Interactions of the Intracellular Bacterium Cardinium with Its Host, the House Dust Mite Dermatophagoides farinae, Based on Gene Expression Data
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-09998S
Grantová Agentura České Republiky (GAČR)
RO0418
Ministerstvo Zemědělství (Ministry of Agriculture)
19-14-00004
Russian Science Foundation (RSF)
PubMed
34726490
PubMed Central
PMC8562489
DOI
10.1128/msystems.00916-21
Knihovny.cz E-zdroje
- Klíčová slova
- Cardinium, allergens, endosymbiont, host-pathogen interactions, house dust mite, interactions, symbiont, transcriptome,
- Publikační typ
- časopisecké články MeSH
Dermatophagoides farinae is inhabited by an intracellular bacterium, Cardinium. Using correlations between host and symbiont gene expression profiles, we identified several important molecular pathways that potentially regulate/facilitate their interactions. The expression of Cardinium genes collectively explained 95% of the variation in the expression of mite genes assigned to pathways for phagocytosis, apoptosis, the MAPK signaling cascade, endocytosis, the tumor necrosis factor (TNF) pathway, the transforming growth factor beta (TGF-β) pathway, lysozyme, and the Toll/Imd pathway. In addition, expression of mite genes explained 76% of the variability in Cardinium gene expression. In particular, the expression of the Cardinium genes encoding the signaling molecules BamD, LepA, SymE, and VirD4 was either positively or negatively correlated with the expression levels of mite genes involved in endocytosis, phagocytosis, and apoptosis. We also found that Cardinium possesses a complete biosynthetic pathway for lipoic acid and may provide lipoate, but not biotin, to mites. Cardinium gene expression collectively explained 84% of the variation in expression related to several core mite metabolic pathways, and, most notably, a negative correlation was observed between bacterial gene expression and expression of mite genes assigned to the glycolysis and citric acid cycle pathways. Furthermore, we showed that Cardinium gene expression is correlated with expression levels of genes associated with terpenoid backbone biosynthesis. This pathway is important for the synthesis of pheromones, thus providing an opportunity for Cardinium to influence mite reproductive behavior to facilitate transmission of the bacterium. Overall, our study provided correlational gene expression data that can be useful for future research on mite-Cardinium interactions. IMPORTANCE The molecular mechanisms of mite-symbiont interactions and their impacts on human health are largely unknown. Astigmatid mites, such as house dust and stored-product mites, are among the most significant allergen sources worldwide. Although mites themselves are the main allergen sources, recent studies have indicated that mite-associated microbiomes may have implications for allergen production and human health. The major medically important house dust mite, D. farinae, is known to harbor a highly abundant intracellular bacterium belonging to the genus Cardinium. Expression analysis of the mite and symbiont genes can identify key mite molecular pathways that facilitate interactions with this endosymbiont and possibly shed light on how this bacterium affects mite allergen production and physiology in general.
Crop Research Institute Prague Czechia
Faculty of Biology Tyumen State University Tyumen Russia
School of Natural Sciences Bangor University Bangor United Kingdom
Zobrazit více v PubMed
Ju J-F, Bing X-L, Zhao D-S, Guo Y, Xi Z, Hoffmann AA, Zhang K-J, Huang H-J, Gong J-T, Xu Zhang X, Hong X-Y. 2020. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J 14:676–687. doi:10.1038/s41396-019-0559-9. PubMed DOI PMC
Ren F-R, Sun X, Wang T-Y, Yao Y-L, Huang Y-Z, Zhang X, Luan J-B. 2020. Biotin provisioning by horizontally transferred genes from bacteria confers animal fitness benefits. ISME J 14:2542–2553. doi:10.1038/s41396-020-0704-5. PubMed DOI PMC
Husnik F, Hypsa V, Darby A. 2020. Insect-symbiont gene expression in the midgut bacteriocytes of a blood-sucking parasite. Genome Biol Evol 12:429–442. doi:10.1093/gbe/evaa032. PubMed DOI PMC
Zhu Y-X, Song Z-R, Song Y-L, Hong X-Y. 2020. Double infection of Wolbachia and Spiroplasma alters induced plant defense and spider mite fecundity. Pest Manag Sci 76:3273–3281. doi:10.1002/ps.5886. PubMed DOI
Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, Denver DR. 2018. Comparative genomics of Wolbachia-Cardinium dual endosymbiosis in a plant-parasitic nematode. Front Microbiol 9:2482. doi:10.3389/fmicb.2018.02482. PubMed DOI PMC
Siozios S, Pilgrim J, Darby AC, Baylis M, Hurst GDD. 2019. The draft genome of strain cCpun from biting midges confirms insect Cardinium are not a monophyletic group and reveals a novel gene family expansion in a symbiont. PeerJ 7:e6448. doi:10.7717/peerj.6448. PubMed DOI PMC
Morag N, Klement E, Saroya Y, Lensky I, Gottlieb Y. 2012. Prevalence of the symbiont Cardinium in Culicoides (Diptera: Ceratopogonidae) vector species is associated with land surface temperature. FASEB J 26:4025–4034. doi:10.1096/fj.12-210419. PubMed DOI
Chang J, Masters A, Avery A, Werren JH. 2010. A divergent Cardinium found in daddy long-legs (Arachnida: Opiliones). J Invertebr Pathol 105:220–227. doi:10.1016/j.jip.2010.05.017. PubMed DOI
Duron O, Hurst GDD, Hornett EA, Josling JA, Engelstadter J. 2008. High incidence of the maternally inherited bacterium Cardinium in spiders. Mol Ecol 17:1427–1437. doi:10.1111/j.1365-294X.2008.03689.x. PubMed DOI
Chigira A, Miura K. 2005. Detection of ‘Candidatus Cardinium’ bacteria from the haploid host Brevipalpus californicus (Acari: Tenuipalpidae) and effect on the host. Exp Appl Acarol 37:107–116. doi:10.1007/s10493-005-0592-4. PubMed DOI
Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Muller A, Woyke T, Malfatti SA, Hunter MS, Horn M. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 8:e1003012. doi:10.1371/journal.pgen.1003012. PubMed DOI PMC
Colloff MJ. 2009. Dust mites. CSIRO Publishing, Collingwood, VIC, Australia.
Spieksma FTM. 1997. Domestic mites from an acarologic perspective. Allergy 52:360–368. doi:10.1111/j.1398-9995.1997.tb01012.x. PubMed DOI
OConnor BM. 1979. Evolutionary origins of astigmatid mites inhabiting stored products, p 273–278. In Rodriguez GJ (ed), Recent advances in acarology, vol 1. Academic Press, New York, NY. doi:10.1016/b978-0-12-592201-2.50038-5. DOI
WHO/IUIS Allergen Nomenclature Sub-Committee. 2020. Allergen nomenclature. Astigmata. WHO/IUIS Allergen Nomenclature Sub-Committee. http://www.allergen.org/search.php?TaxOrder=Astigmata.
Kim JY, Yi M-H, Hwang Y, Lee JY, Lee I-Y, Yong D, Yong T-S. 2018. 16S rRNA profiling of the Dermatophagoides farinae core microbiome: Enterococcus and Bartonella. Clin Exp Allergy 48:607–610. doi:10.1111/cea.13104. PubMed DOI
Lee J, Kim JY, Yi M-h, Hwang Y, Lee I-Y, Nam S-H, Yong D, Yong T-S. 2019. Comparative microbiome analysis of Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Tyrophagus putrescentiae. J Allergy Clin Immunol 143:1620–1623. doi:10.1016/j.jaci.2018.10.062. PubMed DOI
Valerio CR, Murray P, Arlian LG, Slater JE. 2005. Bacterial 16S ribosomal DNA in house dust mite cultures. J Allergy Clin Immunol 116:1296–1300. doi:10.1016/j.jaci.2005.09.046. PubMed DOI
Hubert J, Nesvorna M, Klimov P, Dowd SE, Sopko B, Erban T. 2019. Differential allergen expression in three Tyrophagus putrescentiae strains inhabited by distinct microbiome. Allergy 74:2502–2507. doi:10.1111/all.13921. PubMed DOI
Dzoro S, Mittermann I, Resch-Marat Y, Vrtala S, Nehr M, Hirschl AM, Wikberg G, Lundeberg L, Johansson C, Scheynius A, Valenta R. 2018. House dust mites as potential carriers for IgE sensitization to bacterial antigens. Allergy 73:115–124. doi:10.1111/all.13260. PubMed DOI PMC
Erban T, Hubert J. 2008. Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp Appl Acarol 44:199–212. doi:10.1007/s10493-008-9138-x. PubMed DOI
Hubert J, Nesvorna M, Kopecky J, Erban T, Klimov P. 2019. Population and culture age influence the microbiome profiles of house dust mites. Microb Ecol 77:1048–1066. doi:10.1007/s00248-018-1294-x. PubMed DOI
Klimov P, Molva V, Nesvorna M, Pekar S, Shcherbachenko E, Erban T, Hubert J. 2019. Dynamics of the microbial community during growth of the house dust mite Dermatophagoides farinae in culture. FEMS Microbiol Ecol 95:fiz153. doi:10.1093/femsec/fiz153. PubMed DOI
Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T, Kisimoto R, Yanase T, Matsumoto Y, Kageyama D, Noda H. 2009. Prevalence of Cardinium bacteria in planthoppers and spider mites and taxonomic revision of “Candidatus Cardinium hertigii” based on detection of a new Cardinium group from biting midges. Appl Environ Microbiol 75:6757–6763. doi:10.1128/AEM.01583-09. PubMed DOI PMC
Erban T, Klimov P, Molva V, Hubert J. 2020. Whole genomic sequencing and sex-dependent abundance estimation of Cardinium sp., a common and hyperabundant bacterial endosymbiont of the American house dust mite, Dermatophagoides farinae. Exp Appl Acarol 80:363–380. doi:10.1007/s10493-020-00475-5. PubMed DOI
Kitajima EW, Groot TVM, Novelli VM, Freitas-Astua J, Alberti G, de Moraes GJ. 2007. In situ observation of the Cardinium symbionts of Brevipalpus (Acari: Tenuipalpidae) by electron microscopy. Exp Appl Acarol 42:263–271. doi:10.1007/s10493-007-9090-1. PubMed DOI
Hubert J, Kopecky J, Perotti MA, Nesvorna M, Braig HR, Sagova-Mareckova M, Macovei L, Zurek L. 2012. Detection and identification of species-specific bacteria associated with synanthropic mites. Microb Ecol 63:919–928. doi:10.1007/s00248-011-9969-6. PubMed DOI
Trivedi B, Valerio C, Slater JE. 2003. Endotoxin content of standardized allergen vaccines. J Allergy Clin Immunol 111:777–783. doi:10.1067/mai.2003.1338. PubMed DOI
Valerio C, Murray P, Arlian LG, Slater JE. 2004. Endotoxin in dust mite allergen extracts. J Allergy Clin Immunol 113:S136–S137. doi:10.1016/j.jaci.2003.12.489. DOI
Valerio C, Arlian LG, Slater JE. 2009. Bacterial DNA sequences isolated from standardized dust mite extracts and wild mites. J Allergy Clin Immunol 123:S216–S216. doi:10.1016/j.jaci.2008.12.826. DOI
Kim JY, Yi M, Lee J, Lee I, Yong T. 2019. Potential immunomodulatory effect of the house dust mite microbiome. Allergy 74:LBTP1825.
Smith TE, Moran NA. 2020. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc Natl Acad Sci USA 117:2113–2121. doi:10.1073/pnas.1916748117. PubMed DOI PMC
Mann E, Stouthamer CM, Kelly SE, Dzieciol M, Hunter MS, Schmitz-Esser S. 2017. Transcriptome sequencing reveals novel candidate genes for Cardinium hertigii-caused cytoplasmic incompatibility and host-cell interaction. mSystems 2:e00141-17. doi:10.1128/mSystems.00141-17. PubMed DOI PMC
Li C, He M, Yun Y, Peng Y. 2020. Co-infection with Wolbachia and Cardinium may promote the synthesis of fat and free amino acids in a small spider, Hylyphantes graminicola. J Invertebr Pathol 169:107307. doi:10.1016/j.jip.2019.107307. PubMed DOI
Martinez-Giron R, Doganci L, Iraola V. 2009. Gregarines in Dermatophagoides spp. (Acari: Pyroglyphidae): light microscopy observation. J Med Entomol 46:367–368. doi:10.1603/033.046.0223. PubMed DOI
Martinez-Giron R. 2018. Flagellated protozoa detected in Dermatophagoides by light microscopy. Allergol Immunopathol (Madr) 46:304–306. doi:10.1016/j.aller.2017.05.008. PubMed DOI
Ribas A, Martinez-Giron R. 2006. Protozoal forms in house-dust mites and respiratory allergy. Allergy Asthma Proc 27:347–349. doi:10.2500/aap.2006.27.2878. PubMed DOI
Larsson JIR, Steiner MY, Bjornson S. 1997. Intexta acarivora gen. et sp. n. (Microspora: Chytridiopsidae)—ultrastructural study and description of a new microsporidian parasite of the forage mite Tyrophagus putrescentiae (Acari: Acaridae). Acta Protozool 36:295–304.
Andersen A. 1991. Nutritional value of yeast for Dermatophagoides pteronyssinus (Acari: Epidermoptidae) and the antigenic and allergenic composition of extracts during extended culturing. J Med Entomol 28:487–491. doi:10.1093/jmedent/28.4.487. PubMed DOI
Eraso E, Martinez J, Garcia-Ortega P, Martinez A, Palacios R, Cisterna R, Guisantes JA. 1998. Influence of mite growth culture phases on the biological standardization of allergenic extracts. J Invest Allergol Clin Immunol 8:201–206. PubMed
Eraso E, Martinez J, Martinez A, Palacios R, Guisantes JA. 1997. Quality parameters for the production of mite extracts. Allergol Immunopathol (Madr) 25:113–117. PubMed
Eraso E, Guisantes JA, Martinez J, Saenz-de-Santamaria M, Martinez A, Palacios R, Cisterna R. 1997. Kinetics of allergen expression in cultures of house dust mites, Dermatophagoides pteronyssinus and D. farinae (Acari: Pyroglyphidae). J Med Entomol 34:684–689. doi:10.1093/jmedent/34.6.684. PubMed DOI
Kremer N, Charif D, Henri H, Gavory F, Wincker P, Mavingui P, Vavre F. 2012. Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol 12:S7. doi:10.1186/1471-2180-12-S1-S7. PubMed DOI PMC
Herbert RI, McGraw EA. 2018. The nature of the immune response in novel Wolbachia-host associations. Symbiosis 74:225–236. doi:10.1007/s13199-017-0503-6. DOI
Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, Liang X, Zhang F, Raikhel AS, Xi Z. 2018. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J 12:277–288. doi:10.1038/ismej.2017.174. PubMed DOI PMC
Surachetpong W, Singh N, Cheung KW, Luckhart S. 2009. MAPK ERK signaling regulates the TGF-beta1-dependent mosquito response to Plasmodium falciparum. PLoS Pathog 5:e1000366. doi:10.1371/journal.ppat.1000366. PubMed DOI PMC
Patrnogic J, Heryanto C, Eleftherianos I. 2018. Transcriptional up-regulation of the TGF-beta intracellular signaling transducer Mad of Drosophila larvae in response to parasitic nematode infection. Innate Immun 24:349–356. doi:10.1177/1753425918790663. PubMed DOI PMC
Kawasaki T, Kawai T. 2014. Toll-like receptor signaling pathways. Front Immunol 5:461. doi:10.3389/fimmu.2014.00461. PubMed DOI PMC
Varfolomeev EE, Ashkenazi A. 2004. Tumor necrosis factor: an apoptosis JuNKie? Cell 116:491–497. doi:10.1016/S0092-8674(04)00166-7. PubMed DOI
Waldron R, McGowan J, Gordon N, McCarthy C, Mitchell EB, Doyle S, Fitzpatrick DA. 2017. Draft genome sequence of Dermatophagoides pteronyssinus, the European house dust mite. Genome Announc 5:e00789-17. doi:10.1128/genomeA.00789-17. PubMed DOI PMC
Salzet M. 2001. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol 22:285–288. doi:10.1016/S1471-4906(01)01895-6. PubMed DOI
Imler J-L, Zheng L. 2004. Biology of Toll receptors: lessons from insects and mammals. J Leukoc Biol 75:18–26. doi:10.1189/jlb.0403160. PubMed DOI
Zheng L, Zhang L, Lin H, McIntosh MT, Malacrida A. 2005. Toll-like receptors in invertebrate innate immunity. Invertebr Surviv J 2:105–113.
Coscia MR, Giacomelli S, Oreste U. 2011. Toll-like receptors: an overview from invertebrates to vertebrates. Invertebr Surviv J 8:210–226.
Zychlinsky A, Sansonetti P. 1997. Perspectives series: host/pathogen interactions. Apoptosis in bacterial pathogenesis. J Clin Invest 100:493–495. doi:10.1172/JCI119557. PubMed DOI PMC
Zhukova MV, Kiseleva E. 2012. The virulent Wolbachia strain wMelPop increases the frequency of apoptosis in the female germline cells of Drosophila melanogaster. BMC Microbiol 12:S15. doi:10.1186/1471-2180-12-S1-S15. PubMed DOI PMC
Guo Y, Hoffmann AA, Xu X-Q, Zhang X, Huang H-J, Ju J-F, Gong J-T, Hong X-Y. 2018. Wolbachia-induced apoptosis associated with increased fecundity in Laodelphax striatellus (Hemiptera: Delphacidae). Insect Mol Biol 27:796–807. doi:10.1111/imb.12518. PubMed DOI
Almeida F, Suesdek L. 2017. Effects of Wolbachia on ovarian apoptosis in Culex quinquefasciatus (Say, 1823) during the previtellogenic and vitellogenic periods. Parasit Vectors 10:398. doi:10.1186/s13071-017-2332-0. PubMed DOI PMC
Lu H-l, Chang C-c, Wilson ACC. 2016. Amino acid transporters implicated in endocytosis of Buchnera during symbiont transmission in the pea aphid. Evodevo 7:24. doi:10.1186/s13227-016-0061-7. PubMed DOI PMC
Koga R, Meng X-Y, Tsuchida T, Fukatsu T. 2012. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci USA 109:E1230–E1237. doi:10.1073/pnas.1119212109. PubMed DOI PMC
White PM, Pietri JE, Debec A, Russell S, Patel B, Sullivan W. 2017. Mechanisms of horizontal cell-to-cell transfer of Wolbachia spp. in Drosophila melanogaster. Appl Environ Microbiol 83:e03425-16. doi:10.1128/AEM.03425-16. PubMed DOI PMC
Fattouh N, Cazevieille C, Landmann F. 2019. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl Trop Dis 13:e0007218. doi:10.1371/journal.pntd.0007218. PubMed DOI PMC
Gerardo NM, Hoang KL, Stoy KS. 2020. Evolution of animal immunity in the light of beneficial symbioses. Philos Trans R Soc Lond B Biol Sci 375:20190601. doi:10.1098/rstb.2019.0601. PubMed DOI PMC
Chang Z. 2016. The function of the DegP (HtrA) protein: protease versus chaperone. IUBMB Life 68:904–907. doi:10.1002/iub.1561. PubMed DOI
Kuykendall LD, Shao JY, Hartung JS. 2012. ‘Ca. Liberibacter asiaticus’ proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interaction. PLoS One 7:e38725. doi:10.1371/journal.pone.0038725. PubMed DOI PMC
Chi X, Fan Q, Zhang Y, Liang K, Wan L, Zhou Q, Li Y. 2020. Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Res 30:1127–1135. doi:10.1038/s41422-020-00404-6. PubMed DOI PMC
Doyle MT, Bernstein HD. 2019. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat Commun 10:3358. doi:10.1038/s41467-019-11230-9. PubMed DOI PMC
Bowyer A, Baardsnes J, Ajamian E, Zhang L, Cygler M. 2011. Characterization of interactions between LPS transport proteins of the Lpt system. Biochem Biophys Res Commun 404:1093–1098. doi:10.1016/j.bbrc.2010.12.121. PubMed DOI
Ayala-Castro C, Saini A, Outten FW. 2008. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 72:110–125. doi:10.1128/MMBR.00034-07. PubMed DOI PMC
Backert S, Meyer TF. 2006. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217. doi:10.1016/j.mib.2006.02.008. PubMed DOI
Best AM, Abu Kwaik Y. 2019. Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila. Cell Microbiol 21:e12971. doi:10.1111/cmi.12971. PubMed DOI PMC
Flieger A, Frischknecht F, Hacker G, Hornef MW, Pradel G. 2018. Pathways of host cell exit by intracellular pathogens. Microb Cell 5:525–544. doi:10.15698/mic2018.12.659. PubMed DOI PMC
Hunt TP, Magasanik B. 1985. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc Natl Acad Sci USA 82:8453–8457. doi:10.1073/pnas.82.24.8453. PubMed DOI PMC
Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M, Rattei T, Horn M. 2010. The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J Bacteriol 192:1045–1057. doi:10.1128/JB.01379-09. PubMed DOI PMC
Rosas-Perez T, Rosenblueth M, Rincon-Rosales R, Mora J, Martinez-Romero E. 2014. Genome sequence of “Candidatus Walczuchella monophlebidarum” the flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Genome Biol Evol 6:714–726. doi:10.1093/gbe/evu049. PubMed DOI PMC
Kambhampati S, Alleman A, Park Y. 2013. Complete genome sequence of the endosymbiont Blattabacterium from the cockroach Nauphoeta cinerea (Blattodea: Blaberidae. ) Genomics 102:479–483. doi:10.1016/j.ygeno.2013.09.003. PubMed DOI
Toh H, Weiss BL, Perkin SAH, Yamashita A, Oshima K, Hattori M, Aksoy S. 2006. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–156. doi:10.1101/gr.4106106. PubMed DOI PMC
Showmaker KC, Walden KKO, Fields CJ, Lambert KN, Hudson ME. 2018. Genome sequence of the soybean cyst nematode (Heterodera glycines) endosymbiont “Candidatus Cardinium hertigii” strain cHgTN10. Genome Announc 6:e00624-18. doi:10.1128/genomeA.00624-18. PubMed DOI PMC
Zeng Z, Fu Y, Guo D, Wu Y, Ajayi OE, Wu Q. 2018. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genomics 19:688. doi:10.1186/s12864-018-5078-y. PubMed DOI PMC
Fronzes R, Christie PJ, Waksman G. 2009. The structural biology of type IV secretion systems. Nat Rev Microbiol 7:703–714. doi:10.1038/nrmicro2218. PubMed DOI PMC
Heddi A, Grenier A-M, Khatchadourian C, Charles H, Nardon P. 1999. Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proc Natl Acad Sci USA 96:6814–6819. doi:10.1073/pnas.96.12.6814. PubMed DOI PMC
Heddi A, Lefebvre F, Nardon P. 1993. Effect of endocytobiotic bacteria on mitochondrial enzymatic activities in the weevil Sitophilus oryzae (Coleoptera: Curculionidae). Insect Biochem Mol Biol 23:403–411. doi:10.1016/0965-1748(93)90024-M. DOI
Douglas AE. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37. doi:10.1146/annurev.ento.43.1.17. PubMed DOI
Dale C, Moran NA. 2006. Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465. doi:10.1016/j.cell.2006.07.014. PubMed DOI
Blattner FR, Plunkett G, III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462. doi:10.1126/science.277.5331.1453. PubMed DOI
Ankrah NYD, Chouaia B, Douglas AE. 2018. The cost of metabolic interactions in symbioses between insects and bacteria with reduced genomes. mBio 9:e01433-18. doi:10.1128/mBio.01433-18. PubMed DOI PMC
McCutcheon JP, Moran NA. 2010. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol Evol 2:708–718. doi:10.1093/gbe/evq055. PubMed DOI PMC
Gupta A, Nair S. 2020. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol 11:1357. doi:10.3389/fmicb.2020.01357. PubMed DOI PMC
Santos-Garcia D, Rollat-Farnier P-A, Beitia F, Zchori-Fein E, Vavre F, Mouton L, Moya A, Latorre A, Silva FJ. 2014. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci. Genome Biol Evol 6:1013–1030. doi:10.1093/gbe/evu077. PubMed DOI PMC
Wada-Katsumata A, Zurek L, Nalyanya G, Roelofs WL, Zhang A, Schal C. 2015. Gut bacteria mediate aggregation in the German cockroach. Proc Natl Acad Sci USA 112:15678–15683. doi:10.1073/pnas.1504031112. PubMed DOI PMC
Van Arnam EB, Currie CR, Clardy J. 2018. Defense contracts: molecular protection in insect-microbe symbioses. Chem Soc Rev 47:1638–1651. doi:10.1039/c7cs00340d. PubMed DOI
Becerra JX, Venable GX, Saeidi V. 2015. Wolbachia-free heteropterans do not produce defensive chemicals or alarm pheromones. J Chem Ecol 41:593–601. doi:10.1007/s10886-015-0596-4. PubMed DOI
Brody AR, Wharton GW. 1970. Dermatophagoides farinae: ultrastructure of lateral opisthosomal dermal glands. Trans Am Microsc Soc 89:499–513. doi:10.2307/3224560. PubMed DOI
Raspotnig G. 2010. Oil gland secretions in Oribatida (Acari), p 235–239. In Sabelis M, Bruin J (ed), Trends in acarology. Springer, Dordrecht, Netherlands. doi:10.1007/978-90-481-9837-5_38. DOI
Vandermoten S, Mescher MC, Francis F, Haubruge E, Verheggen FJ. 2012. Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem Mol Biol 42:155–163. doi:10.1016/j.ibmb.2011.11.008. PubMed DOI
Hojo M, Matsumoto T, Miura T. 2007. Cloning and expression of a geranylgeranyl diphosphate synthase gene: insights into the synthesis of termite defence secretion. Insect Mol Biol 16:121–131. doi:10.1111/j.1365-2583.2007.00709.x. PubMed DOI
Steidle JLM, Barcari E, Hradecky M, Trefz S, Tolasch T, Gantert C, Schulz S. 2014. Pheromonal communication in the European house dust mite, Dermatophagoides pteronyssinus. Insects 5:639–650. doi:10.3390/insects5030639. PubMed DOI PMC
Tatami K, Mori N, Nishida R, Kuwahara Y. 2001. 2-Hydroxy-6-methylbenzaldehyde: the female sex pheromone of the house dust mite Dermatophagoides farinae (Astigmata: Pyroglyphidae). Med Entomol Zool 52:279–286. doi:10.7601/mez.52.279. DOI
Kuwahara Y, Leal WS, Suzuki T. 1990. Pheromone study on astigmatid mites XXVI. Comparison of volatile components between Dermatophagoides farinae and D. pteronyssinus (Astigmata, Pyroglyphidae). Med Entomol Zool 41:23–28. doi:10.7601/mez.41.23. DOI
Konakandla B, Park Y, Margolies D. 2006. Whole genome amplification of Chelex-extracted DNA from a single mite: a method for studying genetics of the predatory mite Phytoseiulus persimilis. Exp Appl Acarol 40:241–247. doi:10.1007/s10493-006-9042-1. PubMed DOI
Hubert J, Erban T, Kopecky J, Sopko B, Nesvorna M, Lichovnikova M, Schicht S, Strube C, Sparagano O. 2017. Comparison of microbiomes between red poultry mite populations (Dermanyssus gallinae): predominance of Bartonella-like bacteria. Microb Ecol 74:947–960. doi:10.1007/s00248-017-0993-z. PubMed DOI
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153. PubMed DOI
Cuccuru G, Orsini M, Pinna A, Sbardellati A, Soranzo N, Travaglione A, Uva P, Zanetti G, Fotia G. 2014. Orione, a web-based framework for NGS analysis in microbiology. Bioinformatics 30:1928–1929. doi:10.1093/bioinformatics/btu135. PubMed DOI PMC
Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Gruning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:W537–W544. doi:10.1093/nar/gky379. PubMed DOI PMC
Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Beeman RW, Brown SJ, Bucher G, Friedrich M, Grimmelikhuijzen CJ, Klingler M, Lorenzen M, Richards S, Roth S, Schroder R, Tautz D, Zdobnov EM, Muzny D, Gibbs RA, Weinstock GM, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, Davis C, Chacko J, Dinh H, Dugan-Rocha S, Fowler G, Garner TT, Garnes J, Gnirke A, Hawes A, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Jackson L, Kovar C, Kowis A, Lee S, Tribolium Genome Sequencing Consortium , et al.. 2008. The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955. doi:10.1038/nature06784. PubMed DOI
Rider SD, Jr, Morgan MS, Arlian LG. 2015. Draft genome of the scabies mite. Parasit Vectors 8:585. doi:10.1186/s13071-015-1198-2. PubMed DOI PMC
Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Ngoc PC, Ortego F, Hernandez-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhaes S, Nagy L, Pace RM, Djuranovic S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, et al.. 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492. doi:10.1038/nature10640. PubMed DOI PMC
Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostincar C, Gunde-Cimerman N. 2013. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:617. doi:10.1186/1471-2164-14-617. PubMed DOI PMC
Muzzey D, Schwartz K, Weissman JS, Sherlock G. 2013. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol 14:R97. doi:10.1186/gb-2013-14-9-r97. PubMed DOI PMC
Stromsten NJ, Benson SD, Burnett RM, Bamford DH, Bamford JKH. 2003. The Bacillus thuringiensis linear double-stranded DNA phage Bam35, which is highly similar to the Bacillus cereus linear plasmid pBClin15, has a prophage state. J Bacteriol 185:6985–6989. doi:10.1128/JB.185.23.6985-6989.2003. PubMed DOI PMC
Segers FHID, Kesnerova L, Kosoy M, Engel P. 2017. Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME J 11:1232–1244. doi:10.1038/ismej.2016.201. PubMed DOI PMC
Kosoy M, Morway C, Sheff KW, Bai Y, Colborn J, Chalcraft L, Dowell SF, Peruski LF, Maloney SA, Baggett H, Sutthirattana S, Sidhirat A, Maruyama S, Kabeya H, Chomel BB, Kasten R, Popov V, Robinson J, Kruglov A, Petersen LR. 2008. Bartonella tamiae sp. nov., a newly recognized pathogen isolated from three human patients from Thailand. J Clin Microbiol 46:772–775. doi:10.1128/JCM.02120-07. PubMed DOI PMC
Tokuda G, Elbourne LDH, Kinjo Y, Saitoh S, Sabree Z, Hojo M, Yamada A, Hayashi Y, Shigenobu S, Bandi C, Paulsen IT, Watanabe H, Lo N. 2013. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biol Lett 9:20121153. doi:10.1098/rsbl.2012.1153. PubMed DOI PMC
Koga R, Moran NA. 2014. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J 8:1237–1246. doi:10.1038/ismej.2013.235. PubMed DOI PMC
Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37. doi:10.1093/nar/gkr367. PubMed DOI PMC
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204. doi:10.1093/nar/gky448. PubMed DOI PMC
Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27. PubMed DOI PMC
Hammer O, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:4. https://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13. PubMed DOI PMC
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H. 2019. Package ‘vegan’: community ecology package, version 2.5–6. CRAN—The Comprehensive R Archive Network. https://cran.r-project.org/web/packages/vegan/vegan.pdf.
Addinsoft. 2020. XLSTAT. Addinsoft, New York, NY. https://www.xlstat.com.
jokergoo. 2020. Visualize big correlation matrix. A Bioinformagician. http://web.archive.org/web/20200424071358/http://jokergoo.github.io/blog/html/large_matrix_circular.html.
Zeleny D. 2017. Analysis of community ecology data in R: constrained ordination. https://www.davidzeleny.net/anadat-r/doku.php/en:forward_sel.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. doi:10.1101/gr.1239303. PubMed DOI PMC
Basu S, Duren W, Evans CR, Burant CF, Michailidis G, Karnovsky A. 2017. Sparse network modeling and Metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics 33:1545–1553. doi:10.1093/bioinformatics/btx012. PubMed DOI PMC
Genc B, Dogrusoz U. 2016. An algorithm for automated layout of process description maps drawn in SBGN. Bioinformatics 32:77–84. doi:10.1093/bioinformatics/btv516. PubMed DOI PMC