Halogenated Cobalt Bis-Dicarbollide Strong Acids as Reusable Homogeneous Catalysts for Fatty Acid Esterification with Methanol or Ethanol
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2023066
Ministry of Education, Youth and Sports, Czech republic
GACR 21-05926X
Czech Science Foundation
UJEP-SGS-2019-53-004-3
UJEP - Jan Evangelista Purkyně University in Ústí nad Labem
PubMed
39769027
PubMed Central
PMC11675812
DOI
10.3390/ijms252413263
PII: ijms252413263
Knihovny.cz E-zdroje
- Klíčová slova
- FAEE, FAME, acidity function, cobalt bis-dicarbollide, esterification, green chemistry, sulphuric acid,
- MeSH
- esterifikace MeSH
- ethanol * chemie MeSH
- halogenace MeSH
- katalýza MeSH
- kobalt * chemie MeSH
- mastné kyseliny * chemie MeSH
- methanol * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anionty MeSH
- cobalt bis-dicarbollide MeSH Prohlížeč
- ethanol * MeSH
- kobalt * MeSH
- mastné kyseliny * MeSH
- methanol * MeSH
- organokovové sloučeniny MeSH
The most commonly used homogeneous catalyst for fatty acid esterification is a corrosive sulphuric acid. However, this requires costly investment in non-corrosive equipment, presents a safety risk, is time consuming, and increases effluent generation. In this study, inorganic 3D heteroborane cluster strong acids are employed for the first time as homogeneous catalysts. Three novel isomeric tetrachlorido and tetrabromido derivatives of 3,3'-commo-bis[undecahydrido-closo-1,2-dicarba-3-cobaltadodecaborate](1-) [1-] were synthesised and fully characterised using a range of analytical techniques, including NMR, TLC, HPLC, MS, UV-Vis, melting point (MP), CHN analyses, and XRD. Ultimately, H3O[8,8'-Cl2-1-] was identified as the most efficient, reusable, and non-corrosive homogeneous catalyst for the esterification of four fatty acids. The reactions are conducted in an excess of alcohol at reflux. The effective absorption of water vapour provided by the molecular sieves maximises acid conversion. The hydrophobic dye Sudan black B was employed as an acid-base indicator to facilitate a comparison of the H0 acidity function of sulphuric acid and halogenated heteroboranoic acids when dissolved together in methanol. The 23Na NMR analysis demonstrated that the application of dry methanol resulted in the displacement of Na+ ions from zeolite, which subsequently exchanged the H3O+ ions of the acid. This process led to a gradual reduction in the efficiency of the catalysts, particularly with repeated use. The solution to this issue is to regenerate the catalyst on the ion exchanger following each reaction. In contrast to the published methods, our new approach meets 10 of 12 green chemistry principles.
Zobrazit více v PubMed
Kadi M.E.A., Awad S., Loubar K., Akkouche N., Tazerout M. Experimental Study on the Esterification of Fat Trap Grease in a Continuous Reactor. Waste Biomass Valor. 2020;11:6697–6707. doi: 10.1007/s12649-019-00905-5. DOI
Encinar J.M., Sánchez N., Martínez G., García L. Study of Biodiesel Production from Animal Fats with High Free Fatty Acid Content. Bioresour. Technol. 2011;102:10907–10914. doi: 10.1016/j.biortech.2011.09.068. PubMed DOI
Li J., Zhou H.B., Cao Y. Transesterification of Waste Cooking Oil to Produce Biodiesel Using Acid and Alkaline Catalyst. AMR. 2012;518–523:3566–3572. doi: 10.4028/www.scientific.net/AMR.518-523.3566. DOI
