Halogenated Cobalt Bis-Dicarbollide Strong Acids as Reusable Homogeneous Catalysts for Fatty Acid Esterification with Methanol or Ethanol

. 2024 Dec 10 ; 25 (24) : . [epub] 20241210

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39769027

Grantová podpora
LM2023066 Ministry of Education, Youth and Sports, Czech republic
GACR 21-05926X Czech Science Foundation
UJEP-SGS-2019-53-004-3 UJEP - Jan Evangelista Purkyně University in Ústí nad Labem

The most commonly used homogeneous catalyst for fatty acid esterification is a corrosive sulphuric acid. However, this requires costly investment in non-corrosive equipment, presents a safety risk, is time consuming, and increases effluent generation. In this study, inorganic 3D heteroborane cluster strong acids are employed for the first time as homogeneous catalysts. Three novel isomeric tetrachlorido and tetrabromido derivatives of 3,3'-commo-bis[undecahydrido-closo-1,2-dicarba-3-cobaltadodecaborate](1-) [1-] were synthesised and fully characterised using a range of analytical techniques, including NMR, TLC, HPLC, MS, UV-Vis, melting point (MP), CHN analyses, and XRD. Ultimately, H3O[8,8'-Cl2-1-] was identified as the most efficient, reusable, and non-corrosive homogeneous catalyst for the esterification of four fatty acids. The reactions are conducted in an excess of alcohol at reflux. The effective absorption of water vapour provided by the molecular sieves maximises acid conversion. The hydrophobic dye Sudan black B was employed as an acid-base indicator to facilitate a comparison of the H0 acidity function of sulphuric acid and halogenated heteroboranoic acids when dissolved together in methanol. The 23Na NMR analysis demonstrated that the application of dry methanol resulted in the displacement of Na+ ions from zeolite, which subsequently exchanged the H3O+ ions of the acid. This process led to a gradual reduction in the efficiency of the catalysts, particularly with repeated use. The solution to this issue is to regenerate the catalyst on the ion exchanger following each reaction. In contrast to the published methods, our new approach meets 10 of 12 green chemistry principles.

Zobrazit více v PubMed

Kadi M.E.A., Awad S., Loubar K., Akkouche N., Tazerout M. Experimental Study on the Esterification of Fat Trap Grease in a Continuous Reactor. Waste Biomass Valor. 2020;11:6697–6707. doi: 10.1007/s12649-019-00905-5. DOI

Encinar J.M., Sánchez N., Martínez G., García L. Study of Biodiesel Production from Animal Fats with High Free Fatty Acid Content. Bioresour. Technol. 2011;102:10907–10914. doi: 10.1016/j.biortech.2011.09.068. PubMed DOI

Li J., Zhou H.B., Cao Y. Transesterification of Waste Cooking Oil to Produce Biodiesel Using Acid and Alkaline Catalyst. AMR. 2012;518–523:3566–3572. doi: 10.4028/www.scientific.net/AMR.518-523.3566. DOI

Ulfah M., Firdaus, Sundari E., Praputri E. A Comparison of Palm Fatty Acid Distillate (PFAD) Esterification Using Sulphated Alumina versus Sulphuric Acid Catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2020;990:012015. doi: 10.1088/1757-899X/990/1/012015. DOI

Zhou W., Konar S.K., Boocock D.G.B. Ethyl Esters from the Single-phase Base-catalyzed Ethanolysis of Vegetable Oils. J. Am. Oil Chem. Soc. 2003;80:367–371. doi: 10.1007/s11746-003-0705-1. DOI

Ji J., Wang J., Li Y., Yu Y., Xu Z. Preparation of Biodiesel with the Help of Ultrasonic and Hydrodynamic Cavitation. Ultrasonics. 2006;44:e411–e414. doi: 10.1016/j.ultras.2006.05.020. PubMed DOI

Šánek L., Pecha J., Kolomazník K., Bařinová M. Pilot-Scale Production of Biodiesel from Waste Fats and Oils Using Tetramethylammonium Hydroxide. Waste Manag. 2016;48:630–637. doi: 10.1016/j.wasman.2015.10.005. PubMed DOI

