green chemistry Dotaz Zobrazit nápovědu
sv.
- MeSH
- technologie zelené chemie MeSH
- Publikační typ
- periodika MeSH
- Konspekt
- Chemie. Mineralogické vědy
- NLK Obory
- chemie, klinická chemie
- environmentální vědy
elektronický časopis
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- farmacie a farmakologie
- NLK Publikační typ
- elektronické časopisy
This review deals with two overlapping issues, namely polymer chemistry and deep eutectic solvents (DESs). With regard to polymers, specific aspects of synthetic polymers, polymerization processes producing such polymers, and natural cellulose-based nanopolymers are evaluated. As for DESs, their compliance with green chemistry requirements, their basic properties and involvement in polymer chemistry are discussed. In addition to reviewing the state-of-the-art for selected kinds of polymers, the paper reveals further possibilities in the employment of DESs in polymer chemistry. As an example, the significance of DES polarity and polymer polarity to control polymerization processes, modify polymer properties, and synthesize polymers with a specific structure and behavior, is emphasized.
A click chemistry approach based on the reaction between alkynylflavins and mono(6-azido-6-deoxy)-β-cyclodextrin has proven to be a useful tool for the synthesis of flavin-cyclodextrin conjugates studied as monooxygenase mimics in enantioselective sulfoxidations.
Bioorthogonal chemistry has emerged as a new powerful tool that facilitates the study of structure and function of biomolecules in their native environment. A wide variety of bioorthogonal reactions that can proceed selectively and efficiently under physiologically relevant conditions are now available. The common features of these chemical reactions include: fast kinetics, tolerance to aqueous environment, high selectivity and compatibility with naturally occurring functional groups. The design and development of new chemical transformations in this direction is an important step to meet the growing demands of chemical biology. This chapter aims to introduce the reader to the field by providing an overview on general principles and strategies used in bioorthogonal chemistry. Special emphasis is given to cycloaddition reactions, namely to 1,3-dipolar cycloadditions and Diels-Alder reactions, as chemical transformations that play a predominant role in modern bioconjugation chemistry. The recent advances have established these reactions as an invaluable tool in modern bioorthogonal chemistry. The key aspects of the methodology as well as future outlooks in the field are discussed.
This article proposes an innovative methodology which employs nondestructive techniques to assess the effectiveness of new formulations based on ionic liquids, as alternative solvents for enzymes (proteases), for the removal of proteinaceous materials from painted surfaces during restoration treatments. Ionic liquids (ILs), also known as "designer" solvents, because of their peculiar properties which can be adjusted by selecting different cation-anion combinations, are potentially green solvents due totheir low vapour pressure. In this study, two ionic liquids were selected: IL1 (1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4 ])) and IL2 (1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO4 ])). New formulations were prepared with these ILs and two different proteases (E): one acid (E1-pepsin) and one alkaline (E2-obtained from Aspergillus sojae). These formulations were tested on tempera and oil mock-up samples, prepared in accordance with historically documented recipes, and covered with two different types of protein-based varnishes (egg white and isinglass-fish glue). A noninvasive multiscale imaging methodology was applied before and after the treatment to evaluate the cleaning's effectiveness. Different microscopic techniques-optical microscopy (OM) with visible and fluorescent light, scanning electron microscopy (SEM) and atomic force microscopy (AFM)-together with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) were applied on areas cleaned with the new formulations (IL + E) and reference areas cleaned only with the commercial enzyme formulations (gels). MALDI-TOF proved particularly very useful for comparing the diversity and abundance of peptides released by using different enzymatic systems. Microsc. Res. Tech. 77:574-585, 2014. © 2014 Wiley Periodicals, Inc.
Cobalt oxide nanoparticles were prepared via green chemistry route and fully characterized by Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and Transmission electron microscopy (TEM) analyses; the CoO and Co3O4 nanoparticles, in sheet-shaped cobalt oxide form, ensued simultaneously in one step. The varying concentrations of NPs were analyzed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test on the cancer cell line (U87) which revealed that with increasing concentration of cobalt oxide nanoparticles, the survival rate of U87 tumor cells decreases; IC50 of nanoparticles being ~ 55 µg/ml-1.
- MeSH
- antibakteriální látky chemie MeSH
- difrakce rentgenového záření MeSH
- inhibiční koncentrace 50 MeSH
- kobalt chemie MeSH
- koncentrace vodíkových iontů MeSH
- kovové nanočástice chemie MeSH
- lidé MeSH
- magnetismus MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- nanomedicína metody MeSH
- nanotechnologie metody MeSH
- oxidy chemie MeSH
- povrchově aktivní látky MeSH
- protinádorové látky farmakologie MeSH
- rostlinné extrakty MeSH
- rozmarýn MeSH
- rozpustnost MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- technologie zelené chemie metody MeSH
- teplota MeSH
- tetrazoliové soli chemie MeSH
- thiazoly chemie MeSH
- transmisní elektronová mikroskopie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Fruit extracts have natural bioactive molecules that are known to possess significant therapeutic potential. Traditionally, metallic nanoparticles were synthesized via chemical methods, in which the chemical act as the reducing agent. Later, these traditional metallic nanoparticles emerged as the biological risk, which prompted researchers to explore an eco-friendly approach. There are different eco-friendly methods employed for synthesizing these metallic nanoparticles via the usage of microbes and plants, primarily via fruit extract. These explorations have paved the way for using fruit extracts for developing nanoparticles, as they eliminate the usage of reducing and stabilizing agents. Metallic nanoparticles have gained significant attention, and are used for diverse biological applications. The present review discusses the potential activities of phytochemicals, and it intends to summarize the different metallic nanoparticles synthesized using fruit extracts and their associated pharmacological activities like anti-cancerous, antimicrobial, antioxidant and catalytic efficiency.
In this study, a simple and green strategy was reported to prepare bimetallic nanoparticles (NPs) by the combination of zinc oxide (ZnO) and copper oxide (CuO) using Sambucus nigra L. extract. The physicochemical properties of these NPs such as crystal structure, size, and morphology were studied by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM). The results suggested that these NPs contained polygonal ZnO NPs with hexagonal phase and spherical CuO NPs with monoclinic phase. The anticancer activity of the prepared bimetallic NPs was evaluated against lung and human melanoma cell lines based on MTT assay. As a result, the bimetallic ZnO/CuO NPs exhibited high toxicity on melanoma cancer cells while their toxicity on lung cancer cells was low.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- bez černý chemie MeSH
- buňky A549 MeSH
- cytotoxiny chemie farmakologie MeSH
- difrakce rentgenového záření metody MeSH
- kovové nanočástice chemie MeSH
- lidé MeSH
- listy rostlin chemie MeSH
- měď chemie farmakologie MeSH
- mikrobiální testy citlivosti metody MeSH
- nádorové buněčné linie MeSH
- oxid zinečnatý chemie farmakologie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- technologie zelené chemie metody MeSH
- transmisní elektronová mikroskopie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH