Population and Culture Age Influence the Microbiome Profiles of House Dust Mites

. 2019 May ; 77 (4) : 1048-1066. [epub] 20181121

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30465068

Grantová podpora
17-12068S Grantová Agentura České Republiky
(No. 6.1933.2014/K Project Code 1933 Ministry of Education and Science of the Russian Federation
No. 15-04-0s5185-a the Russian Foundation for Basic Research

Odkazy

PubMed 30465068
DOI 10.1007/s00248-018-1294-x
PII: 10.1007/s00248-018-1294-x
Knihovny.cz E-zdroje

Interactions with microorganisms might enable house dust mites (HDMs) to derive nutrients from difficult-to-digest structural proteins and to flourish in human houses. We tested this hypothesis by investigating the effects of changes in the mite culture growth and population of two HDM species on HDM microbiome composition and fitness. Growing cultures of laboratory and industrial allergen-producing populations of Dermatophagoides farinae (DFL and DFT, respectively) and Dermatophagoides pteronyssinus (DPL and DPT, respectively) were sampled at four time points. The symbiotic microorganisms of the mites were characterized by DNA barcode sequencing and quantified by qPCR using universal/specific primers. The population growth of mites and nutrient contents of mite bodies were measured and correlated with the changes in bacteria in the HDM microbiome. The results showed that both the population and culture age significantly influenced the microbiome profiles. Cardinium formed 93% and 32% of the total sequences of the DFL and DFT bacterial microbiomes, respectively, but this bacterial species was less abundant in the DPL and DPT microbiomes. Staphylococcus abundance was positively correlated with increased glycogen contents in the bodies of mites, and increased abundances of Aspergillus, Candida, and Kocuria were correlated with increased lipid contents in the bodies of mites. The xerophilic fungus Wallemia accounted for 39% of the fungal sequences in the DPL microbiome, but its abundance was low in the DPT, DFL, and DFT microbiomes. With respect to the mite culture age, we made three important observations: the mite population growth from young cultures was 5-8-fold higher than that from old cultures; specimens from old cultures had greater abundances of fungi and bacteria in their bodies; and yeasts predominated in the gut contents of specimens from young cultures, whereas filamentous mycelium prevailed in specimens from old cultures. Our results are consistent with the hypothesis that mites derive nutrients through associations with microorganisms.

Zobrazit více v PubMed

J Morphol. 1989 May;200(2):215-230 PubMed

Springerplus. 2014 Mar 11;3:138 PubMed

Exp Appl Acarol. 2005;37(1-2):107-16 PubMed

J Med Entomol. 1997 Nov;34(6):684-9 PubMed

J Allergy Clin Immunol. 2015 Jul;136(1):38-48 PubMed

Appl Environ Microbiol. 2013 Sep;79(17):5112-20 PubMed

J Appl Microbiol. 2015 Sep;119(3):640-54 PubMed

J Med Entomol. 1996 Mar;33(2):257-60 PubMed

PLoS Genet. 2012;8(10):e1003012 PubMed

PLoS Comput Biol. 2009 Apr;5(4):e1000352 PubMed

Exp Appl Acarol. 2013 Dec;61(4):431-47 PubMed

J Investig Allergol Clin Immunol. 1998 Jul-Aug;8(4):201-6 PubMed

Exp Appl Acarol. 2016 Nov;70(3):309-327 PubMed

Nat Methods. 2012 Jul 30;9(8):772 PubMed

Appl Environ Microbiol. 2009 Nov;75(21):6757-63 PubMed

Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed

Bioinformatics. 2009 Sep 1;25(17):2286-8 PubMed

NPJ Biofilms Microbiomes. 2016 Nov 23;2:3 PubMed

Ecol Lett. 2006 Jun;9(6):683-93 PubMed

Clin Exp Allergy. 2018 May;48(5):607-610 PubMed

Arch Insect Biochem Physiol. 2010 Nov;75(3):187-206 PubMed

J Parasitol. 1972 Aug;58(4):801-4 PubMed

Int J Med Microbiol. 2005 Apr;295(1):9-18 PubMed

ISME J. 2017 May;11(5):1232-1244 PubMed

Appl Environ Microbiol. 2017 Apr 17;83(9): PubMed

Mol Biol Evol. 2002 Sep;19(9):1591-601 PubMed

Mol Ecol. 2004 Jul;13(7):2009-16 PubMed

Exp Appl Acarol. 1991 Feb;10(3-4):167-86 PubMed

Nat Methods. 2013 Oct;10(10):996-8 PubMed

Parasitol Res. 2014 Jul;113(7):2603-27 PubMed

Naturwissenschaften. 2014 Mar;101(3):187-96 PubMed

Appl Environ Microbiol. 2007 Aug;73(16):5261-7 PubMed

Bioinformatics. 2012 Jul 15;28(14):1823-9 PubMed

Exp Appl Acarol. 1992 Nov;16(1-2):37-47 PubMed

Allergol Immunopathol (Madr). 1987 May-Jun;15(3):161-6 PubMed

J Allergy Clin Immunol. 2005 Dec;116(6):1296-300 PubMed

Exp Appl Acarol. 1987 Nov;3(4):279-89 PubMed

BMC Genomics. 2009 Mar 13;10:107 PubMed

Exp Appl Acarol. 2002;27(1-2):103-12 PubMed

J Insect Sci. 2010;10:42 PubMed

Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 PubMed

Nat Rev Genet. 2012 Mar 13;13(4):260-70 PubMed

Exp Appl Acarol. 2003;31(1-2):105-13 PubMed

Annu Rev Entomol. 2015 Jan 7;60:17-34 PubMed

J Med Entomol. 1990 Nov;27(6):1035-40 PubMed

Exp Appl Acarol. 2008 Mar;44(3):199-212 PubMed

PLoS One. 2014 Nov 11;9(11):e112919 PubMed

Ecology. 2008 Sep;89(9):2623-32 PubMed

J Med Entomol. 1987 Jul;24(4):408-11 PubMed

J Allergy Clin Immunol. 2015 Feb;135(2):539-48 PubMed

Syst Biol. 2012 May;61(3):539-42 PubMed

Genome Announc. 2017 Aug 10;5(32): PubMed

Syst Biol. 2003 Oct;52(5):696-704 PubMed

Allergy. 2013 Jul;68(7):945-8 PubMed

BMC Bioinformatics. 2011 Sep 30;12:385 PubMed

BMC Genomics. 2009 Dec 11;10:598 PubMed

Microb Ecol. 2012 May;63(4):919-28 PubMed

Mol Phylogenet Evol. 2004 Sep;32(3):817-22 PubMed

J Proteomics. 2017 Jun 6;162:11-19 PubMed

Int Arch Allergy Immunol. 2012;159(3):226-34 PubMed

Med Vet Entomol. 2015 Jun;29(2):137-46 PubMed

J Am Mosq Control Assoc. 1985 Sep;1(3):299-301 PubMed

Front Microbiol. 2016 Jul 12;7:1046 PubMed

Int J Environ Health Res. 2013;23(2):91-5 PubMed

Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 PubMed

PCR Methods Appl. 1995 Apr;4(5):269-74 PubMed

Trends Mol Med. 2011 Oct;17(10):604-11 PubMed

Int J Syst Evol Microbiol. 2016 Jan;66(1):414-421 PubMed

Heredity (Edinb). 2007 Jan;98(1):13-20 PubMed

Syst Biol. 2013 May 1;62(3):411-23 PubMed

Genome Res. 2012 May;22(5):850-9 PubMed

Exp Appl Acarol. 2005;35(1-2):29-46 PubMed

ISME J. 2016 Mar;10(3):655-64 PubMed

J Insect Physiol. 2008 Feb;54(2):367-77 PubMed

Microb Ecol. 2017 Nov;74(4):947-960 PubMed

J Med Entomol. 1991 Jul;28(4):487-91 PubMed

Int Arch Allergy Immunol. 1992;97(1):86-8 PubMed

Bioinformatics. 2014 Apr 1;30(7):1020-1 PubMed

PLoS One. 2015 Jul 08;10(7):e0129996 PubMed

J Invertebr Pathol. 2013 Jan;112(1):20-3 PubMed

Allergol Immunopathol (Madr). 1997 May-Jun;25(3):113-7 PubMed

Med Vet Entomol. 2017 Sep;31(3):272-280 PubMed

J Med Entomol. 2007 Jul;44(4):568-74 PubMed

Genome Biol Evol. 2014 Apr;6(4):1013-30 PubMed

Parasitol Res. 2011 Feb;108(2):497-503 PubMed

J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed

J Econ Entomol. 2016 Mar 27;109(3):1450-1457 PubMed

Oecologia. 1978 Jan;33(3):351-359 PubMed

Syst Biol. 2010 May;59(3):307-21 PubMed

FEMS Microbiol Ecol. 2017 Jan;93(1): PubMed

Allergy Asthma Clin Immunol. 2017 Jan 25;13:6 PubMed

Med Vet Entomol. 2014 Sep;28(3):287-96 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A novel Bartonella-like bacterium forms an interdependent mutualistic symbiosis with its host, the stored-product mite Tyrophagus putrescentiae

. 2024 Mar 19 ; 9 (3) : e0082923. [epub] 20240221

Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis

. 2024 Feb ; 92 (2) : 161-181. [epub] 20240116

Predicting Blomia tropicalis allergens using a multiomics approach

. 2023 Oct ; 13 (10) : e12302.

Population growth and respiration in the dust mite Dermatophagoides farinae under different temperature and humidity regimes

. 2023 Feb ; 89 (2) : 157-169. [epub] 20230201

Pesticide residue exposure provides different responses of the microbiomes of distinct cultures of the stored product pest mite Acarus siro

. 2022 Oct 19 ; 22 (1) : 252. [epub] 20221019

Interactions of the Intracellular Bacterium Cardinium with Its Host, the House Dust Mite Dermatophagoides farinae, Based on Gene Expression Data

. 2021 Dec 21 ; 6 (6) : e0091621. [epub] 20211102

Microbial Communities of Stored Product Mites: Variation by Species and Population

. 2021 Feb ; 81 (2) : 506-522. [epub] 20200827

Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae

. 2020 Mar ; 80 (3) : 363-380. [epub] 20200218

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace