-4826.2003. PubMed DOI PMC
Buck C.B., Cheng N., Thompson C.D., Lowy D.R., Steven A.C., Schiller J.T., Trus B.L. Arrangement of l2 within the papillomavirus capsid. J. Virol. 2008;82:5190–5197. doi: 10.1128/JVI.02726-07. PubMed DOI PMC
Trus B.L., Roden R.B.S., Greenstone H.L., Vrhel M., Schiller J.T., Booy F.P. Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 angstrom resolution. Nat. Struct. Biol. 1997;4:413–420. doi: 10.1038/nsb0597-413. PubMed DOI
Liu W.J., Gissmann L., Sun X.Y., Kanjanahaluethai A., Muller M., Doorbar J., Zhou J. Sequence close to the n-terminus of l2 protein is displayed on the surface of bovine papillomavirus type 1 virions. Virology. 1997;227:474–483. doi: 10.1006/viro.1996.8348. PubMed DOI
Kondo K., Ishii Y., Ochi H., Matsumoto T., Yoshikawa H., Kanda T. Neutralization of hpv16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the hpv 16 minor capsid protein l2 surface region. Virology. 2007;358:266–272. doi: 10.1016/j.virol.2006.08.037. PubMed DOI
Mamoor S., Onder Z., Karanam B., Kwak K., Bordeaux J., Crosby L., Roden R.B.S., Moroianu J. The high risk hpv16 l2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic. Virology. 2012;422:413–424. doi: 10.1016/j.virol.2011.11.007. PubMed DOI PMC
Darshan M.S., Lucchi J., Harding E., Moroianu J. The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J. Virol. 2004;78:12179–12188. doi: 10.1128/JVI.78.22.12179-12188.2004. PubMed DOI PMC
Fay A., Yutzy W.H., Roden R.B.S., Moroianu J. The positively charged termini of l2 minor capsid protein required for bovine papillomavirus infection function separately in nuclear import and dna binding. J. Virol. 2004;78:13447–13454. doi: 10.1128/JVI.78.24.13447-13454.2004. PubMed DOI PMC
Zhou J., Sun X.Y., Louis K., Frazer I.H. Interaction of human papillomavirus (hpv) type-16 capsid proteins with hpv dna requires an intact l2 n-terminal sequence. J. Virol. 1994;68:619–625. PubMed PMC
Kawana Y., Kawana K., Yoshikawa H., Taketani Y., Yoshiike K., Kanda T. Human papillomavirus type 16 minor capsid protein l2 n-terminal region containing a common neutralization epitope binds to the cell surface and enters the cytoplasm. J. Virol. 2001;75:2331–2336. doi: 10.1128/JVI.75.5.2331-2336.2001. PubMed DOI PMC
Woodham A.W., Da Silva D.M., Skeate J.G., Raff A.B., Ambroso M.R., Brand H.E., Isas J.M., Langen R., Kast W.M. The s100a10 subunit of the annexin a2 heterotetramer facilitates l2-mediated human papillomavirus infection. PLoS One. 2012;7:e43519. doi: 10.1371/journal.pone.0043519. PubMed DOI PMC
Yang R.C., Day P.M., Yutzy W.H., Lin K.Y., Hung C.F., Roden R.B.S. Cell surface-binding motifs of l2 that facilitate papillomavirus infection. J. Virol. 2003;77:3531–3541. doi: 10.1128/JVI.77.6.3531-3541.2003. PubMed DOI PMC
Holmgren S.C., Patterson N.A., Ozbun M.A., Lambert P.F. The minor capsid protein l2 contributes to two steps in the human papillomavirus type 31 life cycle. J. Virol. 2005;79:3938–3948. doi: 10.1128/JVI.79.7.3938-3948.2005. PubMed DOI PMC
Roden R.B.S., Day P.M., Bronzo B.K., Yutzy W.H., Yang Y.Q., Lowy D.R., Schiller J.T. Positively charged termini of the l2 minor capsid protein are necessary for papillomavirus infection. J. Virol. 2001;75:10493–10497. doi: 10.1128/JVI.75.21.10493-10497.2001. PubMed DOI PMC
Kamper N., Day P.M., Nowak T., Selinka H.C., Florin L., Bolscher J., Hilbig L., Schiller J.T., Sapp M. A membrane-destabilizing peptide in capsid protein l2 is required for egress of papillomavirus genomes from endosomes. J. Virol. 2006;80:759–768. doi: 10.1128/JVI.80.2.759-768.2006. PubMed DOI PMC
Campos S.K., Ozbun M.A. Two highly conserved cysteine residues in hpv16 l2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One. 2009;4:e4463. doi: 10.1371/journal.pone.0004463. PubMed DOI PMC
Gambhira R., Jagu S., Karanam B., Day P.M., Roden R. Role of l2 cysteines in papillomavirus infection and neutralization. Virol. J. 2009;6:176. doi: 10.1186/1743-422X-6-176. PubMed DOI PMC
Bronnimann M.P., Chapman J.A., Park C.K., Campos S.K. A transmembrane domain and gxxxg motifs within l2 are essential for papillomavirus infection. J. Virol. 2013;87:464–473. doi: 10.1128/JVI.01539-12. PubMed DOI PMC
Ishii Y., Tanaka K., Kondo K., Takeuchi T., Mori S., Kanda T. Inhibition of nuclear entry of hpv16 pseudovirus-packaged dna by an anti-hpv16 l2 neutralizing antibody. Virology. 2010;406:181–188. doi: 10.1016/j.virol.2010.07.019. PubMed DOI
Marusic M.B., Ozbun M.A., Campos S.K., Myers M.P., Banks L. Human papillomavirus l2 facilitates viral escape from late endosomes via sorting nexin 17. Traffic. 2012;13:455–467. doi: 10.1111/j.1600-0854.2011.01320.x. PubMed DOI PMC
Bergant M., Banks L. Snx17 facilitates infection with diverse papillomavirus types. J. Virol. 2013;87:1270–1273. PubMed PMC
Laniosz V., Nguyen K.C., Meneses P.I. Bovine papillomavirus type 1 infection is mediated by snare syntaxin 18. J. Virol. 2007;81:7435–7448. doi: 10.1128/JVI.00571-07. PubMed DOI PMC
Ishii Y., Nakahara T., Kataoka M., Kusumoto-Matsuo R., Mori S., Takeuchi T., Kukimoto I. Identification of trappc8 as a host factor required for human papillomavirus cell entry. PLoS One. 2013;8:e80297. PubMed PMC
Liu W.J., Qi Y.M., Zhao K.N., Liu Y.H., Liu X.S., Frazer I.H. Association of bovine papillomavirus type 1 with microtubules. Virology. 2001;282:237–244. doi: 10.1006/viro.2000.0728. PubMed DOI
Zhou J., Gissmann L., Zentgraf H., Muller H., Picken M., Muller M. Early phase in the infection of cultured-cells with papillomavirus virions. Virology. 1995;214:167–176. doi: 10.1006/viro.1995.9943. PubMed DOI
Florin L., Becker K.A., Lambert C., Nowak T., Sapp C., Strand D., Streeck R.E., Sapp M. Identification of a dynein interacting domain in the papillomavirus minor capsid protein l2. J. Virol. 2006;80:6691–6696. doi: 10.1128/JVI.00057-06. PubMed DOI PMC
Schneider M.A., Spoden G.A., Florin L., Lambert C. Identification of the dynein light chains required for human papillomavirus infection. Cell. Microbiol. 2011;13:32–46. doi: 10.1111/j.1462-5822.2010.01515.x. PubMed DOI
Day P.M., Baker C.C., Lowy D.R., Schiller J.T. Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (pml) expression. Proc. Natl. Acad. Sci. USA. 2004;101:14252–14257. doi: 10.1073/pnas.0404229101. PubMed DOI PMC
Bienkowska-Haba M., Williams C., Kim S.M., Garcea R.L., Sapp M. Cyclophilins facilitate dissociation of the human papillomavirus type 16 capsid protein l1 from the l2/dna complex following virus entry. J. Virol. 2012;86:9875–9887. doi: 10.1128/JVI.00980-12. PubMed DOI PMC
Lee J.E., Lim H.J. Ldp12, a novel cell-permeable peptide derived from l1 capsid protein of the human papillomavirus. Mol. Biol. Rep. 2012;39:1079–1086. doi: 10.1007/s11033-011-0834-y. PubMed DOI
Liddington R.C., Yan Y., Moulai J., Sahli R., Benjamin T.L., Harrison S.C. Structure of simian virus-40 at 3.8-a resolution. Nature. 1991;354:278–284. doi: 10.1038/354278a0. PubMed DOI
Barouch D.H., Harrison S.C. Interactions among the major and minor coat proteins of polyomavirus. J. Virol. 1994;68:3982–3989. PubMed PMC
Chen X.J.S., Stehle T., Harrison S.C. Interaction of polyomavirus internal protein vp2 with the major capsid protein vp1 and implications for participation of vp2 in viral entry. EMBO J. 1998;17:3233–3240. doi: 10.1093/emboj/17.12.3233. PubMed DOI PMC
Streuli C.H., Griffin B.E. Myristic acid is coupled to a structural protein of polyoma-virus and sv40. Nature. 1987;326:619–622. doi: 10.1038/326619a0. PubMed DOI
Gross L. A filterable agent, recovered from ak leukemic extracts, causing salivary gland carcinomas in c3h mice. Proc. Soc. Exp. Biol. Med. 1953;83:414–421. doi: 10.3181/00379727-83-20376. PubMed DOI
Dalianis T., Hirsch H.H. Human polyomaviruses in disease and cancer. Virology. 2013;437:63–72. doi: 10.1016/j.virol.2012.12.015. PubMed DOI
Feng H.C., Shuda M., Chang Y., Moore P.S. Clonal integration of a polyomavirus in human merkel cell carcinoma. Science. 2008;319:1096–1100. doi: 10.1126/science.1152586. PubMed DOI PMC
Tsai B., Gilbert J.M., Stehle T., Lencer W., Benjamin T.L., Rapoport T.A. Gangliosides are receptors for murine polyoma virus and sv40. EMBO J. 2003;22:4346–4355. doi: 10.1093/emboj/cdg439. PubMed DOI PMC
Qian M.D., Tsai B. Lipids and proteins act in opposing manners to regulate polyomavirus infection. J. Virol. 2010;84:9840–9852. doi: 10.1128/JVI.01093-10. PubMed DOI PMC
Low J.A., Magnuson B., Tsai B., Imperiale M.J. Identification of gangliosides gd1b and gt1b as receptors for bk virus. J. Virol. 2006;80:1361–1366. doi: 10.1128/JVI.80.3.1361-1366.2006. PubMed DOI PMC
Ewers H., Romer W., Smith A.E., Bacia K., Dmitrieff S., Chai W.G., Mancini R., Kartenbeck J., Chambon V., Berland L., et al. Gm1 structure determines sv40-induced membrane invagination and infection. Nat. Cell Biol. 2010;12:U11–U36. doi: 10.1038/ncb1999. PubMed DOI
Cavaldesi M., Caruso M., Sthandier O., Amati P., Garcia M.I. Conformational changes of murine polyomavirus capsid proteins induced by sialic acid binding. J. Biol. Chem. 2004;279:41573–41579. PubMed
Qian M.D., Cai D.W., Verhey K.J., Tsai B. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog. 2009;5:e1000465. doi: 10.1371/journal.ppat.1000465. PubMed DOI PMC
Pho M.T., Ashok A., Atwood W.J. Jc virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J. Virol. 2000;74:2288–2292. doi: 10.1128/JVI.74.5.2288-2292.2000. PubMed DOI PMC
Anderson H.A., Chen Y.Z., Norkin L.C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell. 1996;7:1825–1834. doi: 10.1091/mbc.7.11.1825. PubMed DOI PMC
Richterova Z., Liebl D., Horak M., Palkova Z., Stokrova J., Hozak P., Korb J., Forstova J. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial vp1 pseudocapsids toward cell nuclei. J. Virol. 2001;75:10880–10891. doi: 10.1128/JVI.75.22.10880-10891.2001. PubMed DOI PMC
Eash S., Querbes W., Atwood W.J. Infection of vero cells by bk virus is dependent on caveolae. J. Virol. 2004;78:11583–11590. doi: 10.1128/JVI.78.21.11583-11590.2004. PubMed DOI PMC
