Response inhibition in Attention deficit disorder and neurofibromatosis type 1 - clinically similar, neurophysiologically different
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28262833
PubMed Central
PMC5338250
DOI
10.1038/srep43929
PII: srep43929
Knihovny.cz E-zdroje
- MeSH
- hyperkinetická porucha patologie patofyziologie MeSH
- inhibice (psychologie) * MeSH
- lidé MeSH
- mladiství MeSH
- neurofibromatóza 1 patologie patofyziologie MeSH
- neuropsychologické testy MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
There are large overlaps in cognitive deficits occurring in attention deficit disorder (ADD) and neurodevelopmental disorders like neurofibromatosis type 1 (NF1). This overlap is mostly based on clinical measures and not on in-depth analyses of neuronal mechanisms. However, the consideration of such neuronal underpinnings is crucial when aiming to integrate measures that can lead to a better understanding of the underlying mechanisms. Inhibitory control deficits, for example, are a hallmark in ADD, but it is unclear how far there are similar deficits in NF1. We thus compared adolescent ADD and NF1 patients to healthy controls in a Go/Nogo task using behavioural and neurophysiological measures. Clinical measures of ADD-symptoms were not different between ADD and NF1. Only patients with ADD showed increased Nogo errors and reductions in components reflecting response inhibition (i.e. Nogo-P3). Early perceptual processes (P1) were changed in ADD and NF1. Clinically, patients with ADD and NF1 thus show strong similarities. This is not the case in regard to underlying cognitive control processes. This shows that in-depth analyses of neurophysiological processes are needed to determine whether the overlap between ADD and NF1 is as strong as assumed and to develop appropriate treatment strategies.
Zobrazit více v PubMed
Diamond A. Executive functions. Annu. Rev. Psychol. 64, 135–168 (2013). PubMed PMC
Albrecht B. et al.. Familiality of neural preparation and response control in childhood attention deficit-hyperactivity disorder. Psychol. Med. 43, 1997–2011 (2013). PubMed
Bluschke A., Roessner V. & Beste C. Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype. Psychol. Med. 46, 1277–1287 (2016). PubMed
Coghill D. R., Hayward D., Rhodes S. M., Grimmer C. & Matthews K. A longitudinal examination of neuropsychological and clinical functioning in boys with attention deficit hyperactivity disorder (ADHD): improvements in executive functioning do not explain clinical improvement. Psychol. Med. 44, 1087–1099 (2014). PubMed
Coghill D. R., Seth S. & Matthews K. A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: advancing beyond the three-pathway models. Psychol. Med. 44, 1989–2001 (2014). PubMed
Kenemans J. L. et al.. Attention deficit and impulsivity: selecting, shifting, and stopping. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 58, 59–70 (2005). PubMed
Ferner R. E., Hughes R. A. & Weinman J. Intellectual impairment in neurofibromatosis 1. J. Neurol. Sci. 138, 125–133 (1996). PubMed
Kayl A. E. & Moore B. D. Behavioral phenotype of neurofibromatosis, type 1. Ment. Retard. Dev. Disabil. Res. Rev. 6, 117–124 (2000). PubMed
Lidzba K., Granstroem S., Leark R. A., Kraegeloh-Mann I. & Mautner V.-F. Pharmacotherapy of attention deficit in neurofibromatosis type 1: effects on cognition. Neuropediatrics 45, 240–246 (2014). PubMed
Lidzba K., Granström S., Lindenau J. & Mautner V.-F. The adverse influence of attention-deficit disorder with or without hyperactivity on cognition in neurofibromatosis type 1. Dev. Med. Child Neurol. 54, 892–897 (2012). PubMed
North K. N. et al.. Cognitive function and academic performance in neurofibromatosis. 1: consensus statement from the NF1 Cognitive Disorders Task Force. Neurology 48, 1121–1127 (1997). PubMed
Barton B. & North K. Social skills of children with neurofibromatosis type 1. Dev. Med. Child Neurol. 46, 553–563 (2004). PubMed
Mautner V.-F., Granström S. & Leark R. A. Impact of ADHD in adults with neurofibromatosis type 1: associated psychological and social problems. J. Atten. Disord. 19, 35–43 (2015). PubMed
van der Voet M., Harich B., Franke B. & Schenck A. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol. Psychiatry 21, 565–573 (2016). PubMed PMC
Pride N. A., Payne J. M. & North K. N. The Impact of ADHD on the Cognitive and Academic Functioning of Children With NF1. Dev. Neuropsychol. 37, 590–600 (2012). PubMed
Brown J. A., Diggs-Andrews K. A., Gianino S. M. & Gutmann D. H. Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Mol. Cell. Neurosci. 49, 13–22 (2012). PubMed PMC
Brown J. A. et al.. PET imaging for attention deficit preclinical drug testing in neurofibromatosis-1 mice. Exp. Neurol. 232, 333–338 (2011). PubMed PMC
Diggs-Andrews K. A. et al.. Dopamine deficiency underlies learning deficits in neurofibromatosis-1 mice. Ann. Neurol. 73, 309–315 (2013). PubMed PMC
Diggs-Andrews K. A. & Gutmann D. H. Modeling cognitive dysfunction in neurofibromatosis-1. Trends Neurosci. 36, 237–247 (2013). PubMed PMC
Wozniak D. F. et al.. Motivational disturbances and effects of L-dopa administration in neurofibromatosis-1 model mice. PloS One 8, e66024 (2013). PubMed PMC
Mautner V.-F., Kluwe L., Thakker S. D. & Leark R. A. Treatment of ADHD in neurofibromatosis type 1. Dev. Med. Child Neurol. 44, 164–170 (2002). PubMed
Ribeiro M. J., Violante I. R., Bernardino I., Edden R. A. E. & Castelo-Branco M. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex J. Devoted Study Nerv. Syst. Behav. 64, 194–208 (2015). PubMed PMC
Miguel C. S., Chaim-Avancini T. M., Silva M. A. & Louzã M. R. Neurofibromatosis type 1 and attention deficit hyperactivity disorder: a case study and literature review. Neuropsychiatr. Dis. Treat. 11, 815–821 (2015). PubMed PMC
Insel T. et al.. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. Am. J. Psychiatry 167, 748–751 (2010). PubMed
Chmielewski W. X. & Beste C. Action control processes in autism spectrum disorder--insights from a neurobiological and neuroanatomical perspective. Prog. Neurobiol. 124, 49–83 (2015). PubMed
Huster R. J., Enriquez-Geppert S., Lavallee C. F., Falkenstein M. & Herrmann C. S. Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int. J. Psychophysiol. 87, 217–233 (2013). PubMed
Stock A.-K., Popescu F., Neuhaus A. H. & Beste C. Single-subject prediction of response inhibition behavior by event-related potentials. J. Neurophysiol. jn.00969.2015 (2015). doi: 10.1152/jn.00969.2015 PubMed DOI PMC
Herrmann C. S. & Knight R. T. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 25, 465–476 (2001). PubMed
Schneider D., Beste C. & Wascher E. On the time course of bottom-up and top-down processes in selective visual attention: an EEG study. Psychophysiology 49, 1492–1503 (2012). PubMed
Beste C., Baune B. T., Falkenstein M. & Konrad C. Variations in the TNF-α gene (TNF-α −308G → A) affect attention and action selection mechanisms in a dissociated fashion. J. Neurophysiol. 104, 2523–2531 (2010). PubMed
Beste C., Ness V., Falkenstein M. & Saft C. On the role of fronto-striatal neural synchronization processes for response inhibition–evidence from ERP phase-synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers. Neuropsychologia 49, 3484–3493 (2011). PubMed
Beste C., Willemssen R., Saft C. & Falkenstein M. Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia 48, 366–373 (2010). PubMed
Beste C., Dziobek I., Hielscher H., Willemssen R. & Falkenstein M. Effects of stimulus-response compatibility on inhibitory processes in Parkinson’s disease. Eur. J. Neurosci. 29, 855–860 (2009). PubMed
Falkenstein M., Hoormann J. & Hohnsbein J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. (Amst.) 101, 267–291 (1999). PubMed
Nieuwenhuis S., Yeung N., van den Wildenberg W. & Ridderinkhof K. R. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn. Affect. Behav. Neurosci. 3, 17–26 (2003). PubMed
Ramautar J. R., Kok A. & Ridderinkhof K. R. Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated. Brain Cogn. 56, 234–252 (2004). PubMed
Döpfner M., Görtz-Dorten A. & Lehmkuhl G. Diagnostik-System für Psychische Störungen im Kindes- und Jugendalter nach ICD-10 und DSM-IV, DISYPS-II. (Huber, 2008).
Cheung C. H. M. et al.. Cognitive and neurophysiological markers of ADHD persistence and remission. Br. J. Psychiatry J. Ment. Sci. 208, 548–555 (2016). PubMed PMC
Liotti M., Pliszka S. R., Higgins K., Perez R. & Semrud-Clikeman M. Evidence for specificity of ERP abnormalities during response inhibition in ADHD children: a comparison with reading disorder children without ADHD. Brain Cogn. 72, 228–237 (2010). PubMed PMC
Pliszka S. R. et al.. Electrophysiological effects of stimulant treatment on inhibitory control in children with attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 17, 356–366 (2007). PubMed
Tye C. et al.. Attention and inhibition in children with ASD, ADHD and co-morbid ASD + ADHD: an event-related potential study. Psychol. Med. 44, 1101–1116 (2014). PubMed
Beste C., Stock A.-K., Epplen J. T. & Arning L. Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 26, 1029–1036 (2016). PubMed
Klimesch W. Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res. 1408, 52–71 (2011). PubMed PMC
Bari A. & Robbins T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013). PubMed
Dippel G., Chmielewski W., Mückschel M. & Beste C. Response mode-dependent differences in neurofunctional networks during response inhibition: an EEG-beamforming study. Brain Struct. Funct.(2015). doi: 10.1007/s00429-015-1148-y PubMed DOI
Helton W. S., Kern R. P. & Walker D. R. Conscious thought and the sustained attention to response task. Conscious. Cogn. 18, 600–607 (2009). PubMed
Quetscher C. et al.. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Struct. Funct. 220, 3555–3564 (2015). PubMed PMC
Faraone S. V., Biederman J. & Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol. Med. 36, 159–165 (2006). PubMed
Costa D. de S. et al.. Neuropsychological impairments in elderly Neurofibromatosis type 1 patients. Eur. J. Med. Genet. 57, 216–219 (2014). PubMed
Janssen T. W. P. et al.. A Randomized Controlled Trial Investigating the Effects of Neurofeedback, Methylphenidate, and Physical Activity on Event-Related Potentials in Children with Attention-Deficit/Hyperactivity Disorder. J. Child Adolesc. Psychopharmacol.(2016). doi: 10.1089/cap.2015.0144 PubMed DOI
Bluschke A., Broschwitz F., Kohl S., Roessner V. & Beste C. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Sci. Rep. 6, 31178 (2016). PubMed PMC
Chmielewski W. X., Mückschel M., Roessner V. & Beste C. Expectancy effects during response selection modulate attentional selection and inhibitory control networks. Behav. Brain Res. 274, 53–61 (2014). PubMed
Nunez P. L. & Pilgreen K. L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 8, 397–413 (1991). PubMed
Bokura H., Yamaguchi S. & Kobayashi S. Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 112, 2224–2232 (2001). PubMed
Mückschel M., Stock A.-K. & Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. N 1991 24, 2120–2129 (2014). PubMed