Population and Culture Age Influence the Microbiome Profiles of House Dust Mites
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
17-12068S
Grantová Agentura České Republiky
(No. 6.1933.2014/K Project Code 1933
Ministry of Education and Science of the Russian Federation
No. 15-04-0s5185-a
the Russian Foundation for Basic Research
PubMed
30465068
DOI
10.1007/s00248-018-1294-x
PII: 10.1007/s00248-018-1294-x
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteria, Dermatophagoides farinae, Dermatophagoides pteronyssinus, Diet, Fungi, Gut, Nutrition, Symbiosis, Yeasts,
- MeSH
- Bacteria * klasifikace MeSH
- bakteriální RNA analýza MeSH
- druhová specificita MeSH
- fungální RNA analýza MeSH
- houby * klasifikace MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- mikrobiota * MeSH
- populační dynamika MeSH
- Pyroglyphidae mikrobiologie fyziologie MeSH
- RNA ribozomální 16S analýza MeSH
- RNA ribozomální 18S analýza MeSH
- taxonomické DNA čárové kódování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální RNA MeSH
- fungální RNA MeSH
- RNA ribozomální 16S MeSH
- RNA ribozomální 18S MeSH
Interactions with microorganisms might enable house dust mites (HDMs) to derive nutrients from difficult-to-digest structural proteins and to flourish in human houses. We tested this hypothesis by investigating the effects of changes in the mite culture growth and population of two HDM species on HDM microbiome composition and fitness. Growing cultures of laboratory and industrial allergen-producing populations of Dermatophagoides farinae (DFL and DFT, respectively) and Dermatophagoides pteronyssinus (DPL and DPT, respectively) were sampled at four time points. The symbiotic microorganisms of the mites were characterized by DNA barcode sequencing and quantified by qPCR using universal/specific primers. The population growth of mites and nutrient contents of mite bodies were measured and correlated with the changes in bacteria in the HDM microbiome. The results showed that both the population and culture age significantly influenced the microbiome profiles. Cardinium formed 93% and 32% of the total sequences of the DFL and DFT bacterial microbiomes, respectively, but this bacterial species was less abundant in the DPL and DPT microbiomes. Staphylococcus abundance was positively correlated with increased glycogen contents in the bodies of mites, and increased abundances of Aspergillus, Candida, and Kocuria were correlated with increased lipid contents in the bodies of mites. The xerophilic fungus Wallemia accounted for 39% of the fungal sequences in the DPL microbiome, but its abundance was low in the DPT, DFL, and DFT microbiomes. With respect to the mite culture age, we made three important observations: the mite population growth from young cultures was 5-8-fold higher than that from old cultures; specimens from old cultures had greater abundances of fungi and bacteria in their bodies; and yeasts predominated in the gut contents of specimens from young cultures, whereas filamentous mycelium prevailed in specimens from old cultures. Our results are consistent with the hypothesis that mites derive nutrients through associations with microorganisms.
Crop Research Institute Drnovska 507 73 CZ 16106 Prague 6 Ruzyne Czechia
Institute of Biology University of Tyumen Pirogova 3 Tyumen Russia 625043
Zobrazit více v PubMed
J Morphol. 1989 May;200(2):215-230 PubMed
Springerplus. 2014 Mar 11;3:138 PubMed
Exp Appl Acarol. 2005;37(1-2):107-16 PubMed
J Med Entomol. 1997 Nov;34(6):684-9 PubMed
J Allergy Clin Immunol. 2015 Jul;136(1):38-48 PubMed
Appl Environ Microbiol. 2013 Sep;79(17):5112-20 PubMed
J Appl Microbiol. 2015 Sep;119(3):640-54 PubMed
J Med Entomol. 1996 Mar;33(2):257-60 PubMed
PLoS Genet. 2012;8(10):e1003012 PubMed
PLoS Comput Biol. 2009 Apr;5(4):e1000352 PubMed
Exp Appl Acarol. 2013 Dec;61(4):431-47 PubMed
J Investig Allergol Clin Immunol. 1998 Jul-Aug;8(4):201-6 PubMed
Exp Appl Acarol. 2016 Nov;70(3):309-327 PubMed
Nat Methods. 2012 Jul 30;9(8):772 PubMed
Appl Environ Microbiol. 2009 Nov;75(21):6757-63 PubMed
Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed
Bioinformatics. 2009 Sep 1;25(17):2286-8 PubMed
NPJ Biofilms Microbiomes. 2016 Nov 23;2:3 PubMed
Ecol Lett. 2006 Jun;9(6):683-93 PubMed
Clin Exp Allergy. 2018 May;48(5):607-610 PubMed
Arch Insect Biochem Physiol. 2010 Nov;75(3):187-206 PubMed
J Parasitol. 1972 Aug;58(4):801-4 PubMed
Int J Med Microbiol. 2005 Apr;295(1):9-18 PubMed
ISME J. 2017 May;11(5):1232-1244 PubMed
Appl Environ Microbiol. 2017 Apr 17;83(9): PubMed
Mol Biol Evol. 2002 Sep;19(9):1591-601 PubMed
Mol Ecol. 2004 Jul;13(7):2009-16 PubMed
Exp Appl Acarol. 1991 Feb;10(3-4):167-86 PubMed
Nat Methods. 2013 Oct;10(10):996-8 PubMed
Parasitol Res. 2014 Jul;113(7):2603-27 PubMed
Naturwissenschaften. 2014 Mar;101(3):187-96 PubMed
Appl Environ Microbiol. 2007 Aug;73(16):5261-7 PubMed
Bioinformatics. 2012 Jul 15;28(14):1823-9 PubMed
Exp Appl Acarol. 1992 Nov;16(1-2):37-47 PubMed
Allergol Immunopathol (Madr). 1987 May-Jun;15(3):161-6 PubMed
J Allergy Clin Immunol. 2005 Dec;116(6):1296-300 PubMed
Exp Appl Acarol. 1987 Nov;3(4):279-89 PubMed
BMC Genomics. 2009 Mar 13;10:107 PubMed
Exp Appl Acarol. 2002;27(1-2):103-12 PubMed
J Insect Sci. 2010;10:42 PubMed
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 PubMed
Nat Rev Genet. 2012 Mar 13;13(4):260-70 PubMed
Exp Appl Acarol. 2003;31(1-2):105-13 PubMed
Annu Rev Entomol. 2015 Jan 7;60:17-34 PubMed
J Med Entomol. 1990 Nov;27(6):1035-40 PubMed
Exp Appl Acarol. 2008 Mar;44(3):199-212 PubMed
PLoS One. 2014 Nov 11;9(11):e112919 PubMed
Ecology. 2008 Sep;89(9):2623-32 PubMed
J Med Entomol. 1987 Jul;24(4):408-11 PubMed
J Allergy Clin Immunol. 2015 Feb;135(2):539-48 PubMed
Syst Biol. 2012 May;61(3):539-42 PubMed
Genome Announc. 2017 Aug 10;5(32): PubMed
Syst Biol. 2003 Oct;52(5):696-704 PubMed
Allergy. 2013 Jul;68(7):945-8 PubMed
BMC Bioinformatics. 2011 Sep 30;12:385 PubMed
BMC Genomics. 2009 Dec 11;10:598 PubMed
Microb Ecol. 2012 May;63(4):919-28 PubMed
Mol Phylogenet Evol. 2004 Sep;32(3):817-22 PubMed
J Proteomics. 2017 Jun 6;162:11-19 PubMed
Int Arch Allergy Immunol. 2012;159(3):226-34 PubMed
Med Vet Entomol. 2015 Jun;29(2):137-46 PubMed
J Am Mosq Control Assoc. 1985 Sep;1(3):299-301 PubMed
Front Microbiol. 2016 Jul 12;7:1046 PubMed
Int J Environ Health Res. 2013;23(2):91-5 PubMed
Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 PubMed
PCR Methods Appl. 1995 Apr;4(5):269-74 PubMed
Trends Mol Med. 2011 Oct;17(10):604-11 PubMed
Int J Syst Evol Microbiol. 2016 Jan;66(1):414-421 PubMed
Heredity (Edinb). 2007 Jan;98(1):13-20 PubMed
Syst Biol. 2013 May 1;62(3):411-23 PubMed
Genome Res. 2012 May;22(5):850-9 PubMed
Exp Appl Acarol. 2005;35(1-2):29-46 PubMed
ISME J. 2016 Mar;10(3):655-64 PubMed
J Insect Physiol. 2008 Feb;54(2):367-77 PubMed
Microb Ecol. 2017 Nov;74(4):947-960 PubMed
J Med Entomol. 1991 Jul;28(4):487-91 PubMed
Int Arch Allergy Immunol. 1992;97(1):86-8 PubMed
Bioinformatics. 2014 Apr 1;30(7):1020-1 PubMed
PLoS One. 2015 Jul 08;10(7):e0129996 PubMed
J Invertebr Pathol. 2013 Jan;112(1):20-3 PubMed
Allergol Immunopathol (Madr). 1997 May-Jun;25(3):113-7 PubMed
Med Vet Entomol. 2017 Sep;31(3):272-280 PubMed
J Med Entomol. 2007 Jul;44(4):568-74 PubMed
Genome Biol Evol. 2014 Apr;6(4):1013-30 PubMed
Parasitol Res. 2011 Feb;108(2):497-503 PubMed
J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed
J Econ Entomol. 2016 Mar 27;109(3):1450-1457 PubMed
Oecologia. 1978 Jan;33(3):351-359 PubMed
Syst Biol. 2010 May;59(3):307-21 PubMed
FEMS Microbiol Ecol. 2017 Jan;93(1): PubMed
Allergy Asthma Clin Immunol. 2017 Jan 25;13:6 PubMed
Med Vet Entomol. 2014 Sep;28(3):287-96 PubMed
Predicting Blomia tropicalis allergens using a multiomics approach
Microbial Communities of Stored Product Mites: Variation by Species and Population