KoohiKamali S., Tan C.P., Ling T.C. Optimization of Sunflower Oil Transesterification Process Using Sodium Methoxide. Sci. World J. 2012;2012:1–8. doi: 10.1100/2012/475027. PubMed DOI PMC

Fischer E., Speier A. Darstellung Der Ester. Ber. Dtsch. Chem. Ges. 1895;28:3252–3258. doi: 10.1002/cber.189502803176. DOI

Marchetti J.M., Errazu A.F. Esterification of Free Fatty Acids Using Sulfuric Acid as Catalyst in the Presence of Triglycerides. Biomass Bioenergy. 2008;32:892–895. doi: 10.1016/j.biombioe.2008.01.001. DOI

Haas M.J., Bloomer S., Scott K. Simple, High-efficiency Synthesis of Fatty Acid Methyl Esters from Soapstock. J. Am. Oil Chem. Soc. 2000;77:373–379. doi: 10.1007/s11746-000-0061-1. DOI

Zheng S., Kates M., Dubé M.A., McLean D.D. Acid-Catalyzed Production of Biodiesel from Waste Frying Oil. Biomass Bioenergy. 2006;30:267–272. doi: 10.1016/j.biombioe.2005.10.004. DOI

Haas M.J., Michalski P.J., Runyon S., Nunez A., Scott K.M. Production of FAME from Acid Oil, a By-product of Vegetable Oil Refining. J. Am. Oil Chem. Soc. 2003;80:97–102. doi: 10.1007/s11746-003-0658-4. DOI

Bhatti H., Hanif M., Qasim M. Ataurrehman Biodiesel Production from Waste Tallow. Fuel. 2008;87:2961–2966. doi: 10.1016/j.fuel.2008.04.016. DOI

Haas M.J. Improving the Economics of Biodiesel Production through the Use of Low Value Lipids as Feedstocks: Vegetable Oil Soapstock. Fuel Process. Technol. 2005;86:1087–1096. doi: 10.1016/j.fuproc.2004.11.004. DOI

Gunawardena S., Walpita D.H., Ismail M. Method for Quantification of Methanol and Sulfuric Acid Required for Esterification of High Free Fatty Acid Oils in Biodiesel Production. Int. J. Renew. Energy Res. 2017 doi: 10.20508/ijrer.v7i4.6187.g7204. DOI

Aranda D.A.G., Santos R.T.P., Tapanes N.C.O., Ramos A.L.D., Antunes O.A.C. Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids. Catal. Lett. 2008;122:20–25. doi: 10.1007/s10562-007-9318-z. DOI

Pisarello M.L., Dalla Costa B., Mendow G., Querini C.A. Esterification with Ethanol to Produce Biodiesel from High Acidity Raw Materials. Fuel Process. Technol. 2010;91:1005–1014. doi: 10.1016/j.fuproc.2010.03.001. DOI

Lucena I.L., Silva G.F., Fernandes F.A.N. Biodiesel Production by Esterification of Oleic Acid with Methanol Using a Water Adsorption Apparatus. Ind. Eng. Chem. Res. 2008;47:6885–6889. doi: 10.1021/ie800547h. DOI

Lucena I.L., Saboya R.M.A., Oliveira J.F.G., Rodrigues M.L., Torres A.E.B., Cavalcante C.L., Parente E.J.S., Silva G.F., Fernandes F.A.N. Oleic Acid Esterification with Ethanol under Continuous Water Removal Conditions. Fuel. 2011;90:902–904. doi: 10.1016/j.fuel.2010.10.022. DOI

Touma J.G., El Khoury B., Estephane J., Zakhem H., Aouad S. Effect of Alcohol Type and Amount on the Total Energy Consumption and Yield of the Free Fatty Acids Esterification Reaction with Simultaneous Adsorptive Water Removal. Chem. Eng. Commun. 2018;205:689–697. doi: 10.1080/00986445.2017.1412312. DOI

Oliveira J.F.G., Lucena I.L., Saboya R.M.A., Rodrigues M.L., Torres A.E.B., Fernandes F.A.N., Cavalcante C.L., Parente E.J.S. Biodiesel Production from Waste Coconut Oil by Esterification with Ethanol: The Effect of Water Removal by Adsorption. Renew. Energy. 2010;35:2581–2584. doi: 10.1016/j.renene.2010.03.035. DOI

Jamil F., Saleem M., Ali Qamar O., Khurram M.S., Al-Muhtaseb A.H., Inayat A., Akhter P., Hussain M., Rafiq S., Yim H., et al. State-of-the-Art Catalysts for Clean Fuel (Methyl Esters) Production—a Comprehensive Review. J. Phys. Energy. 2023;5:014005. doi: 10.1088/2515-7655/aca5b3. DOI

Khan Z., Javed F., Shamair Z., Hafeez A., Fazal T., Aslam A., Zimmerman W.B., Rehman F. Current Developments in Esterification Reaction: A Review on Process and Parameters. J. Ind. Eng. Chem. 2021;103:80–101. doi: 10.1016/j.jiec.2021.07.018. DOI

Canakci M., Van Gerpen J. Biodiesel Production from Oils and Fats with High Free Fatty Acids. Trans. ASAE. 2001;44 doi: 10.13031/2013.7010. DOI

Tambun R., Burmana A.D., Alexander V. The Effect of Reactant Molar Ratio to Performance of H2SO4 Catalyst and para-Toluene Sulfonic Acid Catalyst in The Esterification of Palm Fatty Acid Distillate into Biodiesel. J. Eng. Sci. Technol. 2022;17:257–266.

Lawer-Yolar G., Dawson-Andoh B., Atta-Obeng E. Synthesis of Biodiesel from Tall Oil Fatty Acids by Homogeneous and Heterogeneous Catalysis. Sustain. Chem. 2021;2:206–221. doi: 10.3390/suschem2010012. DOI

Utlang S.M.S., Utlang N.M.S., Paler E.M.L., Salvatierra R.C., Paday J.C., Mugot D.A., Mabayo V.I.F., Arazo R.O. Optimized Recovery of Transesterifiable Oil from Industrial Fats, Oil, and Grease (FOG) Esterified with H2SO4 Catalyst Extracted from Discarded Lead-Acid Batteries. Energ. Ecol. Environ. 2023;8:388–400. doi: 10.1007/s40974-023-00283-8. DOI

Hanh H.D., Dong N.T., Okitsu K., Nishimura R., Maeda Y. Biodiesel Production by Esterification of Oleic Acid with Short-Chain Alcohols under Ultrasonic Irradiation Condition. Renew. Energy. 2009;34:780–783. doi: 10.1016/j.renene.2008.04.001. DOI

Somnuk K., Phanyusoh D., Thawornprasert J., Oo Y.M., Prateepchaikul G. Continuous Ultrasound-Assisted Esterification and Transesterification of Palm Fatty Acid Distillate for Ethyl Ester Production. Processes. 2021;9:449. doi: 10.3390/pr9030449. DOI

Trombettoni V., Lanari D., Prinsen P., Luque R., Marrocchi A., Vaccaro L. Recent Advances in Sulfonated Resin Catalysts for Efficient Biodiesel and Bio-Derived Additives Production. Prog. Energy Combust. Sci. 2018;65:136–162. doi: 10.1016/j.pecs.2017.11.001. DOI

Lee D.-W., Lee K.-Y. Heterogeneous Solid Acid Catalysts for Esterification of Free Fatty Acids. Catal. Surv. Asia. 2014;18:55–74. doi: 10.1007/s10563-014-9166-y. DOI

Rizwanul Fattah I.M., Ong H.C., Mahlia T.M.I., Mofijur M., Silitonga A.S., Rahman S.M.A., Ahmad A. State of the Art of Catalysts for Biodiesel Production. Front. Energy Res. 2020;8:101. doi: 10.3389/fenrg.2020.00101. DOI

Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S. A Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics. Renew. Sustain. Energy Rev. 2012;16:2070–2093. doi: 10.1016/j.rser.2012.01.003. DOI

Maheshwari P., Haider M.B., Yusuf M., Klemeš J.J., Bokhari A., Beg M., Al-Othman A., Kumar R., Jaiswal A.K. A Review on Latest Trends in Cleaner Biodiesel Production: Role of Feedstock, Production Methods, and Catalysts. J. Clean. Prod. 2022;355:131588. doi: 10.1016/j.jclepro.2022.131588. DOI

Troter D.Z., Todorović Z.B., Đokić-Stojanović D.R., Stamenković O.S., Veljković V.B. Application of Ionic Liquids and Deep Eutectic Solvents in Biodiesel Production: A Review. Renew. Sustain. Energy Rev. 2016;61:473–500. doi: 10.1016/j.rser.2016.04.011. DOI

Mardhiah H.H., Ong H.C., Masjuki H.H., Lim S., Lee H.V. A Review on Latest Developments and Future Prospects of Heterogeneous Catalyst in Biodiesel Production from Non-Edible Oils. Renew. Sustain. Energy Rev. 2017;67:1225–1236. doi: 10.1016/j.rser.2016.09.036. DOI

Sekoai P.T., Ouma C.N.M., Du Preez S.P., Modisha P., Engelbrecht N., Bessarabov D.G., Ghimire A. Application of Nanoparticles in Biofuels: An Overview. Fuel. 2019;237:380–397. doi: 10.1016/j.fuel.2018.10.030. DOI

Hammett L.P., Deyrup A.J. A Series of Simple Basic Indicators. I. The Acidity Functions of Mixtures of Sulfuric and Perchloric Acids with Water. J. Am. Chem. Soc. 1932;54:2721–2739. doi: 10.1021/ja01346a015. DOI

Gillespie R.J. Fluorosulfuric Acid and Related Superacid Media. Acc. Chem. Res. 1968;1:202–209. doi: 10.1021/ar50007a002. DOI

Gillespie R.J., Liang J. Superacid Solutions in Hydrogen Fluoride. J. Am. Chem. Soc. 1988;110:6053–6057. doi: 10.1021/ja00226a020. PubMed DOI

Fărcasiu D., Hâncu D. Acid Strength of Tetrafluoroboric Acid The Hydronium Ion as a Superacid and the Inapplicability of Water as an Indicator of Acid Strength. J. Chem. Soc. Faraday Trans. 1997;93:2161–2165. doi: 10.1039/a700798a. DOI

Juhasz M., Hoffmann S., Stoyanov E., Kim K., Reed C.A. The Strongest Isolable Acid. Angew Chem Int Ed. 2004;43:5352–5355. doi: 10.1002/anie.200460005. PubMed DOI

Gräsvik J., Hallett J.P., To T.Q., Welton T. A Quick, Simple, Robust Method to Measure the Acidity of Ionic Liquids. Chem. Commun. 2014;50:7258–7261. doi: 10.1039/C4CC02816C. PubMed DOI

Himmel D., Goll S.K., Leito I., Krossing I. A Unified pH Scale for All Phases. Angew. Chem. Int. Ed. 2010;49:6885–6888. doi: 10.1002/anie.201000252. PubMed DOI

Mihichuk L.M., Driver G.W., Johnson K.E. Brønsted Acidity and the Medium: Fundamentals with a Focus on Ionic Liquids. ChemPhysChem. 2011;12:1622–1632. doi: 10.1002/cphc.201100087. PubMed DOI

Panchal B., Bian K., Chang T., Zhu Z., Wang J., Qin S., Zhao C., Sun Y. Synthesis of Generation-2 Polyamidoamine Based Ionic Liquid: Efficient Dendrimer Based Catalytic Green Fuel Production from Yellow Grease. Energy. 2021;219:119637. doi: 10.1016/j.energy.2020.119637. DOI

He L., Qin S., Chang T., Sun Y., Gao X. Biodiesel Synthesis from the Esterification of Free Fatty Acids and Alcohol Catalyzed by Long-Chain Brønsted Acid Ionic Liquid. Catal. Sci. Technol. 2013;3:1102. doi: 10.1039/c2cy20714a. DOI

Thomazeau C., Olivier-Bourbigou H., Magna L., Luts S., Gilbert B. Determination of an Acidic Scale in Room Temperature Ionic Liquids. J. Am. Chem. Soc. 2003;125:5264–5265. doi: 10.1021/ja0297382. PubMed DOI

Reed C.A., Kim K.-C., Bolskar R.D., Mueller L.J. Taming Superacids: Stabilization of the Fullerene Cations HC60+ and C60+ Science. 2000;289:101–104. doi: 10.1126/science.289.5476.101. PubMed DOI

Reed C.A. Carborane Acids. New “Strong yet Gentle” Acids for Organic and Inorganic Chemistry. Chem. Commun. 2005;13:1669–1677. doi: 10.1039/B415425H. PubMed DOI

Cummings S., Hratchian H.P., Reed C.A. The Strongest Acid: Protonation of Carbon Dioxide. Angew. Chem. Int. Ed. 2016;55:1382–1386. doi: 10.1002/anie.201509425. PubMed DOI

Stoyanov E.S., Stoyanova I.V. Features of Protonation of the Simplest Weakly Basic Molecules, SO2, CO, N2O, CO2, and Others by Solid Carborane Superacids. Angew. Chem. Int. Ed. 2018;57:4516–4520. doi: 10.1002/anie.201704645. PubMed DOI

Hawthorne M.F., Andrews T.D. Carborane Analogues of Cobalticinium Ion. Chem. Commun. 1965;19:443. doi: 10.1039/c19650000443. DOI

Verdiá-Báguena C., Alcaraz A., Aguilella V.M., Cioran A.M., Tachikawa S., Nakamura H., Teixidor F., Viñas C. Amphiphilic COSAN and I2-COSAN Crossing Synthetic Lipid Membranes: Planar Bilayers and Liposomes. Chem. Commun. 2014;50:6700. doi: 10.1039/c4cc01283f. PubMed DOI

Strauss S.H. The Search for Larger and More Weakly Coordinating Anions. Chem. Rev. 1993;93:927–942. doi: 10.1021/cr00019a005. DOI

Reed C.A. Carboranes: A New Class of Weakly Coordinating Anions for Strong Electrophiles, Oxidants, and Superacids. Acc. Chem. Res. 1998;31:133–139. doi: 10.1021/ar970230r. DOI

Xie Z., Jelinek T., Bau R., Reed C.A. New Weakly Coordinating Anions. III. Useful Silver and Trityl Salt Reagents of Carborane Anions. J. Am. Chem. Soc. 1994;116:1907–1913. doi: 10.1021/ja00084a034. DOI

Plešek J., Baše K., Mareš F., Hanousek F., Štíbr B., Heřmánek S. Potential Uses of Metallocarborane Sandwich Anions for Analysis, Characterization and Isolation of Various Cations and Organic Bases. Collect. Czech. Chem. Commun. 1984;49:2776–2789. doi: 10.1135/cccc19842776. DOI

Rais J., Plešek J., Selucký P., Kyrš M., Kadlecová L. Extraction of Cesium with Derivatives of Carborane into Nitrobenzene. J. Radioanal. Nucl. Chem. 1991;148:349–357. doi: 10.1007/BF02060367. DOI

Fanning J.C., Huff L.A., Smith W.A., Terrell A.S., Yasinsac L., Todd L.J., Jasper S.A., McCabe D.J. Caesium Cobalt Dicarbollide—Solubility, Precipitation and Reactivity in Basic Aqueous Solution. Polyhedron. 1995;14:2893–2900. doi: 10.1016/0277-5387(95)00200-C. DOI

Bühl M., Hnyk D., Macháček J. Computational Study of Structures and Properties of Metallaboranes: Cobalt Bis(Dicarbollide) Chem. A Eur. J. 2005;11:4109–4120. doi: 10.1002/chem.200401202. PubMed DOI

Hawthorne M.F., Young D.C., Andrews T.D., Howe D.V., Pilling R.L., Pitts A.D., Reintjes M., Warren L.F., Wegner P.A. .pi.-Dicarbollyl Derivatives of the Transition Metals. Metallocene Analogs. J. Am. Chem. Soc. 1968;90:879–896. doi: 10.1021/ja01006a008. DOI

Rais J., Selucký P., Kyrš M. Extraction of Alkali Metals into Nitrobenzene in the Presence of Univalent Polyhedral Borate Anions. J. Inorg. Nucl. Chem. 1976;38:1376–1378. doi: 10.1016/0022-1902(76)80156-X. DOI

Sengupta A.K., Marcus Y. Ion Exchange and Solvent Extraction: A Series of Advances. Volume 17. Marcel Dekker; New York, NY, USA: 2004.

Schulz W.W., Bray L.A. Solvent Extraction Recovery of Byproduct 137Cs and 90Sr from HNO3 Solutions—A Technology Review and Assessment. Sep. Sci. Technol. 1987;22:191–214. doi: 10.1080/01496398708068948. DOI

Mátel Ľ., Macášek F., Rajec P., Heřmánek S., Plešek J. B-Halogen Derivatives of the Bis(1,2-Dicarbollyl)Cobalt(III) Anion. Polyhedron. 1982;1:511–519. doi: 10.1016/S0277-5387(00)81604-6. DOI

Hurlburt P.K., Miller R.L., Abney K.D., Foreman T.M., Butcher R.J., Kinkhead S.A. New Synthetic Routes to B-Halogenated Derivatives of Cobalt Dicarbollide. Inorg. Chem. 1995;34:5215–5219. doi: 10.1021/ic00125a021. DOI

Rudakov D.A., Shirokii V.L., Knizhnikov V.A., Bazhanov A.V., Vecher E.I., Maier N.A., Potkin V.I., Ryabtsev A.N., Petrovskii P.V., Sivaev I.B., et al. Electrochemical Synthesis of Halogen Derivatives of Bis(1,2-Dicarbollyl)Cobalt(III) Russ. Chem. Bull. 2004;53:2554–2557. doi: 10.1007/s11172-005-0153-3. DOI

Farràs P., Viñas C., Teixidor F. Preferential Chlorination Vertices in Cobaltabisdicarbollide Anions. Substitution Rate Correlation with Site Charges Computed by the Two Atoms Natural Population Analysis Method (2a-NPA) J. Organomet. Chem. 2013;747:119–125. doi: 10.1016/j.jorganchem.2013.03.039. DOI

Koval M., Kaniansky D., Mátel L., Macáśek F. Analysis of Boron–Halogen Derivatives of Bis(1,2-Dicarbollyl)Cobalt(III) Anions by Capillary Isotachophoresis. J. Chromatogr. A. 1982;243:144–148. doi: 10.1016/S0021-9673(00)88173-X. DOI

Šimuničová E., Kaniansky D. Isotachophoretic Determination of Chloro Derivatives of Cobaltocarborane without the Use of Reference Analytes. J. Chromatogr. A. 1987;390:121–132. doi: 10.1016/S0021-9673(01)94366-3. DOI

Sivý P., Preisinger A., Baumgartner O., Valach F., Koreň B., Mátel L. Structure of Caesium 3,3’-Commo-Bis(8,9,12-Tribromooctahydro-1,2-Dicarba-3-Cobalta-Closo-Dodecaborate)(1-) Acta Crystallogr. C Cryst. Struct. Commun. 1986;42:24–27. doi: 10.1107/S0108270186097445. DOI

Ruhle H.W., Hawthorne M.F. .pi.-Dicarbollyl Derivatives of Chromium. Metallocene Analogs. Inorg. Chem. 1968;7:2279–2282. doi: 10.1021/ic50069a021. DOI

Kazheva O.N., Aleksandrov G.G., Kravchenko A.V., Starodub V.A., Zhigareva G.G., Sivaev I.B., Bregadze V.I., Buravov L.I., Titov L.V., D’yachenko O.A. Synthesis, Structures, and Conductivities of Salts (BEDT-TTF)[9,9′(12′)-I2-3,3′-Co(1,2-C2B9H10)2] and (TTF)[9,9′,12,12′-I4-3,3′-Co(1,2-C2B9H9)2] Russ. Chem. Bull. 2010;59:1137–1144. doi: 10.1007/s11172-010-0216-y. DOI

Anufriev S.A., Sivaev I.B., Bregadze V.I. Synthesis of 9,9´,12,12´-Substituted Cobalt Bis(Dicarbollide) Derivatives. Russ. Chem. Bull. 2015;64:712–717. doi: 10.1007/s11172-015-0924-4. DOI

El Anwar S., Růžičková Z., Bavol D., Fojt L., Grüner B. Tetrazole Ring Substitution at Carbon and Boron Sites of the Cobalt Bis(Dicarbollide) Ion Available via Dipolar Cycloadditions. Inorg. Chem. 2020;59:17430–17442. doi: 10.1021/acs.inorgchem.0c02719. PubMed DOI

Chamberlin R.M., Scott B.L., Melo M.M., Abney K.D. Butyllithium Deprotonation vs Alkali Metal Reduction of Cobalt Dicarbollide: A New Synthetic Route to C-Substituted Derivatives. Inorg. Chem. 1997;36:809–817. doi: 10.1021/ic960811x. DOI

Fino S.A., Benwitz K.A., Sullivan K.M., LaMar D.L., Stroup K.M., Giles S.M., Balaich G.J., Chamberlin R.M., Abney K.D. Condensation Polymerization of Cobalt Dicarbollide Dicarboxylic Acid. Inorg. Chem. 1997;36:4604–4606. doi: 10.1021/ic961182u. PubMed DOI

Grüner B., Švec P., Šícha V., Padělková Z. Direct and Facile Synthesis of Carbon Substituted Alkylhydroxy Derivatives of Cobalt Bis(1,2-Dicarbollide), Versatile Building Blocks for Synthetic Purposes. Dalton Trans. 2012;41:7498. doi: 10.1039/c2dt30128h. PubMed DOI

Nekvinda J., Šícha V., Hnyk D., Grüner B. Synthesis, Characterisation and Some Chemistry of C- and B-Substituted Carboxylic Acids of Cobalt Bis(Dicarbollide) Dalton Trans. 2014;43:5106. doi: 10.1039/c3dt52870g. PubMed DOI

Stogniy M.Y., Kazheva O.N., Chudak D.M., Shilov G.V., Filippov O.A., Sivaev I.B., Kravchenko A.V., Starodub V.A., Buravov L.I., Bregadze V.I., et al. Synthesis and Study of C -Substituted Methylthio Derivatives of Cobalt Bis(Dicarbollide) RSC Adv. 2020;10:2887–2896. doi: 10.1039/C9RA08551C. PubMed DOI PMC

Hlatky G.G., Eckman R.R., Turner H.W. Metallacarboranes as Labile Anions for Ionic Zirconocene Olefin Polymerization Catalysts. Organometallics. 1992;11:1413–1416. doi: 10.1021/om00039a058. DOI

DuBay W.J., Grieco P.A., Todd L.J. Lithium Cobalt-Bis-Dicarbollide: A Novel Lewis Acid Catalyst for the Conjugate Addition of Silyl Ketene Acetals to Hindered.alpha.,.beta.-Unsaturated Carbonyl Compounds. J. Org. Chem. 1994;59:6898–6899. doi: 10.1021/jo00102a009. DOI

Grieco P.A., DuBay W.J., Todd L.J. Lithium Cobalt-Bis-Dicarbollide Catalyzed Substitution Reactions of Allylic Acetates. Tetrahedron Letters. 1996;37:8707–8710. doi: 10.1016/S0040-4039(96)02021-7. DOI

Nechai G.V., Sokolovskii F.S., Chuiko S.V. Catalytic Effect of Bis(Carbollyl) Complexes of Metals on the Combustion of Condensed Systems. Russ. J. Phys. Chem. B. 2009;3:458–468. doi: 10.1134/S1990793109030208. DOI

Zhu Y., Chuanzhao L., Sudarmadji M., Hui Min N., Biying A.O., Maguire J.A., Hosmane N.S. An Efficient and Recyclable Catalytic System Comprising Nanopalladium(0) and a Pyridinium Salt of Iron Bis(Dicarbollide) for Oxidation of Substituted Benzyl Alcohol and Lignin. ChemistryOpen. 2012;1:67–70. doi: 10.1002/open.201100014. PubMed DOI PMC

