TLR4-Mediated Recognition of Mouse Polyomavirus Promotes Cancer-Associated Fibroblast-Like Phenotype and Cell Invasiveness
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-14445S
Grantová Agentura České Republiky
644217
GAUK https://cuni.cz/UKEN-753.html
PubMed
33923020
PubMed Central
PMC8123340
DOI
10.3390/cancers13092076
PII: cancers13092076
Knihovny.cz E-zdroje
- Klíčová slova
- CAF, IL-6, MPyV, TLR4, mouse fibroblasts, mouse polyomavirus, spheroid invasiveness,
- Publikační typ
- časopisecké články MeSH
The tumorigenic potential of mouse polyomavirus (MPyV) has been studied for decades in cell culture models and has been mainly attributed to nonstructural middle T antigen (MT), which acts as a scaffold signal adaptor, activates Src tyrosine kinases, and possesses transforming ability. We hypothesized that MPyV could also transform mouse cells independent of MT via a Toll-like receptor 4 (TLR4)-mediated inflammatory mechanism. To this end, we investigated the interaction of MPyV with TLR4 in mouse embryonic fibroblasts (MEFs) and 3T6 cells, resulting in secretion of interleukin 6 (IL-6), independent of active viral replication. TLR4 colocalized with MPyV capsid protein VP1 in MEFs. Neither TLR4 activation nor recombinant IL-6 inhibited MPyV replication in MEFs and 3T6 cells. MPyV induced STAT3 phosphorylation through both direct and MT-dependent and indirect and TLR4/IL-6-dependent mechanisms. We demonstrate that uninfected mouse fibroblasts exposed to the cytokine environment from MPyV-infected fibroblasts upregulated the expressions of MCP-1, CCL-5, and α-SMA. Moreover, the cytokine microenvironment increased the invasiveness of MEFs and CT26 carcinoma cells. Collectively, TLR4 recognition of MPyV induces a cytokine environment that promotes the cancer-associated fibroblast (CAF)-like phenotype in noninfected fibroblasts and increases cell invasiveness.
Department of Cell Biology Faculty of Science Charles University BIOCEV 25150 Vestec Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences 14220 Prague Czech Republic
Zobrazit více v PubMed
Lee W., Langhoff E. Polyomavirus in human cancer development. Adv. Exp. Med. Biol. 2006;577:310–318. doi: 10.1007/0-387-32957-9_22. PubMed DOI
Gheit T., Dutta S., Oliver J., Robitaille A., Hampras S., Combes J.D., McKay-Chopin S., Le Calvez-Kelm F., Fenske N., Cherpelis B., et al. Isolation and characterization of a novel putative human polyomavirus. Virology. 2017;506:45–54. doi: 10.1016/j.virol.2017.03.007. PubMed DOI PMC
Cook L. Polyomaviruses. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.DMIH2-0010-2015. PubMed DOI
Liu W., Yang R., Payne A.S., Schowalter R.M., Spurgeon M.E., Lambert P.F., Xu X., Buck C.B., You J. Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host. Microbe. 2016;19:775–787. doi: 10.1016/j.chom.2016.04.024. PubMed DOI PMC
Benjamin T.L. Polyoma virus: Old findings and new challenges. Virology. 2001;289:167–173. doi: 10.1006/viro.2001.1124. PubMed DOI
Fluck M.M., Schaffhausen B.S. Lessons in Signaling and Tumorigenesis from Polyomavirus Middle T Antigen. Microbiol. Mol. Biol. Rev. 2009;73:542–563. doi: 10.1128/MMBR.00009-09. PubMed DOI PMC
Gottlieb K.A., Villarreal L.P. Natural Biology of Polyomavirus Middle T Antigen. Microbiol. Mol. Biol. Rev. 2001;65:288–318. doi: 10.1128/MMBR.65.2.288-318.2001. PubMed DOI PMC
Zhou A.Y., Ichaso N., Adamarek A., Zila V., Forstova J., Dibb N.J., Dilworth S.M. Polyomavirus Middle T-Antigen Is a Transmembrane Protein That Binds Signaling Proteins in Discrete Subcellular Membrane Sites. J. Virol. 2011;85:3046–3054. doi: 10.1128/JVI.02209-10. PubMed DOI PMC
Courtneidge S.A. Activation of the pp60c-src kinase by middle T antigen binding or by dephosphorylation. EMBO J. 1985;4:1471–1477. doi: 10.1002/j.1460-2075.1985.tb03805.x. PubMed DOI PMC
Dunant N.M., Senften M., Ballmer-Hofer K. Polyomavirus middle-T antigen associates with the kinase domain of Src-related tyrosine kinases. J. Virol. 1996;70:1323–1330. doi: 10.1128/JVI.70.3.1323-1330.1996. PubMed DOI PMC
Utermark T., Schaffhausen B.S., Roberts T.M., Zhao J.J. The p110α Isoform of Phosphatidylinositol 3-Kinase Is Essential for Polyomavirus Middle T Antigen-Mediated Transformation. J. Virol. 2007;81:7069–7076. doi: 10.1128/JVI.00115-07. PubMed DOI PMC
Su W., Liu W., Schaffhausen B.S., Roberts T.M. Association of Polyomavirus Middle Tumor Antigen with Phospholipase C-γ1. J. Biol. Chem. 1995;270:12331–12334. doi: 10.1074/jbc.270.21.12331. PubMed DOI
Meili R., Cron P., Hemmings B.A., Ballmer-Hofer K. Protein kinase B/Akt is activated by polyomavirus middle-T antigen via a phosphatidylinositol 3-kinase-dependent mechanism. Oncogene. 1998;16:903–907. doi: 10.1038/sj.onc.1201605. PubMed DOI
Freund R., Sotnikov A., Bronson R.T., Benjamin T.L. Polyoma virus middle T is essential for virus replication and persistence as well as for tumor induction in mice. Virology. 1992;191:716–723. doi: 10.1016/0042-6822(92)90247-M. PubMed DOI
Swanson P.A., Lukacher A.E., Szomolanyi-Tsuda E. Immunity to polyomavirus infection: The polyomavirus-mouse model. Semin. Cancer Biol. 2009;19:244–251. doi: 10.1016/j.semcancer.2009.02.003. PubMed DOI PMC
Palm N.W., Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 2009;227:221–233. doi: 10.1111/j.1600-065X.2008.00731.x. PubMed DOI
Takeuchi O., Akira S. Pattern Recognition Receptors and Inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022. PubMed DOI
Velupillai P., Sung C.K., Andrews E., Moran J., Beier D., Kagan J., Benjamin T. Polymorphisms in Toll-Like Receptor 4 Underlie Susceptibility to Tumor Induction by the Mouse Polyomavirus. J. Virol. 2012;86:11541–11547. doi: 10.1128/JVI.01614-12. PubMed DOI PMC
Velupillai P., Garcea R.L., Benjamin T.L. Polyoma virus-like particles elicit polarized cytokine responses in APCs from tumor-susceptible and -resistant mice. J. Immunol. 2006;176:1148–1153. doi: 10.4049/jimmunol.176.2.1148. PubMed DOI
Kondo T., Ohshima T. The dynamics of inflammatory cytokines in the healing process of mouse skin wound: A preliminary study for possible wound age determination. Int. J. Leg. Med. 1996;108:231–236. doi: 10.1007/BF01369816. PubMed DOI
Abend J.R., Imperiale M.J. Transforming growth factor-beta-mediated regulation of BK virus gene expression. Virology. 2008;378:6–12. doi: 10.1016/j.virol.2008.05.009. PubMed DOI PMC
Wollebo H.S., Safak M., del Valle L., Khalili K., White M.K. Role for tumor necrosis factor-α in JC virus reactivation and progressive multifocal leukoencephalopathy. J. Neuroimmunol. 2011;233:46–53. doi: 10.1016/j.jneuroim.2010.11.013. PubMed DOI PMC
Rosa F.D., Barnaba V. Persisting viruses and chronic inflammation: Understanding their relation to autoimmunity. Immunol. Rev. 1998;164:17–27. doi: 10.1111/j.1600-065X.1998.tb01204.x. PubMed DOI
Yao M., Brummer G., Acevedo D., Cheng N. Cytokine Regulation of Metastasis and Tumorigenicity. Adv. Cancer Res. 2016;132:265–367. doi: 10.1016/bs.acr.2016.05.005. PubMed DOI
Multhoff G., Molls M., Radons J. Chronic Inflammation in Cancer Development. Front. Immunol. 2012;2:98. doi: 10.3389/fimmu.2011.00098. PubMed DOI PMC
