Response inhibition in Attention deficit disorder and neurofibromatosis type 1 - clinically similar, neurophysiologically different

. 2017 Mar 06 ; 7 () : 43929. [epub] 20170306

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28262833

There are large overlaps in cognitive deficits occurring in attention deficit disorder (ADD) and neurodevelopmental disorders like neurofibromatosis type 1 (NF1). This overlap is mostly based on clinical measures and not on in-depth analyses of neuronal mechanisms. However, the consideration of such neuronal underpinnings is crucial when aiming to integrate measures that can lead to a better understanding of the underlying mechanisms. Inhibitory control deficits, for example, are a hallmark in ADD, but it is unclear how far there are similar deficits in NF1. We thus compared adolescent ADD and NF1 patients to healthy controls in a Go/Nogo task using behavioural and neurophysiological measures. Clinical measures of ADD-symptoms were not different between ADD and NF1. Only patients with ADD showed increased Nogo errors and reductions in components reflecting response inhibition (i.e. Nogo-P3). Early perceptual processes (P1) were changed in ADD and NF1. Clinically, patients with ADD and NF1 thus show strong similarities. This is not the case in regard to underlying cognitive control processes. This shows that in-depth analyses of neurophysiological processes are needed to determine whether the overlap between ADD and NF1 is as strong as assumed and to develop appropriate treatment strategies.

Zobrazit více v PubMed

Diamond A. Executive functions. Annu. Rev. Psychol. 64, 135–168 (2013). PubMed PMC

Albrecht B. et al.. Familiality of neural preparation and response control in childhood attention deficit-hyperactivity disorder. Psychol. Med. 43, 1997–2011 (2013). PubMed

Bluschke A., Roessner V. & Beste C. Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype. Psychol. Med. 46, 1277–1287 (2016). PubMed

Coghill D. R., Hayward D., Rhodes S. M., Grimmer C. & Matthews K. A longitudinal examination of neuropsychological and clinical functioning in boys with attention deficit hyperactivity disorder (ADHD): improvements in executive functioning do not explain clinical improvement. Psychol. Med. 44, 1087–1099 (2014). PubMed

Coghill D. R., Seth S. & Matthews K. A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: advancing beyond the three-pathway models. Psychol. Med. 44, 1989–2001 (2014). PubMed

Kenemans J. L. et al.. Attention deficit and impulsivity: selecting, shifting, and stopping. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 58, 59–70 (2005). PubMed

Ferner R. E., Hughes R. A. & Weinman J. Intellectual impairment in neurofibromatosis 1. J. Neurol. Sci. 138, 125–133 (1996). PubMed

Kayl A. E. & Moore B. D. Behavioral phenotype of neurofibromatosis, type 1. Ment. Retard. Dev. Disabil. Res. Rev. 6, 117–124 (2000). PubMed

Lidzba K., Granstroem S., Leark R. A., Kraegeloh-Mann I. & Mautner V.-F. Pharmacotherapy of attention deficit in neurofibromatosis type 1: effects on cognition. Neuropediatrics 45, 240–246 (2014). PubMed

Lidzba K., Granström S., Lindenau J. & Mautner V.-F. The adverse influence of attention-deficit disorder with or without hyperactivity on cognition in neurofibromatosis type 1. Dev. Med. Child Neurol. 54, 892–897 (2012). PubMed

North K. N. et al.. Cognitive function and academic performance in neurofibromatosis. 1: consensus statement from the NF1 Cognitive Disorders Task Force. Neurology 48, 1121–1127 (1997). PubMed

Barton B. & North K. Social skills of children with neurofibromatosis type 1. Dev. Med. Child Neurol. 46, 553–563 (2004). PubMed

Mautner V.-F., Granström S. & Leark R. A. Impact of ADHD in adults with neurofibromatosis type 1: associated psychological and social problems. J. Atten. Disord. 19, 35–43 (2015). PubMed

van der Voet M., Harich B., Franke B. & Schenck A. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol. Psychiatry 21, 565–573 (2016). PubMed PMC

Pride N. A., Payne J. M. & North K. N. The Impact of ADHD on the Cognitive and Academic Functioning of Children With NF1. Dev. Neuropsychol. 37, 590–600 (2012). PubMed

Brown J. A., Diggs-Andrews K. A., Gianino S. M. & Gutmann D. H. Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Mol. Cell. Neurosci. 49, 13–22 (2012). PubMed PMC

Brown J. A. et al.. PET imaging for attention deficit preclinical drug testing in neurofibromatosis-1 mice. Exp. Neurol. 232, 333–338 (2011). PubMed PMC

Diggs-Andrews K. A. et al.. Dopamine deficiency underlies learning deficits in neurofibromatosis-1 mice. Ann. Neurol. 73, 309–315 (2013). PubMed PMC

Diggs-Andrews K. A. & Gutmann D. H. Modeling cognitive dysfunction in neurofibromatosis-1. Trends Neurosci. 36, 237–247 (2013). PubMed PMC

Wozniak D. F. et al.. Motivational disturbances and effects of L-dopa administration in neurofibromatosis-1 model mice. PloS One 8, e66024 (2013). PubMed PMC

Mautner V.-F., Kluwe L., Thakker S. D. & Leark R. A. Treatment of ADHD in neurofibromatosis type 1. Dev. Med. Child Neurol. 44, 164–170 (2002). PubMed

Ribeiro M. J., Violante I. R., Bernardino I., Edden R. A. E. & Castelo-Branco M. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex J. Devoted Study Nerv. Syst. Behav. 64, 194–208 (2015). PubMed PMC

Miguel C. S., Chaim-Avancini T. M., Silva M. A. & Louzã M. R. Neurofibromatosis type 1 and attention deficit hyperactivity disorder: a case study and literature review. Neuropsychiatr. Dis. Treat. 11, 815–821 (2015). PubMed PMC

Insel T. et al.. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. Am. J. Psychiatry 167, 748–751 (2010). PubMed

Chmielewski W. X. & Beste C. Action control processes in autism spectrum disorder--insights from a neurobiological and neuroanatomical perspective. Prog. Neurobiol. 124, 49–83 (2015). PubMed

Huster R. J., Enriquez-Geppert S., Lavallee C. F., Falkenstein M. & Herrmann C. S. Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int. J. Psychophysiol. 87, 217–233 (2013). PubMed

Stock A.-K., Popescu F., Neuhaus A. H. & Beste C. Single-subject prediction of response inhibition behavior by event-related potentials. J. Neurophysiol. jn.00969.2015 (2015). doi: 10.1152/jn.00969.2015 PubMed DOI PMC

Herrmann C. S. & Knight R. T. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 25, 465–476 (2001). PubMed

Schneider D., Beste C. & Wascher E. On the time course of bottom-up and top-down processes in selective visual attention: an EEG study. Psychophysiology 49, 1492–1503 (2012). PubMed

Beste C., Baune B. T., Falkenstein M. & Konrad C. Variations in the TNF-α gene (TNF-α −308G → A) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 104, 2523–2531 (2010). PubMed

Beste C., Ness V., Falkenstein M. & Saft C. On the role of fronto-striatal neural synchronization processes for response inhibition–evidence from ERP phase-synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers. Neuropsychologia 49, 3484–3493 (2011). PubMed

Beste C., Willemssen R., Saft C. & Falkenstein M. Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia 48, 366–373 (2010). PubMed

Beste C., Dziobek I., Hielscher H., Willemssen R. & Falkenstein M. Effects of stimulus-response compatibility on inhibitory processes in Parkinson’s disease. Eur. J. Neurosci. 29, 855–860 (2009). PubMed

Falkenstein M., Hoormann J. & Hohnsbein J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. (Amst.) 101, 267–291 (1999). PubMed

Nieuwenhuis S., Yeung N., van den Wildenberg W. & Ridderinkhof K. R. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn. Affect. Behav. Neurosci. 3, 17–26 (2003). PubMed

Ramautar J. R., Kok A. & Ridderinkhof K. R. Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated. Brain Cogn. 56, 234–252 (2004). PubMed

Döpfner M., Görtz-Dorten A. & Lehmkuhl G. Diagnostik-System für Psychische Störungen im Kindes- und Jugendalter nach ICD-10 und DSM-IV, DISYPS-II. (Huber, 2008).

Cheung C. H. M. et al.. Cognitive and neurophysiological markers of ADHD persistence and remission. Br. J. Psychiatry J. Ment. Sci. 208, 548–555 (2016). PubMed PMC

Liotti M., Pliszka S. R., Higgins K., Perez R. & Semrud-Clikeman M. Evidence for specificity of ERP abnormalities during response inhibition in ADHD children: a comparison with reading disorder children without ADHD. Brain Cogn. 72, 228–237 (2010). PubMed PMC

Pliszka S. R. et al.. Electrophysiological effects of stimulant treatment on inhibitory control in children with attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 17, 356–366 (2007). PubMed

Tye C. et al.. Attention and inhibition in children with ASD, ADHD and co-morbid ASD + ADHD: an event-related potential study. Psychol. Med. 44, 1101–1116 (2014). PubMed

Beste C., Stock A.-K., Epplen J. T. & Arning L. Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 26, 1029–1036 (2016). PubMed

Klimesch W. Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res. 1408, 52–71 (2011). PubMed PMC

Bari A. & Robbins T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013). PubMed

Dippel G., Chmielewski W., Mückschel M. & Beste C. Response mode-dependent differences in neurofunctional networks during response inhibition: an EEG-beamforming study. Brain Struct. Funct.(2015). doi: 10.1007/s00429-015-1148-y PubMed DOI

Helton W. S., Kern R. P. & Walker D. R. Conscious thought and the sustained attention to response task. Conscious. Cogn. 18, 600–607 (2009). PubMed

Quetscher C. et al.. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Struct. Funct. 220, 3555–3564 (2015). PubMed PMC

Faraone S. V., Biederman J. & Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol. Med. 36, 159–165 (2006). PubMed

Costa D. de S. et al.. Neuropsychological impairments in elderly Neurofibromatosis type 1 patients. Eur. J. Med. Genet. 57, 216–219 (2014). PubMed

Janssen T. W. P. et al.. A Randomized Controlled Trial Investigating the Effects of Neurofeedback, Methylphenidate, and Physical Activity on Event-Related Potentials in Children with Attention-Deficit/Hyperactivity Disorder. J. Child Adolesc. Psychopharmacol.(2016). doi: 10.1089/cap.2015.0144 PubMed DOI

Bluschke A., Broschwitz F., Kohl S., Roessner V. & Beste C. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Sci. Rep. 6, 31178 (2016). PubMed PMC

Chmielewski W. X., Mückschel M., Roessner V. & Beste C. Expectancy effects during response selection modulate attentional selection and inhibitory control networks. Behav. Brain Res. 274, 53–61 (2014). PubMed

Nunez P. L. & Pilgreen K. L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 8, 397–413 (1991). PubMed

Bokura H., Yamaguchi S. & Kobayashi S. Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 112, 2224–2232 (2001). PubMed

Mückschel M., Stock A.-K. & Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. N 1991 24, 2120–2129 (2014). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...