Biying A.O., Yuanting K.T., Hosmane N.S., Zhu Y. Ionic Composite of Palladium(II)/Iron Bis(Dicarbollide) for Catalytic Oxidative Carbonylation in the Formation of Diphenyl Carbonate. J. Organomet. Chem. 2017;849–850:195–200. doi: 10.1016/j.jorganchem.2017.05.040. DOI

Nar I., Atsay A., Gümrükçü S., Karazehir T., Hamuryudan E. Low-Symmetry Phthalocyanine Cobalt Bis(Dicarbollide) Conjugate for Hydrogen Reduction. Eur. J. Inorg. Chem. 2018;2018:3878–3882. doi: 10.1002/ejic.201800649. DOI

Guerrero I., Kelemen Z., Viñas C., Romero I., Teixidor F. Metallacarboranes as Photoredox Catalysts in Water. Chem. A Eur. J. 2020;26:5027–5036. doi: 10.1002/chem.201905395. PubMed DOI

Guerrero I., Saha A., Xavier J.A.M., Viñas C., Romero I., Teixidor F. Noncovalently Linked Metallacarboranes on Functionalized Magnetic Nanoparticles as Highly Efficient, Robust, and Reusable Photocatalysts in Aqueous Medium. ACS Appl. Mater. Interfaces. 2020;12:56372–56384. doi: 10.1021/acsami.0c17847. PubMed DOI

Guerrero I., Viñas C., Romero I., Teixidor F. A Stand-Alone Cobalt Bis(Dicarbollide) Photoredox Catalyst Epoxidates Alkenes in Water at Extremely Low Catalyst Load. Green Chem. 2021;23:10123–10131. doi: 10.1039/D1GC03119H. DOI

Gilman H., Cartledge F.K. The Analysis of Organolithium Compounds. J. Organomet. Chem. 1964;2:447–454. doi: 10.1016/S0022-328X(00)83259-3. DOI

Heřmánek S. Boron-11 NMR Spectra of Boranes, Main-Group Heteroboranes, and Substituted Derivatives. Factors Influencing Chemical Shifts of Skeletal Atoms. Chem. Rev. 1992;92:325–362. doi: 10.1021/cr00010a007. DOI

Heřmánek S. NMR as a Tool for Elucidation of Structures and Estimation of Electron Distribution in Boranes and Their Derivatives. Inorganica Chim. Acta. 1999;289:20–44. doi: 10.1016/S0020-1693(99)00055-9. DOI

Pfüller U., Franz H., Preiss A. Sudan Black B: Chemical Structure and Histochemistry of the Blue Main Components. Histochemistry. 1977;54:237–250. doi: 10.1007/BF00492246. PubMed DOI

Fredricsson B., Laurent T.C., Lüning B. Decomposition of Sudan Black B Causing an Artefact in the Staining of Lipids. Stain. Technol. 1958;33:155–158. doi: 10.3109/10520295809111840. PubMed DOI

Lansink A.G.W. Thin Layer Chrornatography and Histochemistry of Sudan Black B. Histochemie. 1968;16:68–84. doi: 10.1007/BF00306212. PubMed DOI

Grüner B., Plzák Z. High-Performance Liquid Chromatographic Separations of Boron-Cluster Compounds. J. Chromatogr. A. 1997;789:497–517. doi: 10.1016/S0021-9673(97)00497-4. DOI

XcaliburTM. [(accessed on 6 December 2024)]. Available online: https://www.thermofisher.com/order/catalog/product/OPTON-30965?SID=srch-srp-OPTON-30965.

APEX3, SAINT and SADABS. Bruker AXS Inc.; Madison, WI, USA: 2018.

Palatinus L., Chapuis G. SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS Version 12: Software for Guided Crystal Structure Analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

Rohlíček J., Hušák M. MCE2005—A New Version of a Program for Fast Interactive Visualization of Electron and Similar Density Maps Optimized for Small Molecules. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI

Delta NMR Software. [(accessed on 6 December 2024)]. Available online: https://www.jeol.com/products/scientific/nmr_software/Delta5.php.

Eager SmartTM. [(accessed on 6 December 2024)]. Available online: https://www.thermofisher.com/order/catalog/product/11206100.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...