Gilbert J.M., Goldberg I.G., Benjamin T.L. Cell penetration and trafficking of polyomavirus. J. Virol. 2003;77:2615–2622. doi: 10.1128/JVI.77.4.2615-2622.2003. PubMed DOI PMC
Ashok A., Atwood W.J. Contrasting roles of endosomal ph and the cytoskeleton in infection of human glial cells by jc virus and simian virus 40. J. Virol. 2003;77:1347–1356. doi: 10.1128/JVI.77.2.1347-1356.2003. PubMed DOI PMC
Moriyama T., Sorokin A. Intracellular trafficking pathway of bk virus in human renal proximal tubular epithelial cells. Virology. 2008;371:336–349. doi: 10.1016/j.virol.2007.09.030. PubMed DOI PMC
Pelkmans L., Kartenbeck J., Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the er. Nat. Cell Biol. 2001;3:473–483. doi: 10.1038/35074539. PubMed DOI
Damm E.M., Pelkmans L., Kartenbeck J., Mezzacasa A., Kurzckalia T., Helenius A. Clathrin- and caveolin-1-independent endocytosis: Entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 2005;168:477–488. doi: 10.1083/jcb.200407113. PubMed DOI PMC
Liebl D., Difato F., Hornikova L., Mannova P., Strokrova J., Forstova J. Mouse polyomavirus enters early endosomes, requires their acidic ph for productive infection, and meets transferrin cargo in rab11-positive endosomes. J. Virol. 2006;80:4610–4622. doi: 10.1128/JVI.80.9.4610-4622.2006. PubMed DOI PMC
Mannova P., Forstova J. Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of copi vesicle transport. J. Virol. 2003;77:1672–1681. doi: 10.1128/JVI.77.3.1672-1681.2003. PubMed DOI PMC
Gilbert J., Benjamin T. Uptake pathway of polyomavirus via ganglioside gd1a. J. Virol. 2004;78:12259–12267. doi: 10.1128/JVI.78.22.12259-12267.2004. PubMed DOI PMC
Richards A.A., Stang E., Pepperkok R., Parton R.G. Inhibitors of cop-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol. Biol. Cell. 2002;13:1750–1764. doi: 10.1091/mbc.01-12-0592. PubMed DOI PMC
Norkin L.C., Anderson H.A., Wolfrom S.A., Oppenheim A. Caveolar endocytosis of simian virus 40 is followed by brefeldin a-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J. Virol. 2002;76:5156–5166. PubMed PMC
Norkin L.C., Kuksin D. The caveolae-mediated sv40 entry pathway bypasses the golgi complex en route to the endoplasmic reticulum. Virol. J. 2005;2:38. doi: 10.1186/1743-422X-2-38. PubMed DOI PMC
Zila V., Difato F., Klimova L., Huerfano S., Forstova J. Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus. PLoS One. 2014;9:e96922. PubMed PMC
Walczak C.P., Tsai B. A pdi family network acts distinctly and coordinately with erp29 to facilitate polyomavirus infection. J. Virol. 2011;85:2386–2396. doi: 10.1128/JVI.01855-10. PubMed DOI PMC
Schelhaas M., Malmstrom J., Pelkmans L., Haugstetter J., Ellgaard L., Grunewald K., Helenius A. Simian virus 40 depends on er protein folding and quality control factors for entry into host cells. Cell. 2007;131:516–529. doi: 10.1016/j.cell.2007.09.038. PubMed DOI
Gilbert J., Ou W., Silver J., Benjamin T. Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus. J. Virol. 2006;80:10868–10870. doi: 10.1128/JVI.01117-06. PubMed DOI PMC
Geiger R., Andritschke D., Friebe S., Herzog F., Luisoni S., Heger T., Helenius A. Bap31 and bip are essential for dislocation of sv40 from the endoplasmic reticulum to the cytosol. Nat. Cell Biol. 2011;13:U1305–U1360. doi: 10.1038/ncb2339. PubMed DOI
Goodwin E.C., Lipovsky A., Inoue T., Magaldi T.G., Edwards A.P.B., Van Goor K.E.Y., Paton A.W., Paton J.C., Atwood W.J., Tsai B., et al. Bip and multiple dnaj molecular chaperones in the endoplasmic reticulum are required for efficient simian virus 40 infection. Mbio. 2011;2:e00101-11. PubMed PMC
Lilley B.N., Gilbert J.M., Ploegh H.L., Benjamin T.L. Murine polyomavirus requires the endoplasmic reticulum protein derlin-2 to initiate infection. J. Virol. 2006;80:8739–8744. doi: 10.1128/JVI.00791-06. PubMed DOI PMC
Bennett S.M., Jiang M., Imperiale M.J. Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. J. Virol. 2013;87:8843–8852. doi: 10.1128/JVI.00664-13. PubMed DOI PMC
Chen P.L., Wang M.L., Ou W.C., Lii C.K., Chen L.S., Chang D.C. Disulfide bonds stabilize jc virus capsid-like structure by protecting calcium ions from chelation. FEBS Lett. 2001;500:109–113. doi: 10.1016/S0014-5793(01)02598-4. PubMed DOI
Stehle T., Harrison S.C. High-resolution structure of a polyomavirus vp1-oligosaccharide complex: Implications for assembly and receptor binding. EMBO J. 1997;16:5139–5148. doi: 10.1093/emboj/16.16.5139. PubMed DOI PMC
Gharakhanian E., Fasching C.L., Orlando S.J., Perez A.R. Cys(9), cys(104) and cys(207) of simian virus 40 vp1 are essential for infectious virion formation in cv-1 celss. J. Gen. Virol. 2001;82:1935–1939. PubMed
Salunke D.M., Caspar D.L.D., Garcea R.L. Self-assembly of purified polyomavirus capsid protein-vp1. Cell. 1986;46:895–904. doi: 10.1016/0092-8674(86)90071-1. PubMed DOI
Daniels R., Rusan N.M., Wadsworth P., Hebert D.N. Sv40vp2 and vp3 insertion into er membranes is controlled by the capsid protein vp1: Implications for dna translocation out of the er. Mol. Cell. 2006;24:955–966. doi: 10.1016/j.molcel.2006.11.001. PubMed DOI
Gharakhanian E., Munoz L., Mayorca L. The simian virus 40 minor structural protein vp3, but not vp2, is essential for infectious virion formation. J. Gen. Virol. 2003;84:2111–2116. doi: 10.1099/vir.0.19287-0. PubMed DOI
Enomoto T., Kukimoto I., Kawano M.A., Yamaguchi Y., Berk A.J., Handa H. In vitro reconstitution of sv40 particles that are composed of vp1/2/3 capsid proteins and nucleosomal dna and direct efficient gene transfer. Virology. 2011;420:1–9. doi: 10.1016/j.virol.2011.08.014. PubMed DOI
Nakanishi A., Itoh N., Li P.P., Handa H., Liddington R.C., Kasamatsu H. Minor capsid proteins of simian virus 40 are dispensable for nucleocapsid assembly and cell entry but are required for nuclear entry of the viral genome. J. Virol. 2007;81:3778–3785. doi: 10.1128/JVI.02664-06. PubMed DOI PMC
Stehle T., Harrison S.C. Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure. 1996;4:183–194. doi: 10.1016/S0969-2126(96)00021-4. PubMed DOI
Neu U., Woellner K., Gauglitz G., Stehle T. Structural basis of gm1 ganglioside recognition by simian virus 40. Proc. Natl. Acad. Sci. USA. 2008;105:5219–5224. PubMed PMC
Inoue T., Tsai B. A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog. 2011;7:e1002037. doi: 10.1371/journal.ppat.1002037. PubMed DOI PMC
Forstova J., Krauzewicz N., Wallace S., Street A.J., Dilworth S.M., Beard S., Griffin B.E. Cooperation of structural proteins during late events in the life-cycle of polyomavirus. J. Virol. 1993;67:1405–1413. PubMed PMC
Delos S.E., Montross L., Moreland R.B., Garcea R.L. Expression of the polyomavirus vp2 and vp3 proteins in insect cells—Coexpression with the major capsid protein vp1 alters vp2/vp3 subcellular-localization. Virology. 1993;194:393–398. doi: 10.1006/viro.1993.1274. PubMed DOI
Huerfano S., Zila V., Boura E., Spanielova H., Stokrova J., Forstova J. Minor capsid proteins of mouse polyomavirus are inducers of apoptosis when produced individually but are only moderate contributors to cell death during the late phase of viral infection. FEBS J. 2010;277:1270–1283. doi: 10.1111/j.1742-4658.2010.07558.x. PubMed DOI
Giorda K.M., Raghava S., Zhang M.W., Hebert D.N. The viroporin activity of the minor structural proteins vp2 and vp3 is required for sv40 propagation. J. Biol. Chem. 2013;288:2510–2520. PubMed PMC
Raghava S., Giorda K.M., Romano F.B., Heuck A.P., Hebert D.N. Sv40 late protein vp4 forms toroidal pores to disrupt membranes for viral release. Biochemistry. 2013;52:3939–3948. PubMed PMC
Daniels R., Sadowicz D., Hebert D.N. A very late viral protein triggers the lytic release of sv40. PLoS Pathog. 2007;3:928–938. PubMed PMC
Fiser R., Forstova J. (Department of Genetics and Microbiology, Charles University, Prague, Czech Republic). 2008. Unpublished work.
Cai X.Y., Chang D.C., Rottinghaus S., Consigli R.A. Expression and purification of recombinant polyomavirus vp2 protein and its interactions with polyomavirus proteins. J. Virol. 1994;68:7609–7613. PubMed PMC
Hornikova L., Forstova J. (Department of Genetics and Microbiology, Charles University, Prague, Czech Republic). 2012 Unpublished work.
Schowalter R.M., Buck C.B. The merkel cell polyomavirus minor capsid protein. PLoS Pathog. 2013;9:e1003558. doi: 10.1371/journal.ppat.1003558. PubMed DOI PMC
Magnuson B., Rainey E.K., Benjamin T., Baryshev M., Mkrtchian S., Tsai B. Erp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol. Cell. 2005;20:289–300. doi: 10.1016/j.molcel.2005.08.034. PubMed DOI
Attar N., Cullen P.J. The retromer complex. Adv. Enzym. Regul. 2010;50:216–236. doi: 10.1016/j.advenzreg.2009.10.002. PubMed DOI
Walczak C.P., Ravindran M.S., Inoue T., Tsai B. A cytosolic chaperone complexes with dynamic membrane j-proteins and mobilizes a nonenveloped virus out of the endoplasmic reticulum. PLoS Pathog. 2014;10:e1004007. doi: 10.1371/journal.ppat.1004007. PubMed DOI PMC
Nakanishi A., Shum D., Morioka H., Otsuka E., Kasamatsu H. Interaction of the vp3 nuclear localization signal with the importin alpha-2/beta heterodimer directs nuclear entry of infecting simian virus 40. J. Virol. 2002;76:9368–9377. doi: 10.1128/JVI.76.18.9368-9377.2002. PubMed DOI PMC
Nakanishi A., Li P.P., Qu Q.M., Jafri Q.H., Kasamatsu H. Molecular dissection of nuclear entry-competent sv40 during infection. Virus Res. 2007;124:226–230. PubMed PMC
Kuksin D., Norkin L.C. Disassociation of the sv40 genome from capsid proteins prior to nuclear entry. Virol. J. 2012;9:158. doi: 10.1186/1743-422X-9-158. PubMed DOI PMC
Hummeler K., Tomassin N., Sokol F. Morphological aspects of uptake of simian-virus-40 by permissive cells. J. Virol. 1970;6:87–93. PubMed PMC
Mackay R.L., Consigli R.A. Early events in polyoma-virus infection - attachment, penetration, and nuclear entry. J. Virol. 1976;19:620–636. PubMed PMC
Butin-Israeli V., Ben-nun-Shaul O., Kopatz I., Adam S.A., Shimi T., Goldman R.D., Oppenheim A. Simian virus 40 induces lamin a/c fluctuations and nuclear envelope deformation during cell entry. Nucleus-Austin. 2011;2:320–330. doi: 10.4161/nucl.2.4.16371. PubMed DOI PMC