Ulfah M., Firdaus, Sundari E., Praputri E. A Comparison of Palm Fatty Acid Distillate (PFAD) Esterification Using Sulphated Alumina versus Sulphuric Acid Catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2020;990:012015. doi: 10.1088/1757-899X/990/1/012015. DOI
Zhou W., Konar S.K., Boocock D.G.B. Ethyl Esters from the Single-phase Base-catalyzed Ethanolysis of Vegetable Oils. J. Am. Oil Chem. Soc. 2003;80:367–371. doi: 10.1007/s11746-003-0705-1. DOI
Ji J., Wang J., Li Y., Yu Y., Xu Z. Preparation of Biodiesel with the Help of Ultrasonic and Hydrodynamic Cavitation. Ultrasonics. 2006;44:e411–e414. doi: 10.1016/j.ultras.2006.05.020. PubMed DOI
Šánek L., Pecha J., Kolomazník K., Bařinová M. Pilot-Scale Production of Biodiesel from Waste Fats and Oils Using Tetramethylammonium Hydroxide. Waste Manag. 2016;48:630–637. doi: 10.1016/j.wasman.2015.10.005. PubMed DOI
KoohiKamali S., Tan C.P., Ling T.C. Optimization of Sunflower Oil Transesterification Process Using Sodium Methoxide. Sci. World J. 2012;2012:1–8. doi: 10.1100/2012/475027. PubMed DOI PMC
Fischer E., Speier A. Darstellung Der Ester. Ber. Dtsch. Chem. Ges. 1895;28:3252–3258. doi: 10.1002/cber.189502803176. DOI
Marchetti J.M., Errazu A.F. Esterification of Free Fatty Acids Using Sulfuric Acid as Catalyst in the Presence of Triglycerides. Biomass Bioenergy. 2008;32:892–895. doi: 10.1016/j.biombioe.2008.01.001. DOI
Haas M.J., Bloomer S., Scott K. Simple, High-efficiency Synthesis of Fatty Acid Methyl Esters from Soapstock. J. Am. Oil Chem. Soc. 2000;77:373–379. doi: 10.1007/s11746-000-0061-1. DOI
Zheng S., Kates M., Dubé M.A., McLean D.D. Acid-Catalyzed Production of Biodiesel from Waste Frying Oil. Biomass Bioenergy. 2006;30:267–272. doi: 10.1016/j.biombioe.2005.10.004. DOI
Haas M.J., Michalski P.J., Runyon S., Nunez A., Scott K.M. Production of FAME from Acid Oil, a By-product of Vegetable Oil Refining. J. Am. Oil Chem. Soc. 2003;80:97–102. doi: 10.1007/s11746-003-0658-4. DOI
Bhatti H., Hanif M., Qasim M. Ataurrehman Biodiesel Production from Waste Tallow. Fuel. 2008;87:2961–2966. doi: 10.1016/j.fuel.2008.04.016. DOI
Haas M.J. Improving the Economics of Biodiesel Production through the Use of Low Value Lipids as Feedstocks: Vegetable Oil Soapstock. Fuel Process. Technol. 2005;86:1087–1096. doi: 10.1016/j.fuproc.2004.11.004. DOI
Gunawardena S., Walpita D.H., Ismail M. Method for Quantification of Methanol and Sulfuric Acid Required for Esterification of High Free Fatty Acid Oils in Biodiesel Production. Int. J. Renew. Energy Res. 2017 doi: 10.20508/ijrer.v7i4.6187.g7204. DOI
Aranda D.A.G., Santos R.T.P., Tapanes N.C.O., Ramos A.L.D., Antunes O.A.C. Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids. Catal. Lett. 2008;122:20–25. doi: 10.1007/s10562-007-9318-z. DOI
Pisarello M.L., Dalla Costa B., Mendow G., Querini C.A. Esterification with Ethanol to Produce Biodiesel from High Acidity Raw Materials. Fuel Process. Technol. 2010;91:1005–1014. doi: 10.1016/j.fuproc.2010.03.001. DOI
Lucena I.L., Silva G.F., Fernandes F.A.N. Biodiesel Production by Esterification of Oleic Acid with Methanol Using a Water Adsorption Apparatus. Ind. Eng. Chem. Res. 2008;47:6885–6889. doi: 10.1021/ie800547h. DOI
Lucena I.L., Saboya R.M.A., Oliveira J.F.G., Rodrigues M.L., Torres A.E.B., Cavalcante C.L., Parente E.J.S., Silva G.F., Fernandes F.A.N. Oleic Acid Esterification with Ethanol under Continuous Water Removal Conditions. Fuel. 2011;90:902–904. doi: 10.1016/j.fuel.2010.10.022. DOI
Touma J.G., El Khoury B., Estephane J., Zakhem H., Aouad S. Effect of Alcohol Type and Amount on the Total Energy Consumption and Yield of the Free Fatty Acids Esterification Reaction with Simultaneous Adsorptive Water Removal. Chem. Eng. Commun. 2018;205:689–697. doi: 10.1080/00986445.2017.1412312. DOI
Oliveira J.F.G., Lucena I.L., Saboya R.M.A., Rodrigues M.L., Torres A.E.B., Fernandes F.A.N., Cavalcante C.L., Parente E.J.S. Biodiesel Production from Waste Coconut Oil by Esterification with Ethanol: The Effect of Water Removal by Adsorption. Renew. Energy. 2010;35:2581–2584. doi: 10.1016/j.renene.2010.03.035. DOI
Jamil F., Saleem M., Ali Qamar O., Khurram M.S., Al-Muhtaseb A.H., Inayat A., Akhter P., Hussain M., Rafiq S., Yim H., et al. State-of-the-Art Catalysts for Clean Fuel (Methyl Esters) Production—a Comprehensive Review. J. Phys. Energy. 2023;5:014005. doi: 10.1088/2515-7655/aca5b3. DOI
Khan Z., Javed F., Shamair Z., Hafeez A., Fazal T., Aslam A., Zimmerman W.B., Rehman F. Current Developments in Esterification Reaction: A Review on Process and Parameters. J. Ind. Eng. Chem. 2021;103:80–101. doi: 10.1016/j.jiec.2021.07.018. DOI
Canakci M., Van Gerpen J. Biodiesel Production from Oils and Fats with High Free Fatty Acids. Trans. ASAE. 2001;44 doi: 10.13031/2013.7010. DOI
Tambun R., Burmana A.D., Alexander V. The Effect of Reactant Molar Ratio to Performance of H2SO4 Catalyst and para-Toluene Sulfonic Acid Catalyst in The Esterification of Palm Fatty Acid Distillate into Biodiesel. J. Eng. Sci. Technol. 2022;17:257–266.
Lawer-Yolar G., Dawson-Andoh B., Atta-Obeng E. Synthesis of Biodiesel from Tall Oil Fatty Acids by Homogeneous and Heterogeneous Catalysis. Sustain. Chem. 2021;2:206–221. doi: 10.3390/suschem2010012. DOI
Utlang S.M.S., Utlang N.M.S., Paler E.M.L., Salvatierra R.C., Paday J.C., Mugot D.A., Mabayo V.I.F., Arazo R.O. Optimized Recovery of Transesterifiable Oil from Industrial Fats, Oil, and Grease (FOG) Esterified with H2SO4 Catalyst Extracted from Discarded Lead-Acid Batteries. Energ. Ecol. Environ. 2023;8:388–400. doi: 10.1007/s40974-023-00283-8. DOI
Hanh H.D., Dong N.T., Okitsu K., Nishimura R., Maeda Y. Biodiesel Production by Esterification of Oleic Acid with Short-Chain Alcohols under Ultrasonic Irradiation Condition. Renew. Energy. 2009;34:780–783. doi: 10.1016/j.renene.2008.04.001. DOI
Somnuk K., Phanyusoh D., Thawornprasert J., Oo Y.M., Prateepchaikul G. Continuous Ultrasound-Assisted Esterification and Transesterification of Palm Fatty Acid Distillate for Ethyl Ester Production. Processes. 2021;9:449. doi: 10.3390/pr9030449. DOI
Trombettoni V., Lanari D., Prinsen P., Luque R., Marrocchi A., Vaccaro L. Recent Advances in Sulfonated Resin Catalysts for Efficient Biodiesel and Bio-Derived Additives Production. Prog. Energy Combust. Sci. 2018;65:136–162. doi: 10.1016/j.pecs.2017.11.001. DOI
Lee D.-W., Lee K.-Y. Heterogeneous Solid Acid Catalysts for Esterification of Free Fatty Acids. Catal. Surv. Asia. 2014;18:55–74. doi: 10.1007/s10563-014-9166-y. DOI
Rizwanul Fattah I.M., Ong H.C., Mahlia T.M.I., Mofijur M., Silitonga A.S., Rahman S.M.A., Ahmad A. State of the Art of Catalysts for Biodiesel Production. Front. Energy Res. 2020;8:101. doi: 10.3389/fenrg.2020.00101. DOI
Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S. A Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics. Renew. Sustain. Energy Rev. 2012;16:2070–2093. doi: 10.1016/j.rser.2012.01.003. DOI
Maheshwari P., Haider M.B., Yusuf M., Klemeš J.J., Bokhari A., Beg M., Al-Othman A., Kumar R., Jaiswal A.K. A Review on Latest Trends in Cleaner Biodiesel Production: Role of Feedstock, Production Methods, and Catalysts. J. Clean. Prod. 2022;355:131588. doi: 10.1016/j.jclepro.2022.131588. DOI
Troter D.Z., Todorović Z.B., Đokić-Stojanović D.R., Stamenković O.S., Veljković V.B. Application of Ionic Liquids and Deep Eutectic Solvents in Biodiesel Production: A Review. Renew. Sustain. Energy Rev. 2016;61:473–500. doi: 10.1016/j.rser.2016.04.011. DOI
Mardhiah H.H., Ong H.C., Masjuki H.H., Lim S., Lee H.V. A Review on Latest Developments and Future Prospects of Heterogeneous Catalyst in Biodiesel Production from Non-Edible Oils. Renew. Sustain. Energy Rev. 2017;67:1225–1236. doi: 10.1016/j.rser.2016.09.036. DOI
Sekoai P.T., Ouma C.N.M., Du Preez S.P., Modisha P., Engelbrecht N., Bessarabov D.G., Ghimire A. Application of Nanoparticles in Biofuels: An Overview. Fuel. 2019;237:380–397. doi: 10.1016/j.fuel.2018.10.030. DOI
Hammett L.P., Deyrup A.J. A Series of Simple Basic Indicators. I. The Acidity Functions of Mixtures of Sulfuric and Perchloric Acids with Water. J. Am. Chem. Soc. 1932;54:2721–2739. doi: 10.1021/ja01346a015. DOI
Gillespie R.J. Fluorosulfuric Acid and Related Superacid Media. Acc. Chem. Res. 1968;1:202–209. doi: 10.1021/ar50007a002. DOI
Gillespie R.J., Liang J. Superacid Solutions in Hydrogen Fluoride. J. Am. Chem. Soc. 1988;110:6053–6057. doi: 10.1021/ja00226a020. PubMed DOI
Fărcasiu D., Hâncu D. Acid Strength of Tetrafluoroboric Acid The Hydronium Ion as a Superacid and the Inapplicability of Water as an Indicator of Acid Strength. J. Chem. Soc. Faraday Trans. 1997;93:2161–2165. doi: 10.1039/a700798a. DOI
Juhasz M., Hoffmann S., Stoyanov E., Kim K., Reed C.A. The Strongest Isolable Acid. Angew Chem Int Ed. 2004;43:5352–5355. doi: 10.1002/anie.200460005. PubMed DOI
Gräsvik J., Hallett J.P., To T.Q., Welton T. A Quick, Simple, Robust Method to Measure the Acidity of Ionic Liquids. Chem. Commun. 2014;50:7258–7261. doi: 10.1039/C4CC02816C. PubMed DOI
Himmel D., Goll S.K., Leito I., Krossing I. A Unified pH Scale for All Phases. Angew. Chem. Int. Ed. 2010;49:6885–6888. doi: 10.1002/anie.201000252. PubMed DOI
Mihichuk L.M., Driver G.W., Johnson K.E. Brønsted Acidity and the Medium: Fundamentals with a Focus on Ionic Liquids. ChemPhysChem. 2011;12:1622–1632. doi: 10.1002/cphc.201100087. PubMed DOI
Panchal B., Bian K., Chang T., Zhu Z., Wang J., Qin S., Zhao C., Sun Y. Synthesis of Generation-2 Polyamidoamine Based Ionic Liquid: Efficient Dendrimer Based Catalytic Green Fuel Production from Yellow Grease. Energy. 2021;219:119637. doi: 10.1016/j.energy.2020.119637. DOI
He L., Qin S., Chang T., Sun Y., Gao X. Biodiesel Synthesis from the Esterification of Free Fatty Acids and Alcohol Catalyzed by Long-Chain Brønsted Acid Ionic Liquid. Catal. Sci. Technol. 2013;3:1102. doi: 10.1039/c2cy20714a. DOI
Thomazeau C., Olivier-Bourbigou H., Magna L., Luts S., Gilbert B. Determination of an Acidic Scale in Room Temperature Ionic Liquids. J. Am. Chem. Soc. 2003;125:5264–5265. doi: 10.1021/ja0297382. PubMed DOI
Reed C.A., Kim K.-C., Bolskar R.D., Mueller L.J. Taming Superacids: Stabilization of the Fullerene Cations HC60+ and C60+ Science. 2000;289:101–104. doi: 10.1126/science.289.5476.101. PubMed DOI
Reed C.A. Carborane Acids. New “Strong yet Gentle” Acids for Organic and Inorganic Chemistry. Chem. Commun. 2005;13:1669–1677. doi: 10.1039/B415425H. PubMed DOI
Cummings S., Hratchian H.P., Reed C.A. The Strongest Acid: Protonation of Carbon Dioxide. Angew. Chem. Int. Ed. 2016;55:1382–1386. doi: 10.1002/anie.201509425. PubMed DOI
Stoyanov E.S., Stoyanova I.V. Features of Protonation of the Simplest Weakly Basic Molecules, SO2, CO, N2O, CO2, and Others by Solid Carborane Superacids. Angew. Chem. Int. Ed. 2018;57:4516–4520. doi: 10.1002/anie.201704645. PubMed DOI
Hawthorne M.F., Andrews T.D. Carborane Analogues of Cobalticinium Ion. Chem. Commun. 1965;19:443. doi: 10.1039/c19650000443. DOI
Verdiá-Báguena C., Alcaraz A., Aguilella V.M., Cioran A.M., Tachikawa S., Nakamura H., Teixidor F., Viñas C. Amphiphilic COSAN and I2-COSAN Crossing Synthetic Lipid Membranes: Planar Bilayers and Liposomes. Chem. Commun. 2014;50:6700. doi: 10.1039/c4cc01283f. PubMed DOI
Strauss S.H. The Search for Larger and More Weakly Coordinating Anions. Chem. Rev. 1993;93:927–942. doi: 10.1021/cr00019a005. DOI
Reed C.A. Carboranes: A New Class of Weakly Coordinating Anions for Strong Electrophiles, Oxidants, and Superacids. Acc. Chem. Res. 1998;31:133–139. doi: 10.1021/ar970230r. DOI
Xie Z., Jelinek T., Bau R., Reed C.A. New Weakly Coordinating Anions. III. Useful Silver and Trityl Salt Reagents of Carborane Anions. J. Am. Chem. Soc. 1994;116:1907–1913. doi: 10.1021/ja00084a034. DOI
Plešek J., Baše K., Mareš F., Hanousek F., Štíbr B., Heřmánek S. Potential Uses of Metallocarborane Sandwich Anions for Analysis, Characterization and Isolation of Various Cations and Organic Bases. Collect. Czech. Chem. Commun. 1984;49:2776–2789. doi: 10.1135/cccc19842776. DOI
Rais J., Plešek J., Selucký P., Kyrš M., Kadlecová L. Extraction of Cesium with Derivatives of Carborane into Nitrobenzene. J. Radioanal. Nucl. Chem. 1991;148:349–357. doi: 10.1007/BF02060367. DOI
Fanning J.C., Huff L.A., Smith W.A., Terrell A.S., Yasinsac L., Todd L.J., Jasper S.A., McCabe D.J. Caesium Cobalt Dicarbollide—Solubility, Precipitation and Reactivity in Basic Aqueous Solution. Polyhedron. 1995;14:2893–2900. doi: 10.1016/0277-5387(95)00200-C. DOI
Bühl M., Hnyk D., Macháček J. Computational Study of Structures and Properties of Metallaboranes: Cobalt Bis(Dicarbollide) Chem. A Eur. J. 2005;11:4109–4120. doi: 10.1002/chem.200401202. PubMed DOI
Hawthorne M.F., Young D.C., Andrews T.D., Howe D.V., Pilling R.L., Pitts A.D., Reintjes M., Warren L.F., Wegner P.A. .pi.-Dicarbollyl Derivatives of the Transition Metals. Metallocene Analogs. J. Am. Chem. Soc. 1968;90:879–896. doi: 10.1021/ja01006a008. DOI
Rais J., Selucký P., Kyrš M. Extraction of Alkali Metals into Nitrobenzene in the Presence of Univalent Polyhedral Borate Anions. J. Inorg. Nucl. Chem. 1976;38:1376–1378. doi: 10.1016/0022-1902(76)80156-X. DOI
Sengupta A.K., Marcus Y. Ion Exchange and Solvent Extraction: A Series of Advances. Volume 17. Marcel Dekker; New York, NY, USA: 2004.
Schulz W.W., Bray L.A. Solvent Extraction Recovery of Byproduct 137Cs and 90Sr from HNO3 Solutions—A Technology Review and Assessment. Sep. Sci. Technol. 1987;22:191–214. doi: 10.1080/01496398708068948. DOI
Mátel Ľ., Macášek F., Rajec P., Heřmánek S., Plešek J. B-Halogen Derivatives of the Bis(1,2-Dicarbollyl)Cobalt(III) Anion. Polyhedron. 1982;1:511–519. doi: 10.1016/S0277-5387(00)81604-6. DOI
Hurlburt P.K., Miller R.L., Abney K.D., Foreman T.M., Butcher R.J., Kinkhead S.A. New Synthetic Routes to B-Halogenated Derivatives of Cobalt Dicarbollide. Inorg. Chem. 1995;34:5215–5219. doi: 10.1021/ic00125a021. DOI
Rudakov D.A., Shirokii V.L., Knizhnikov V.A., Bazhanov A.V., Vecher E.I., Maier N.A., Potkin V.I., Ryabtsev A.N., Petrovskii P.V., Sivaev I.B., et al. Electrochemical Synthesis of Halogen Derivatives of Bis(1,2-Dicarbollyl)Cobalt(III) Russ. Chem. Bull. 2004;53:2554–2557. doi: 10.1007/s11172-005-0153-3. DOI
Farràs P., Viñas C., Teixidor F. Preferential Chlorination Vertices in Cobaltabisdicarbollide Anions. Substitution Rate Correlation with Site Charges Computed by the Two Atoms Natural Population Analysis Method (2a-NPA) J. Organomet. Chem. 2013;747:119–125. doi: 10.1016/j.jorganchem.2013.03.039. DOI
Koval M., Kaniansky D., Mátel L., Macáśek F. Analysis of Boron–Halogen Derivatives of Bis(1,2-Dicarbollyl)Cobalt(III) Anions by Capillary Isotachophoresis. J. Chromatogr. A. 1982;243:144–148. doi: 10.1016/S0021-9673(00)88173-X. DOI
Šimuničová E., Kaniansky D. Isotachophoretic Determination of Chloro Derivatives of Cobaltocarborane without the Use of Reference Analytes. J. Chromatogr. A. 1987;390:121–132. doi: 10.1016/S0021-9673(01)94366-3. DOI
Sivý P., Preisinger A., Baumgartner O., Valach F., Koreň B., Mátel L. Structure of Caesium 3,3’-Commo-Bis(8,9,12-Tribromooctahydro-1,2-Dicarba-3-Cobalta-Closo-Dodecaborate)(1-) Acta Crystallogr. C Cryst. Struct. Commun. 1986;42:24–27. doi: 10.1107/S0108270186097445. DOI
Ruhle H.W., Hawthorne M.F. .pi.-Dicarbollyl Derivatives of Chromium. Metallocene Analogs. Inorg. Chem. 1968;7:2279–2282. doi: 10.1021/ic50069a021. DOI
Kazheva O.N., Aleksandrov G.G., Kravchenko A.V., Starodub V.A., Zhigareva G.G., Sivaev I.B., Bregadze V.I., Buravov L.I., Titov L.V., D’yachenko O.A. Synthesis, Structures, and Conductivities of Salts (BEDT-TTF)[9,9′(12′)-I2-3,3′-Co(1,2-C2B9H10)2] and (TTF)[9,9′,12,12′-I4-3,3′-Co(1,2-C2B9H9)2] Russ. Chem. Bull. 2010;59:1137–1144. doi: 10.1007/s11172-010-0216-y. DOI
Anufriev S.A., Sivaev I.B., Bregadze V.I. Synthesis of 9,9´,12,12´-Substituted Cobalt Bis(Dicarbollide) Derivatives. Russ. Chem. Bull. 2015;64:712–717. doi: 10.1007/s11172-015-0924-4. DOI
El Anwar S., Růžičková Z., Bavol D., Fojt L., Grüner B. Tetrazole Ring Substitution at Carbon and Boron Sites of the Cobalt Bis(Dicarbollide) Ion Available via Dipolar Cycloadditions. Inorg. Chem. 2020;59:17430–17442. doi: 10.1021/acs.inorgchem.0c02719. PubMed DOI
Chamberlin R.M., Scott B.L., Melo M.M., Abney K.D. Butyllithium Deprotonation vs Alkali Metal Reduction of Cobalt Dicarbollide: A New Synthetic Route to C-Substituted Derivatives. Inorg. Chem. 1997;36:809–817. doi: 10.1021/ic960811x. DOI
Fino S.A., Benwitz K.A., Sullivan K.M., LaMar D.L., Stroup K.M., Giles S.M., Balaich G.J., Chamberlin R.M., Abney K.D. Condensation Polymerization of Cobalt Dicarbollide Dicarboxylic Acid. Inorg. Chem. 1997;36:4604–4606. doi: 10.1021/ic961182u. PubMed DOI
Grüner B., Švec P., Šícha V., Padělková Z. Direct and Facile Synthesis of Carbon Substituted Alkylhydroxy Derivatives of Cobalt Bis(1,2-Dicarbollide), Versatile Building Blocks for Synthetic Purposes. Dalton Trans. 2012;41:7498. doi: 10.1039/c2dt30128h. PubMed DOI
Nekvinda J., Šícha V., Hnyk D., Grüner B. Synthesis, Characterisation and Some Chemistry of C- and B-Substituted Carboxylic Acids of Cobalt Bis(Dicarbollide) Dalton Trans. 2014;43:5106. doi: 10.1039/c3dt52870g. PubMed DOI
Stogniy M.Y., Kazheva O.N., Chudak D.M., Shilov G.V., Filippov O.A., Sivaev I.B., Kravchenko A.V., Starodub V.A., Buravov L.I., Bregadze V.I., et al. Synthesis and Study of C -Substituted Methylthio Derivatives of Cobalt Bis(Dicarbollide) RSC Adv. 2020;10:2887–2896. doi: 10.1039/C9RA08551C. PubMed DOI PMC
Hlatky G.G., Eckman R.R., Turner H.W. Metallacarboranes as Labile Anions for Ionic Zirconocene Olefin Polymerization Catalysts. Organometallics. 1992;11:1413–1416. doi: 10.1021/om00039a058. DOI
DuBay W.J., Grieco P.A., Todd L.J. Lithium Cobalt-Bis-Dicarbollide: A Novel Lewis Acid Catalyst for the Conjugate Addition of Silyl Ketene Acetals to Hindered.alpha.,.beta.-Unsaturated Carbonyl Compounds. J. Org. Chem. 1994;59:6898–6899. doi: 10.1021/jo00102a009. DOI
Grieco P.A., DuBay W.J., Todd L.J. Lithium Cobalt-Bis-Dicarbollide Catalyzed Substitution Reactions of Allylic Acetates. Tetrahedron Letters. 1996;37:8707–8710. doi: 10.1016/S0040-4039(96)02021-7. DOI
Nechai G.V., Sokolovskii F.S., Chuiko S.V. Catalytic Effect of Bis(Carbollyl) Complexes of Metals on the Combustion of Condensed Systems. Russ. J. Phys. Chem. B. 2009;3:458–468. doi: 10.1134/S1990793109030208. DOI
Zhu Y., Chuanzhao L., Sudarmadji M., Hui Min N., Biying A.O., Maguire J.A., Hosmane N.S. An Efficient and Recyclable Catalytic System Comprising Nanopalladium(0) and a Pyridinium Salt of Iron Bis(Dicarbollide) for Oxidation of Substituted Benzyl Alcohol and Lignin. ChemistryOpen. 2012;1:67–70. doi: 10.1002/open.201100014. PubMed DOI PMC
Biying A.O., Yuanting K.T., Hosmane N.S., Zhu Y. Ionic Composite of Palladium(II)/Iron Bis(Dicarbollide) for Catalytic Oxidative Carbonylation in the Formation of Diphenyl Carbonate. J. Organomet. Chem. 2017;849–850:195–200. doi: 10.1016/j.jorganchem.2017.05.040. DOI
Nar I., Atsay A., Gümrükçü S., Karazehir T., Hamuryudan E. Low-Symmetry Phthalocyanine Cobalt Bis(Dicarbollide) Conjugate for Hydrogen Reduction. Eur. J. Inorg. Chem. 2018;2018:3878–3882. doi: 10.1002/ejic.201800649. DOI
Guerrero I., Kelemen Z., Viñas C., Romero I., Teixidor F. Metallacarboranes as Photoredox Catalysts in Water. Chem. A Eur. J. 2020;26:5027–5036. doi: 10.1002/chem.201905395. PubMed DOI
Guerrero I., Saha A., Xavier J.A.M., Viñas C., Romero I., Teixidor F. Noncovalently Linked Metallacarboranes on Functionalized Magnetic Nanoparticles as Highly Efficient, Robust, and Reusable Photocatalysts in Aqueous Medium. ACS Appl. Mater. Interfaces. 2020;12:56372–56384. doi: 10.1021/acsami.0c17847. PubMed DOI
Guerrero I., Viñas C., Romero I., Teixidor F. A Stand-Alone Cobalt Bis(Dicarbollide) Photoredox Catalyst Epoxidates Alkenes in Water at Extremely Low Catalyst Load. Green Chem. 2021;23:10123–10131. doi: 10.1039/D1GC03119H. DOI
Gilman H., Cartledge F.K. The Analysis of Organolithium Compounds. J. Organomet. Chem. 1964;2:447–454. doi: 10.1016/S0022-328X(00)83259-3. DOI
Heřmánek S. Boron-11 NMR Spectra of Boranes, Main-Group Heteroboranes, and Substituted Derivatives. Factors Influencing Chemical Shifts of Skeletal Atoms. Chem. Rev. 1992;92:325–362. doi: 10.1021/cr00010a007. DOI
Heřmánek S. NMR as a Tool for Elucidation of Structures and Estimation of Electron Distribution in Boranes and Their Derivatives. Inorganica Chim. Acta. 1999;289:20–44. doi: 10.1016/S0020-1693(99)00055-9. DOI
Pfüller U., Franz H., Preiss A. Sudan Black B: Chemical Structure and Histochemistry of the Blue Main Components. Histochemistry. 1977;54:237–250. doi: 10.1007/BF00492246. PubMed DOI
Fredricsson B., Laurent T.C., Lüning B. Decomposition of Sudan Black B Causing an Artefact in the Staining of Lipids. Stain. Technol. 1958;33:155–158. doi: 10.3109/10520295809111840. PubMed DOI
Lansink A.G.W. Thin Layer Chrornatography and Histochemistry of Sudan Black B. Histochemie. 1968;16:68–84. doi: 10.1007/BF00306212. PubMed DOI
Grüner B., Plzák Z. High-Performance Liquid Chromatographic Separations of Boron-Cluster Compounds. J. Chromatogr. A. 1997;789:497–517. doi: 10.1016/S0021-9673(97)00497-4. DOI
XcaliburTM. [(accessed on 6 December 2024)]. Available online: https://www.thermofisher.com/order/catalog/product/OPTON-30965?SID=srch-srp-OPTON-30965.
APEX3, SAINT and SADABS. Bruker AXS Inc.; Madison, WI, USA: 2018.
Palatinus L., Chapuis G. SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS Version 12: Software for Guided Crystal Structure Analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Rohlíček J., Hušák M. MCE2005—A New Version of a Program for Fast Interactive Visualization of Electron and Similar Density Maps Optimized for Small Molecules. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI
Delta NMR Software. [(accessed on 6 December 2024)]. Available online: https://www.jeol.com/products/scientific/nmr_software/Delta5.php.
Eager SmartTM. [(accessed on 6 December 2024)]. Available online: https://www.thermofisher.com/order/catalog/product/11206100.