Bromberg J., Wang T.C. Inflammation and Cancer: IL-6 and STAT3 Complete the Link. Cancer Cell. 2009;15:79–80. doi: 10.1016/j.ccr.2009.01.009. PubMed DOI PMC
Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI
Cheteh E.H., Sarne V., Ceder S., Bianchi J., Augsten M., Rundqvist H., Egevad L., Östman A., Wiman K.G. Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells. Cell Death Discov. 2020;6:1–14. doi: 10.1038/s41420-020-0272-5. PubMed DOI PMC
Giraudo E., Arese M., Toniatti C., Strasly M., Primo L., Mantovani A., Ciliberto G., Bussolini F. IL-6 is an in vitro and in vivo autocrine growth factor for middle T antigen-transformed endothelial cells. J. Immunol. 1996;157:2618–2623. PubMed
Bussolino F., De Rossi M., Sica A., Colotta F., Wang J.M., Bocchietto E., Padura I.M., Bosia A., Dejana E., Mantovani A. Murine endothelioma cell lines transformed by polyoma middle T oncogene as target for and producers of cytokines. J. Immunol. 1991;147:2122–2129. PubMed
Horníková L., Fraiberk M., Man P., Janovec V., Forstová J. VP1, the major capsid protein of the mouse polyomavirus, binds microtubules, promotes their acetylation and blocks the host cell cycle. FEBS J. 2017;284:301–323. doi: 10.1111/febs.13977. PubMed DOI
Liebl D., Difato F., Horníková L., Mannová P., Stokrová J., Forstová J. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes. J. Virol. 2006;80:4610–4622. doi: 10.1128/JVI.80.9.4610-4622.2006. PubMed DOI PMC
Zila V., Difato F., Klimova L., Huerfano S., Forstova J. Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus. PLoS ONE. 2014;9:e96922. doi: 10.1371/journal.pone.0096922. PubMed DOI PMC
Manders E.M., Stap J., Brakenhoff G.J., van Driel R., Aten J.A. Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J. Cell Sci. 1992;103(Pt 3):857–862. doi: 10.1242/jcs.103.3.857. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Bolte S., Cordelières F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006;224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x. PubMed DOI
Lucifora J., Bonnin M., Aillot L., Fusil F., Maadadi S., Dimier L., Michelet M., Floriot O., Ollivier A., Rivoire M., et al. Direct antiviral properties of TLR ligands against HBV replication in immune-competent hepatocytes. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-23525-w. PubMed DOI PMC
Abend J.R., Low J.A., Imperiale M.J. Inhibitory Effect of Gamma Interferon on BK Virus Gene Expression and Replication. J. Virol. 2007;81:272–279. doi: 10.1128/JVI.01571-06. PubMed DOI PMC
Wilson J.J., Lin E., Pack C.D., Frost E.L., Hadley A., Swimm A.I., Wang J., Dong Y., Breeden C.P., Kalman D., et al. Gamma interferon controls mouse polyomavirus infection in vivo. J. Virol. 2011;85:10126–10134. doi: 10.1128/JVI.00761-11. PubMed DOI PMC
Yang Y., Jiang B., Huo Y., Primo L., Dahl J.S., Benjamin T.L., Luo J. Shp2 suppresses PyMT-induced transformation in mouse fibroblasts by inhibiting Stat3 activity. Virology. 2011;409:204–210. doi: 10.1016/j.virol.2010.09.032. PubMed DOI PMC
Wang Y., van Boxel-Dezaire A.H.H., Cheon H., Yang J., Stark G.R. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc. Natl. Acad. Sci. USA. 2013;110:16975–16980. doi: 10.1073/pnas.1315862110. PubMed DOI PMC
Im K., Baek J., Kwon W.S., Rha S.Y., Hwang K.W., Kim U., Min H. The Comparison of Exosome and Exosomal Cytokines between Young and Old Individuals with or without Gastric Cancer. Int. J. Gerontol. 2018;12:233–238. doi: 10.1016/j.ijge.2018.03.013. DOI
