Vydání první 239 stran : ilustrace ; 23 cm
Publikace se zaměřuje na biomedicínské využití uhlíkových nanomateriálů a jejich toxicitu a zdravotní rizika. Určeno odborné veřejnosti.
- MeSH
- nanostruktury MeSH
- nanotechnologie MeSH
- noxy MeSH
- otrava MeSH
- testy toxicity MeSH
- uhlík MeSH
- vystavení vlivu životního prostředí MeSH
- Konspekt
- Nauka o materiálu
- NLK Obory
- technika
- biomedicínské inženýrství
- toxikologie
- NLK Publikační typ
- kolektivní monografie
The cellular adhesion receptor αvβ6-integrin is highly expressed in many cancers, e.g., pancreatic, lung, head-and-neck, cervical, bladder, and esophageal carcinoma. Multimerization of αvβ6-integrin-specific RGD peptides increases the target affinity and retention but affects biodistribution and pharmacokinetics. Amide formation of the terminal carboxylic acid moieties of the square-symmetrical bifunctional chelator DOTPI with 3-azidopropylamine yields derivatives with 4, 3, and 2 terminal azides and zero, 1, and 2 remaining carboxylic acids, respectively, whereby formation of the 2-cis-isomer is preferred according to NMR investigation of the Eu(III)-complexes. Cu(II)-catalyzed alkyne-azide cycloaddition (CuAAC) of the alkyne-functionalized αvβ6-integrin binding peptide cyclo[YRGDLAYp(NMe)K(pent-4-ynoic amide)] (Tyr2) yields the respective di-, tri-, and tetrameric conjugates for Lu-177-labeling. In mice bearing αvβ6-integrin-expressing xenografts of H2009 (human lung adenocarcinoma) cells, the Lu-177-labeled trimer's tumor-to-blood ratio of 112 exceeds that of the tetramer (10.4) and the dimer (54). Co-infusion of gelofusine (succinylated gelatin) reduces the renal uptake of the trimer by 89%, resulting in a 10-fold better tumor-to-kidney ratio, while no improvement of that ratio is observed with arginine/lysine, para-aminohippuric acid (PAH), and hydroxyethyl starch (HES) coinfusions. Since the Lu-177-labeled Tyr2-trimer outperforms the dimer and the tetramer, such trimers are considered the best lead structures for the ongoing development of αvβ6-integrin targeted anticancer theranostics.
- MeSH
- antigeny nádorové * metabolismus MeSH
- chelátory * chemie MeSH
- integriny * metabolismus MeSH
- lidé MeSH
- lutecium * chemie MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie MeSH
- oligopeptidy * chemie farmakokinetika MeSH
- radiofarmaka farmakokinetika chemie terapeutické užití MeSH
- radionuklidy * chemie MeSH
- syntetická chemie okamžité shody MeSH
- teranostická nanomedicína metody MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nanomedicine for treating post-viral infectious disease syndrome is at an emerging stage. Despite promising results from preclinical studies on conventional antioxidants, their clinical translation as a therapy for treating post-COVID conditions remains challenging. The limitations are due to their low bioavailability, instability, limited transport to the target tissues, and short half-life, requiring frequent and high doses. Activating the immune system during coronavirus (SARS-CoV-2) infection can lead to increased production of reactive oxygen species (ROS), depleted antioxidant reserve, and finally, oxidative stress and neuroinflammation. To tackle this problem, we developed an antioxidant nanotherapy based on lipid (vesicular and cubosomal types) nanoparticles (LNPs) co-encapsulating ginkgolide B and quercetin. The antioxidant-loaded nanocarriers were prepared by a self-assembly method via hydration of a lyophilized mixed thin lipid film. We evaluated the LNPs in a new in vitro model for studying neuronal dysfunction caused by oxidative stress in coronavirus infection. We examined the key downstream signaling pathways that are triggered in response to potassium persulfate (KPS) causing oxidative stress-mediated neurotoxicity. Treatment of neuronally-derived cells (SH-SY5Y) with KPS (50 mM) for 30 min markedly increased mitochondrial dysfunction while depleting the levels of both glutathione peroxidase (GSH-Px) and tyrosine hydroxylase (TH). This led to the sequential activation of apoptotic and necrotic cell death processes, which corroborates with the crucial implication of the two proteins (GSH-Px and TH) in the long-COVID syndrome. Nanomedicine-mediated treatment with ginkgolide B-loaded cubosomes and vesicular LNPs showed minimal cytotoxicity and completely attenuated the KPS-induced cell death process, decreasing apoptosis from 32.6% (KPS) to 19.0% (MO-GB), 12.8% (MO-GB-Quer), 14.8% (DMPC-PEG-GB), and 23.6% (DMPC-PEG-GB-Quer) via free radical scavenging and replenished GSH-Px levels. These findings indicated that GB-LNPs-based nanomedicines may protect against KPS-induced apoptosis by regulating intracellular redox homeostasis.
- MeSH
- antioxidancia * farmakologie MeSH
- COVID-19 metabolismus MeSH
- farmakoterapie COVID-19 * MeSH
- ginkgolidy * farmakologie MeSH
- glutathionperoxidasa * metabolismus MeSH
- laktony farmakologie MeSH
- lidé MeSH
- nanočástice * MeSH
- nanomedicína * metody MeSH
- neurony účinky léků virologie MeSH
- oxidační stres * účinky léků MeSH
- quercetin farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- SARS-CoV-2 účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In recent years, multifunctional nanocarriers that provide simultaneous drug delivery and imaging have attracted enormous attention, especially in cancer treatment. In this research, a biocompatible fluorescent multifunctional nanocarrier is designed for the co-delivery of capsaicin (CPS) and nitrogen-doped graphene quantum dots (N-GQDs) using the pH sensitive amphiphilic block copolymer (poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone), PEtOx-b-PCL). The effects of the critical formulation parameters (the amount of copolymer, the concentration of poly(vinyl alcohol) (PVA) as a stabilizing agent in the inner aqueous phase, and volume of the inner phase) are evaluated to achieve optimal nanoparticle (NP) properties using Central Composite Design. The optimized NPs demonstrated a desirable size distribution (167.8 ± 1.4 nm) with a negative surface charge (-19.9 ± 0.4) and a suitable loading capacity for CPS (70.80 ± 0.05%). The CPS & N-GQD NPs are found to have remarkable toxicity on human breast adenocarcinoma cell line (MCF-7). The solid fluorescent signal is acquired from cells containing multifunctional NPs, according to the confocal microscope imaging results, confirming the significant cellular uptake. This research illustrates the enormous potential for cellular imaging and enhanced cancer therapy offered by multifunctional nanocarriers that combine drug substances with the novel fluorescent agents.
- MeSH
- antitumorózní látky * farmakologie chemie MeSH
- dusík * chemie MeSH
- fluorescenční barviva chemie MeSH
- grafit * chemie MeSH
- kapsaicin * chemie farmakologie MeSH
- kvantové tečky * chemie terapeutické užití MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nanočástice * chemie MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- teranostická nanomedicína * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
- MeSH
- biologické markery metabolismus MeSH
- doxorubicin * terapeutické užití analogy a deriváty MeSH
- lidé MeSH
- makrofágy spojené s nádory metabolismus MeSH
- myši MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory * patologie metabolismus farmakoterapie MeSH
- nanomedicína * metody MeSH
- polyethylenglykoly MeSH
- strojové učení MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The application of polymer-based drug delivery systems is advantageous for improved pharmacokinetics, controlled drug release, and decreased side effects of therapeutics for inflammatory disease. Herein, we describe the synthesis and characterization of linear N-(2-hydroxypropyl)methacrylamide-based polymer conjugates designed for controlled release of the anti-inflammatory drug dexamethasone through pH-sensitive bonds. The tailored release rates were achieved by modifying DEX with four oxo-acids introducing reactive oxo groups to the DEX derivatives. Refinement of reaction conditions yielded four well-defined polymer conjugates with varied release profiles which were more pronounced at the lower pH in cell lysosomes. In vitro evaluations in murine peritoneal macrophages, human synovial fibroblasts, and human peripheral blood mononuclear cells demonstrated that neither drug derivatization nor polymer conjugation affected cytotoxicity or anti-inflammatory properties. Subsequent in vivo tests using a murine arthritis model validated the superior anti-inflammatory efficacy of the prepared DEX-bearing conjugates with lower release rates. These nanomedicines showed much higher therapeutic activity compared to the faster release systems or DEX itself.
- MeSH
- antiflogistika terapeutické užití MeSH
- dexamethason MeSH
- doxorubicin chemie MeSH
- leukocyty mononukleární * MeSH
- lidé MeSH
- myši MeSH
- nanomedicína MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- revmatické nemoci * MeSH
- uvolňování léčiv MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
- MeSH
- aplikace intranazální * MeSH
- liposomy MeSH
- metabolismus lipidů účinky léků MeSH
- modely nemocí na zvířatech * MeSH
- myši transgenní MeSH
- myši MeSH
- nanočástice * chemie MeSH
- nanomedicína * metody MeSH
- Parkinsonova nemoc * metabolismus farmakoterapie MeSH
- plasmalogeny * chemie farmakologie MeSH
- regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH