Analysis of the tripartite interactions between two bacterial symbionts, a novel Solitalea-like bacterium (Bacteroidota) and Cardinium, and the stored product mite Tyrophagus putrescentiae based on gene expression data
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GF22-15841K
Czech Science Foundation
PubMed
40522089
PubMed Central
PMC12323627
DOI
10.1128/spectrum.00609-25
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteroidetes, Bacteroidota, Cardinium, gene expression, interaction, mite, symbionts,
- MeSH
- Acaridae * mikrobiologie MeSH
- Bacteroidetes * genetika fyziologie klasifikace MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- roztoči * mikrobiologie MeSH
- stanovení celkové genové exprese MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The intracellular parasite Cardinium influences the bacterial microbiome composition of arthropod hosts; however, the mechanisms involved remain poorly understood. We sought to evaluate the interactions between Cardinium (cTPut) and SOL in Tyrophagus putrescentiae cultures based on relative abundance and gene expression data. First, we assembled the genome of Candidatus Krakonobacterium acarorum (formerly the Soliltalea-like symbiont SOL), a novel lineage of the Bacteroidota symbiont of mites. The assemblage SOL genome (1.2 Mb) contained complete pathways for the biosynthesis of lipoic acids, pantothenate, and menaquinone from futalosine. SOL is considered a facultative inhabitant (with prevalences ranging from 36% to 80% among individuals) of the gut (from 102 to 104 copies/mite) that is not detected in eggs, suggesting an extracellular location in the gut of mites. Second, gene expression was analyzed in SOL-inhabited cultures, including two cultures with cTPut and two cultures without cTPut. Correlation-based evidence for competition between cTPut and SOL was found mainly in the expression of transporter proteins. The presence of cTPut decreased interactions between SOL and the mite host; however, SOL is under greater control by mites in the presence of cTPut than in the absence of cTPut. Mite KEGG gene expression levels in the peroxisome, autophagy, sphingolipid, apoptosis, PI3K-Akt, and lysozyme pathways were more strongly correlated with SOL gene expression in cultures without cTPut than in those with cTPut. In contrast, mite KEGG gene expression levels in the proteasome, NF-κB, TNF, calcium, and Rap1 signaling pathways were more strongly correlated with SOL in the presence of cTPut. The explanation for these results is that cTPut mostly interacts with the mite host, resulting in changes in the host's immunity-related/regulatory pathways, indirectly affecting the symbiont SOL. IMPORTANCE: Here, we describe the novel Bacteroidetes symbiont (SOL) of mites. The analysis of gene expression in meta-transcriptomic samples from cultures with and without the intracellular parasite Cardinium revealed the effect of Cardinium on SOL as a model facultative symbiont of mites. Our findings suggest that there is competition between these two symbionts for nutrients. In addition, Cardinium can influence other bacterial symbionts via mite host immunity-related and regulatory pathways. Tyrophagus putrescentiae is a cosmopolitan pest mite that contaminates the home environment, including stored food and feed, with allergens. The interactions between intracellular bacteria and other members of the microbiome influence host physiology and indirectly affect allergen production.
Computer Science Department University of Maryland College Park Maryland USA
Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong China
Lilly Hall of Life Sciences Purdue University West Lafayette Indiana USA
School of Biomedical Sciences The Chinese University of Hong Kong Hong Kong China
Zobrazit více v PubMed
Gonella E, Tedeschi R, Crotti E, Alma A. 2019. Multiple guests in a single host: interactions across symbiotic and phytopathogenic bacteria in phloem-feeding vectors – a review. Entomol Exp Appl 167:171–185. doi: 10.1111/eea.12766 DOI
Perlmutter JI, Bordenstein SR. 2020. Microorganisms in the reproductive tissues of arthropods. Nat Rev Microbiol 18:97–111. doi: 10.1038/s41579-019-0309-z PubMed DOI PMC
Coolen S, van der Molen MR, Welte CU. 2022. The secret life of insect-associated microbes and how they shape insect–plant interactions. FEMS Microbiol Ecol 98:fiac083. doi: 10.1093/femsec/fiac083 PubMed DOI PMC
Corbin C, Heyworth ER, Ferrari J, Hurst GDD. 2017. Heritable symbionts in a world of varying temperature. Heredity (Edinb) 118:10–20. doi: 10.1038/hdy.2016.71 PubMed DOI PMC
Ferrarini MG, Vallier A, Vincent-Monegat C, Dell’Aglio E, Gillet B, Hughes S, Hurtado O, Condemine G, Zaidman-Remy A, Rebollo R, Parisot N, Heddi A. 2023. Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp. Microbiome 11:274. doi: 10.1186/s40168-023-01714-8 PubMed DOI PMC
Vautrin E, Vavre F. 2009. Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol 17:95–99. doi: 10.1016/j.tim.2008.12.002 PubMed DOI
Duron O, Hurst GD. 2013. Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biol 11:45. doi: 10.1186/1741-7007-11-45 PubMed DOI PMC
Zhang Y-K, Chen Y-T, Yang K, Hong X-Y. 2016. A review of prevalence and phylogeny of the bacterial symbiont Cardinium in mites (subclass: Acari). Syst Appl Acarol 21:978–990. doi: 10.11158/saa.21.7.11 DOI
Hubert J, Glowska-Patyniak E, Dowd SE, Klimov PB. 2025. A novel Erwiniaceae gut symbiont modulates gene expression of the intracellular bacterium Cardinium in the stored product mite Tyrophagus putrescentiae. mSphere 10:e0087924. doi: 10.1128/msphere.00879-24 PubMed DOI PMC
Weeks AR, Marec F, Breeuwer JAJ. 2001. A mite species that consists entirely of haploid females. Science 292:2479–2482. doi: 10.1126/science.1060411 PubMed DOI
Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS. 2001. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci USA 98:12555–12560. doi: 10.1073/pnas.221467498 PubMed DOI PMC
Liu H-H, Chen L, Shao H-B, Gao S, Hong X-Y, Bing X-L. 2024. Environmental factors and the symbiont Cardinium influence the bacterial microbiome of spider mites across the landscape. Microb Ecol 87:1. doi: 10.1007/s00248-023-02314-7 PubMed DOI
Li T-P, Zha S-S, Zhou C-Y, Gong J-T, Zhu Y-X, Zhang X, Xi Z, Hong X-Y. 2020. Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol Ecol 96:fiaa194. doi: 10.1093/femsec/fiaa194 PubMed DOI
Hubert J, Glowska-Patyniak E, Dowd SE, Klimov PB. 2025. Cardinium disrupts Wolbachia–host dynamics in the domestic mite Tyrophagus putrescentiae: evidence from manipulative experiments. mSystems 10:e01769-24. doi: 10.1128/msystems.01769-24 PubMed DOI PMC
Klimov PB, Hubert J, Erban T, Perotti MA, Braig HR, Flynt A, He Q, Cui Y. 2024. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q). Int J Parasitol 54:661–674. doi: 10.1016/j.ijpara.2024.07.001 PubMed DOI
Hubert J, Nesvorna M, Klimov P, Dowd SE, Sopko B, Erban T. 2019. Differential allergen expression in three Tyrophagus putrescentiae strains inhabited by distinct microbiome. Allergy 74:2502–2507. doi: 10.1111/all.13921 PubMed DOI
Nesvorna M, Sopko B, Hubert J. 2020. Cardinium and Wolbachia are negatively correlated in the microbiome of various populations of stored product mite Tyrophagus putrescentiae. Int J Acarol 46:192–199. doi: 10.1080/01647954.2020.1752305 DOI
Hubert J, Nesvorna M, Green SJ, Klimov PB. 2021. Microbial communities of stored product mites: variation by species and population. Microb Ecol 81:506–522. doi: 10.1007/s00248-020-01581-y PubMed DOI
Hubert Jan, Kopecky J, Nesvorna M, Perotti MA, Erban T. 2016. Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae). Exp Appl Acarol 70:309–327. doi: 10.1007/s10493-016-0080-z PubMed DOI
Hubert J, Navratilova B, Sopko B, Nesvorna M, Phillips TW. 2022. Pesticide residue exposure provides different responses of the microbiomes of distinct cultures of the stored product pest mite Acarus siro. BMC Microbiol 22:252. doi: 10.1186/s12866-022-02661-4 PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi: 10.1101/gr.186072.114 PubMed DOI PMC
Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez F, Canon S, et al. 2018. KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 36:566–569. doi: 10.1038/nbt.4163 PubMed DOI PMC
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. doi: 10.1038/s41467-018-07641-9 PubMed DOI PMC
Avram O, Rapoport D, Portugez S, Pupko T. 2019. M1CR0B1AL1Z3R—a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 47:W88–W92. doi: 10.1093/nar/gkz423 PubMed DOI PMC
Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182. doi: 10.1038/s41467-019-10210-3 PubMed DOI PMC
Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Goker M. 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807. doi: 10.1093/nar/gkab902 PubMed DOI PMC
Hubert J, Kopecky J, Perotti MA, Nesvorna M, Braig HR, Sagova-Mareckova M, Macovei L, Zurek L. 2012. Detection and identification of species-specific bacteria associated with synanthropic mites. Microb Ecol 63:919–928. doi: 10.1007/s00248-011-9969-6 PubMed DOI
Sabree ZL, Huang CY, Okusu A, Moran NA, Normark BB. 2013. The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects. Environ Microbiol 15:1988–1999. doi: 10.1111/1462-2920.12058 PubMed DOI
McCutcheon JP, Moran NA. 2007. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397. doi: 10.1073/pnas.0708855104 PubMed DOI PMC
Okude G, Koga R, Hayashi T, Nishide Y, Meng X-Y, Nikoh N, Miyanoshita A, Fukatsu T. 2017. Novel bacteriocyte-associated pleomorphic symbiont of the grain pest beetle Rhyzopertha dominica (Coleoptera: Bostrichidae). Zool Lett 3:13. doi: 10.1186/s40851-017-0073-8 PubMed DOI PMC
Kiefer JST, Bauer E, Okude G, Fukatsu T, Kaltenpoth M, Engl T. 2023. Cuticle supplementation and nitrogen recycling by a dual bacterial symbiosis in a family of xylophagous beetles. ISME J 17:1029–1039. doi: 10.1038/s41396-023-01415-y PubMed DOI PMC
Cabuslay C, Wertz JT, Bechade B, Hu Y, Braganza S, Freeman D, Pradhan S, Mukhanova M, Powell S, Moreau C, Russell JA. 2024. Domestication and evolutionary histories of specialized gut symbionts across cephalotine ants. Mol Ecol 33:e17454. doi: 10.1111/mec.17454 PubMed DOI
Hu Y, D’Amelio CL, Bechade B, Cabuslay CS, Lukasik P, Sanders JG, Price S, Fanwick E, Powell S, Moreau CS, Russell JA. 2023. Partner fidelity and environmental filtering preserve stage-specific turtle ant gut symbioses for over 40 million years. Ecol Monogr 93:e1560. doi: 10.1002/ecm.1560 DOI
Lee J, Kim JY, Yi M-h, Hwang Y, Lee I-Y, Nam S-H, Yong D, Yong T-S. 2019. Comparative microbiome analysis of Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Tyrophagus putrescentiae. J Allergy Clin Immunol 143:1620–1623. doi: 10.1016/j.jaci.2018.10.062 PubMed DOI
Ferrari J, Vavre F. 2011. Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond B Biol Sci 366:1389–1400. doi: 10.1098/rstb.2010.0226 PubMed DOI PMC
Weon H-Y, Kim B-Y, Lee C-M, Hong S-B, Jeon Y-A, Koo B-S, Kwon S-W. 2009. Solitalea koreensis gen. nov., sp. nov. and the reclassification of [Flexibacter] canadensis as Solitalea canadensis comb. nov. Int J Syst Evol Microbiol 59:1969–1975. doi: 10.1099/ijs.0.007278-0 PubMed DOI
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. doi: 10.1093/nar/gkv1070 PubMed DOI PMC
Xiong Q, Sopko B, Klimov PB, Hubert J. 2024. A novel Bartonella-like bacterium forms an interdependent mutualistic symbiosis with its host, the stored-product mite Tyrophagus putrescentiae mSystems 9:e0082923. doi: 10.1128/msystems.00829-23 PubMed DOI PMC
Li T-P, Zhou C-Y, Wang M-K, Zha S-S, Chen J, Bing X-L, Hoffmann AA, Hong X-Y. 2022. Endosymbionts reduce microbiome diversity and modify host metabolism and fecundity in the planthopper Sogatella furcifera. mSystems 7:e0151621. doi: 10.1128/msystems.01516-21 PubMed DOI PMC
Yang K, Qin P-H, Yuan M-Y, Chen L, Zhang Y-J, Chu D. 2023. Infection density pattern of Cardinium affects the responses of bacterial communities in an invasive whitefly under heat conditions. Insect Sci 30:1149–1164. doi: 10.1111/1744-7917.13141 PubMed DOI
Dell’Aglio E, Lacotte V, Peignier S, Rahioui I, Benzaoui F, Vallier A, Da Silva P, Desouhant E, Heddi A, Rebollo R. 2023. Weevil carbohydrate intake triggers endosymbiont proliferation: a trade-off between host benefit and endosymbiont burden. mBio 14:e0333322. doi: 10.1128/mbio.03333-22 PubMed DOI PMC
Nakamura Y, Gotoh T, Imanishi S, Mita K, Kurtti TJ, Noda H. 2011. Differentially expressed genes in silkworm cell cultures in response to infection by Wolbachia and Cardinium endosymbionts. Insect Mol Biol 20:279–289. doi: 10.1111/j.1365-2583.2010.01056.x PubMed DOI
Mann E, Stouthamer CM, Kelly SE, Dzieciol M, Hunter MS, Schmitz-Esser S. 2017. Transcriptome sequencing reveals novel candidate genes for Cardinium hertigii-caused cytoplasmic incompatibility and host-cell interaction. mSystems 2:e00141-17. doi: 10.1128/mSystems.00141-17 PubMed DOI PMC
Masson F, Zaidman-Remy A, Heddi A. 2016. Antimicrobial peptides and cell processes tracking endosymbiont dynamics. Phil Trans R Soc B Biol Sci 371:20150298. doi: 10.1098/rstb.2015.0298 PubMed DOI PMC
Simonet P, Gaget K, Balmand S, Ribeiro Lopes M, Parisot N, Buhler K, Duport G, Vulsteke V, Febvay G, Heddi A, Charles H, Callaerts P, Calevro F. 2018. Bacteriocyte cell death in the pea aphid/Buchnera symbiotic system. Proc Natl Acad Sci USA 115:E1819–E1828. doi: 10.1073/pnas.1720237115 PubMed DOI PMC
Hubert J, Nesvorna M, Kopecky J, Erban T, Klimov P. 2019. Population and culture age influence the microbiome profiles of house dust mites. Microb Ecol 77:1048–1066. doi: 10.1007/s00248-018-1294-x PubMed DOI
Xiong Q, Wan A-Y, Liu X, Fung C-H, Xiao X, Malainual N, Hou J, Wang L, Wang M, Yang KY, Cui Y, Leung E-H, Nong W, Shin S-K, Au S-N, Jeong KY, Chew F-T, Hui J-L, Leung T-F, Tungtrongchitr A, Zhong N, Liu Z, Tsui S-W. 2022. Comparative genomics reveals insights into the divergent evolution of astigmatic mites and household pest adaptations. Mol Biol Evol 39:msac097. doi: 10.1093/molbev/msac097 PubMed DOI PMC
Erban T, Hubert J. 2008. Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp Appl Acarol 44:199–212. doi: 10.1007/s10493-008-9138-x PubMed DOI
Hubert J, Nesvorna M, Pekar S, Green SJ, Klimov PB. 2021. Cardinium inhibits Wolbachia in its mite host, Tyrophagus putrescentiae, and affects host fitness. FEMS Microbiol Ecol 97:fiab123. doi: 10.1093/femsec/fiab123 PubMed DOI
Erban T, Hubert J. 2015. Two-dimensional gel proteomic analysis of Dermatophagoides farinae feces. Exp Appl Acarol 65:73–87. doi: 10.1007/s10493-014-9848-1 PubMed DOI
Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, Sogin ML. 2001. Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3:151–167. doi: 10.1046/j.1462-2920.2001.00172.x PubMed DOI
Kopecky J, Nesvorna M, Mareckova-Sagova M, Hubert J. 2014. The effect of antibiotics on associated bacterial community of stored product mites. PLoS One 9:e112919. doi: 10.1371/journal.pone.0112919 PubMed DOI PMC
Nesvorna M, Bittner V, Hubert J. 2019. The mite Tyrophagus putrescentiae hosts population-specific microbiomes that respond weakly to starvation. Microb Ecol 77:488–501. doi: 10.1007/s00248-018-1224-y PubMed DOI
Krueger F. 2021. Trim Galore. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
Andrews S. 2019. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. doi: 10.1016/j.jmb.2015.11.006 PubMed DOI
Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi: 10.1186/gb-2009-10-3-r25 PubMed DOI PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. arXiv. doi: 10.48550/arXiv.1708.01492 PubMed DOI PMC
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi: 10.1371/journal.pone.0112963 PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153 PubMed DOI
Tanizawa Y, Fujisawa T, Nakamura Y. 2018. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039. doi: 10.1093/bioinformatics/btx713 PubMed DOI PMC
Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi: 10.1093/nar/28.1.27 PubMed DOI PMC
Grant JR, Enns E, Marinier E, Mandal A, Herman EK, Chen C-Y, Graham M, Van Domselaar G, Stothard P. 2023. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 51:W484–W492. doi: 10.1093/nar/gkad326 PubMed DOI PMC
Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, Pratama AA, Gazitua MC, Vik D, Sullivan MB, Roux S. 2021. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9:37. doi: 10.1186/s40168-020-00990-y PubMed DOI PMC
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132. doi: 10.1186/s13059-016-0997-x PubMed DOI PMC
Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. doi: 10.1038/ismej.2017.126 PubMed DOI PMC
Pruesse E, Peplies J, Glockner FO. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. doi: 10.1093/bioinformatics/bts252 PubMed DOI PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi: 10.1093/sysbio/syq010 PubMed DOI
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119 PubMed DOI PMC
Steinegger M, Soding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026–1028. doi: 10.1038/nbt.3988 PubMed DOI
Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. 2017. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 33:2946–2947. doi: 10.1093/bioinformatics/btx324 PubMed DOI
Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 52:W78–W82. doi: 10.1093/nar/gkae268 PubMed DOI PMC
Oksanen J. 2022. vegan: an R package for community ecologists. GitHub. https://github.com/vegandevs/vegan.
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 2023. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51:D587–D592. doi: 10.1093/nar/gkac963 PubMed DOI PMC
Hammer O. 2020. Past 4 - the past of the future. Natural History Museum, University of Oslo. Available from: https://www.nhm.uio.no/english/research/resources/past/
Zeleny D. 2022. Analysis of community ecology data in R. Variable selection (constrained ordination). Available from: https://www.davidzeleny.net/anadat-r/doku.php/en:forward_sel_examples
Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. doi: 10.1093/bioinformatics/btw313 PubMed DOI
Gu Z. 2022. Complex heatmap visualization. Imeta 1:e43. doi: 10.1002/imt2.43 PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi: 10.1101/gr.1239303 PubMed DOI PMC
Gao J, Tarcea VG, Karnovsky A, Mirel BR, Weymouth TE, Beecher CW, Cavalcoli JD, Athey BD, Omenn GS, Burant CF, Jagadish HV. 2010. Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics 26:971–973. doi: 10.1093/bioinformatics/btq048 PubMed DOI PMC