Gao K., Jin J., Huang C., Li J., Luo H., Li L., Huang Y., Jiang Y. Exosomes Derived From Septic Mouse Serum Modulate Immune Responses via Exosome-Associated Cytokines. Front. Immunol. 2019;10:1560. doi: 10.3389/fimmu.2019.01560. PubMed DOI PMC
Öhlund D., Handly-Santana A., Biffi G., Elyada E., Almeida A.S., Ponz-Sarvise M., Corbo V., Oni T.E., Hearn S.A., Lee E.J., et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017;214:579–596. doi: 10.1084/jem.20162024. PubMed DOI PMC
Sahai E., Astsaturov I., Cukierman E., DeNardo D.G., Egeblad M., Evans R.M., Fearon D., Greten F.R., Hingorani S.R., Hunter T., et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer. 2020;20:174–186. doi: 10.1038/s41568-019-0238-1. PubMed DOI PMC
Erez N., Truitt M., Olson P., Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-κB-Dependent Manner. Cancer Cell. 2010;17:135–147. doi: 10.1016/j.ccr.2009.12.041. PubMed DOI
Pinto B., Henriques A.C., Silva P.M.A., Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020;12:1186. doi: 10.3390/pharmaceutics12121186. PubMed DOI PMC
Vaure C., Liu Y. A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species. Front. Immunol. 2014;5:316. doi: 10.3389/fimmu.2014.00316. PubMed DOI PMC
Bouřa E., Liebl D., Špíšek R., Frič J., Marek M., Štokrová J., Holáň V., Forstova J. Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Lett. 2005;579:6549–6558. doi: 10.1016/j.febslet.2005.10.062. PubMed DOI
Husebye H., Aune M.H., Stenvik J., Samstad E., Skjeldal F., Halaas Ø., Nilsen N.J., Stenmark H., Latz E., Lien E., et al. The Rab11a GTPase Controls Toll-like Receptor 4-Induced Activation of Interferon Regulatory Factor-3 on Phagosomes. Immunity. 2010;33:583–596. doi: 10.1016/j.immuni.2010.09.010. PubMed DOI PMC
Szatmári Z., Kis V., Lippai M., Hegedűs K., Faragó T., Lőrincz P., Tanaka T., Juhász G., Sass M. Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization. Mol. Biol Cell. 2014;25:522–531. doi: 10.1091/mbc.e13-10-0574. PubMed DOI PMC
Yavuz B.G., Gunaydin G., Gedik M.E., Kosemehmetoglu K., Karakoc D., Ozgur F., Guc D. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1 + TAMs. Sci. Rep. 2019;9:1–15. doi: 10.1038/s41598-019-39553-z. PubMed DOI PMC
Aldinucci D., Colombatti A. The inflammatory chemokine CCL5 and cancer progression. Mediat. Inflamm. 2014;2014:292376. doi: 10.1155/2014/292376. PubMed DOI PMC
Ren C., Cheng X., Lu B., Yang G. Activation of interleukin-6/signal transducer and activator of transcription 3 by human papillomavirus early proteins 6 induces fibroblast senescence to promote cervical tumourigenesis through autocrine and paracrine pathways in tumour microenvironment. Eur. J. Cancer. 2013;49:3889–3899. doi: 10.1016/j.ejca.2013.07.140. PubMed DOI
Morgan E.L., Macdonald A. Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1—NFκB—IL-6 signalling axis. PLoS Pathog. 2019;15:e1007835. doi: 10.1371/journal.ppat.1007835. PubMed DOI PMC
Taraboletti G., Belotti D., Dejana E., Mantovani A., Giavazzi R. Endothelial cell migration and invasiveness are induced by a soluble factor produced by murine endothelioma cells transformed by polyoma virus middle T oncogene. Cancer Res. 1993;53:3812–3816. PubMed
Yang H., Wang B., Wang T., Xu L., He C., Wen H., Yan J., Su H., Zhu X. Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS ONE. 2014;9:e109980. doi: 10.1371/journal.pone.0109980. PubMed DOI PMC
Ou T., Lilly M., Jiang W. The Pathologic Role of Toll-Like Receptor 4 in Prostate Cancer. Front. Immunol. 2018;9:1188. doi: 10.3389/fimmu.2018.01188. PubMed DOI PMC