Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of COPI vesicle transport
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12525601
PubMed Central
PMC140913
DOI
10.1128/jvi.77.3.1672-1681.2003
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- brefeldin A farmakologie MeSH
- buněčné jádro virologie MeSH
- chaperon endoplazmatického retikula BiP MeSH
- COP-vezikuly fyziologie MeSH
- endozomy virologie MeSH
- lyzozomy virologie MeSH
- molekulární chaperony analýza MeSH
- myši MeSH
- obalový protein analýza MeSH
- Polyomavirus fyziologie MeSH
- proteiny tepelného šoku * MeSH
- Rab proteiny vázající GTP analýza MeSH
- Rab5 proteiny vázající GTP analýza MeSH
- transportní proteiny analýza MeSH
- virion fyziologie MeSH
- virové plášťové proteiny analýza MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- brefeldin A MeSH
- chaperon endoplazmatického retikula BiP MeSH
- molekulární chaperony MeSH
- obalový protein MeSH
- proteiny tepelného šoku * MeSH
- Rab proteiny vázající GTP MeSH
- Rab5 proteiny vázající GTP MeSH
- Rab6 protein MeSH Prohlížeč
- transportní proteiny MeSH
- virové plášťové proteiny MeSH
Mouse polyomavirus enters host cells internalized, similar to simian virus 40 (SV40), in smooth monopinocytic vesicles, the movement of which is associated with transient actin disorganization. The major capsid protein (VP1) of the incoming polyomavirus accumulates on membranes around the cell nucleus. Here we show that unlike SV40, mouse polyomavirus infection is not substantially inhibited by brefeldin A, and colocalization of VP1 with beta-COP during early stages of polyomavirus infection in mouse fibroblasts was observed only rarely. Thus, these viruses obviously use different traffic routes from the plasma membrane toward the cell nucleus. At approximately 3 h postinfection, a part of VP1 colocalized with the endoplasmic reticulum marker BiP, and a subpopulation of virus was found in perinuclear areas associated with Rab11 GTPase and colocalized with transferrin, a marker of recycling endosomes. Earlier postinfection, a minor subpopulation of virions was found to be associated with Rab5, known to be connected with early endosomes, but the cell entry of virus was slower than that of transferrin or cholera toxin B-fragment. Neither Rab7, a marker of late endosomes, nor LAMP-2 lysosomal glycoprotein was found to colocalize with polyomavirus. In situ hybridization with polyomavirus genome-specific fluorescent probes clearly demonstrated that, regardless of the multiplicity of infection, only a few virions delivered their genomic DNA into the cell nucleus, while the majority of viral genomes (and VP1) moved back from the proximity of the nucleus to the cytosol, apparently for their degradation.
Zobrazit více v PubMed
Anderson, H. A., Y. Chen, and L. C. Norkin. 1996. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 11:1825-1834. PubMed PMC
Anderson, H. A., Y. Chen, and L. C. Norkin. 1998. Major histocompatibility complex class I molecules are enriched in caveolae but do not enter with simian virus 40. J. Gen. Virol. 79:1469-1477. PubMed
Atwood, W. J., and L. C. Norkin. 1989. Class I major histocompatibility proteins as cell surface receptors for simian virus 40. J. Virol. 63:4474-4477. PubMed PMC
Barouch, D. H., and S. C. Harrison. 1994. Interactions among the major and minor coat proteins of polyomavirus. J. Virol. 68:3982-3989. PubMed PMC
Bartlett, J. S., R. Wilcher, and R. J. Samulski. 2000. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J. Virol. 74:2777-2785. PubMed PMC
Brady, J. N., V. D. Winston, and R. A. Consigli. 1978. Characterization of DNA polyomavirus by treatment with ethylene glycol-bis-N,N′-tetraacetic acid and dithiothreitol. J. Virol. 27:193-204. PubMed PMC
Chardonnet, Y., and S. Dales. 1970. Early events in the interaction of adenoviruses with HeLa cells. I. Penetration of type 5 and intracellular release of the DNA genome. Virology 40:462-477. PubMed
Deeks, E. D., J. P. Cook, P. J. Day, D. C. Smith, L. M. Roberts, and J. M. Lord. 2002. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405-3413. PubMed
Dilworth, S. M., and B. E. Griffin. 1982. Monoclonal antibodies against polyomavirus virus tumor antigens. Proc. Natl. Acad. Sci. USA 79:1059-1063. PubMed PMC
Gagescu, R., N. Demaurex, R. G. Parton, W. Hunziker, L. A. Huber, and J. Gruenberg. 2000. The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11:2775-2791. PubMed PMC
Gilbert, J. M., and T. L. Benjamin. 2000. Early steps of polyomavirus entry into cells. J. Virol. 74:8582-8588. PubMed PMC
Girod, A., B. Storrie, J. C. Simpson, L. Johannes, B. Goud, L. M. Roberts, J. M. Lord, T. Nilsson, and R. Pepperkok. 1999. Evidence for a COPI-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat. Cell Biol. 1:423-430. PubMed
Griffith, G. R., and R. A. Consigli. 1984. Isolation and characterization of monopinocytotic vesicles containing polyomavirus from the cytoplasm of infected mouse kidney cells. J. Virol. 50:77-85. PubMed PMC
Griffith, J. P., D. L. Griffith, I. Rayment, W. T. Murakami, and D. L. D. Caspar. 1992. Inside polyomavirus at 25 Å resolution. Nature 355:625-654. PubMed
Griffiths, G., B. Hoflack, K. Simons, I., Mellman, and S. Kornfeld. 1988. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 52:329-341. PubMed
Haun, G., O. T. Keppler, C. T. Bock, M. Herrmann, H. Zentgraf, and M. Pawlita. 1993. The cell surface receptor is a major determinant restricting the host range of the B-lymphotropic papovavirus. J. Virol. 67:7482-7492. PubMed PMC
Hummeler, K., N. Tomassini, and F. Sokol. 1970. Morphological aspect of the uptake of simian virus 40 by permissive cells. J. Virol. 6:87-93. PubMed PMC
Joki-Korpela, P., V. Marjomaki, C. Krogerus, J. Heino, and T. Hyypia. 2001. Entry of human parechovirus 1. J. Virol. 75:1958-1967. PubMed PMC
Kartenbeck, J., H. Stukenbrok, and A. Helenius. 1989. Endocytosis of simian virus 40 into the endoplasmic reticulum. J. Cell Biol. 109:2721-2729. PubMed PMC
Krizanova, O., F. Ciampor, and P. Verber. 1982. Influence of chlorpromazine on the replication of influenza virus in chick embryo fibroblasts. Acta Virol. 26:209-216. PubMed
Lencer, W. I. 2001. Microbes, and microbial toxins. Paradigms for microbial-mucosal toxins. V. Cholera: invasion of the intestinal epithelial barrier by a stably folded protein toxin. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G781-G786. PubMed
Lencer, W. I., C. Constable, S. Moe, M. G. Jobling, H. M. Webb, S. Ruston, J. L. Madara, T. R. Hirst, and R. K. Holmes. 1995. Targeting of cholera toxin and Escherichia coli heat-labile toxin in polarized epithelia: role of COOH-terminal KDEL. J. Cell Biol. 131:951-962. PubMed PMC
Lencer, W. I., T. R. Hirst, and R. K. Holmes. 1999. Membrane traffic and the cellular uptake of cholera toxin. Biochim. Biophys. Acta 1450:177-190. PubMed
Lippincott-Schwartz, J., L. Yuan, C. Tipper, M. Amherdt, L. Orci, and R. D. Klausner. 1991. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67:601-616. PubMed
Mackay, R. L., and R. A. Consigli. 1976. Early events in polyomavirus virus infection: attachment, penetration, and nuclear entry. J. Virol. 19:620-636. PubMed PMC
Mallard, F., C. Antony, D. Tenza, J. Salamero, B. Goud, and L. Johannes. 1998. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of Shiga toxin B-fragment transport. J. Cell Biol. 143:973-990. PubMed PMC
Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
Mayor, S., S. Sabharanjak, and F. R. Maxfield. 1998. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J. 17:4626-4638. PubMed PMC
Norkin, L. C. 1999. Simian virus 40 infection via major histocompatibility complex class I molecules and caveolae. Immunol. Rev. 168:13-22. PubMed
Norkin, L. C., H. A. Anderson, W. A. Scott, and A. Oppenheim. 2002. Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J. Virol. 76:5156-5166. PubMed PMC
Orlandi, P. A., and P. H. Fishman. 1998. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalisation and activation through caveolae-like domains. J. Cell Biol. 141:905-915. PubMed PMC
Parker, J. S., and C. R. Parrish. 1999. Cellular uptake and infection by canine parvovirus involves dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J. Virol. 74:1919-1930. PubMed PMC
Pelkmans, L., J. Kartenbeck, and A. Helenius. 2001. Caveolar endocytosis of simian virus 40 reveals a new two step vesicular-transport pathway to the endoplasmic reticulum. Nat. Cell Biol. 3:473-483. PubMed
Pelkmans, L., D. Püntener, and A. Helenius. 2002. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535-539. PubMed
Peter, F., H. Plutner, H. Zhu, T. E. Kreis, and W. E. Balch. 1993. Beta-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol. 122:1155-1167. PubMed PMC
Pho, M. T., A. Ashok, and W. J. Atwood. 2000. JC virus enters human glial cells by clathrin-dependent receptor-mediated endocytosis. J. Virol. 74:2288-2292. PubMed PMC
Plemper, R. K., and D. H. Wolf. 1999. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24:266-270. PubMed
Plemper, R. K., S. Bohmler, J. Bordallo, T. Sommer, and D. H. Wolf. 1997. Mutant analysis links the translocon and BiP to retrograde protein transport for endoplasmic reticulum degradation. Nature 388:891-895. PubMed
Richards, A. A., E. Stang, R. Pepperkok, and R. G. Parton. 2002. Inhibitors of COP-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol. Biol. Cell 13:1750-1764. PubMed PMC
Richterová, Z., D. Liebl, M. Horák, Z. Palková, J. Ŝtokrová, P. Hozák, J. Korb, and J. Forstová. 2001. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J. Virol. 75:10880-10891. PubMed PMC
Roy, S., R. Luetterforst, A. Harding, A. Apolloni, M. Etheridge, E. Stang, B. Rolls, J. F. Hancock, and R. G. Parton. 1999. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat. Cell Biol. 2:98-105. PubMed
Smart, E. J., Y. Yun-Shu, P. A. Conrad, and R. G. W. Anderson. 1994. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127:1185-1197. PubMed PMC
Somsel Rodman, J., and A. Wandinger-Ness. 2000. Rab GTPases coordinate endocytosis. J. Cell Sci. 113:183-192. PubMed
Sönnichsen, B., S. De Renzis, E. Nielsen, J. Rietdorf, and M. Zerial. 2000. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149:901-913. PubMed PMC
Stehle, T., and S. C. Harrison. 1996. Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure 4:183-194. PubMed
Suikkanen, S., K. Sääjärvi, J. Hirsimäki, O. Välilehto, H. Reunanen, M. Vihinen-Ranta, and M. Vuento. 2002. Role of recycling endosomes and lysosomes in dynein-dependent entry of canine parvovirus. J. Virol. 76:4401-4411. PubMed PMC
Türler, H., and P. Beard. 1985. Simian virus SV40 and polyomavirus: growth, titration, transformation and purification of viral components, p. 169-192. In B. W. J. Mahy (ed.), Virology: a practical approach. IRL Press, Oxford, United Kingdom.
White, J., L. Johannes, F. Mallard, A. Girod, S. Grill, S. Reinsch, P. Keller, B. Tzschaschel, A. Echard, B. Goud, and E. H. K. Stelzer. 1999. Rab6 coordinates a novel Golgi to endoplasmic reticulum retrograde transport pathway in live cells. J. Cell Biol. 147:743-759. PubMed PMC
Wilcke, M., L. Johannes, T. Galli, V. Mayau, B. Goud, and J. Salamero. 2000. Rab11 regulates the compartmentalisation of early endosomes required for efficient transport from early endosomes to the trans-Golgi network. J. Cell Biol. 151:1207-1220. PubMed PMC
Yamashiro, D. J., and F. R. Maxfield. 1987. Acidification of morphologically distinct endosomes in mutant and wild-type Chinese hamster ovary cells. J. Cell Biol. 105:2723-2733. PubMed PMC