Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/J017698/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
32068830
PubMed Central
PMC7197495
DOI
10.1093/gbe/evaa032
PII: 5739960
Knihovny.cz E-zdroje
- Klíčová slova
- B-vitamins, RNA-Seq, immunity, interactions, parasites, symbiotic bacteria, zinc,
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biologická evoluce MeSH
- Diptera genetika mikrobiologie MeSH
- DNA bakterií analýza genetika MeSH
- fylogeneze MeSH
- hmyzí geny * MeSH
- infekce přenášené vektorem MeSH
- interakce hostitele a patogenu MeSH
- ovce parazitologie MeSH
- střevní mikroflóra * MeSH
- symbióza MeSH
- transkriptom MeSH
- trávicí systém mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular level for up to several hundred million years. Exact mechanisms driving host-symbiont interactions are only understood for a handful of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont, Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut (foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-dependent proteases when acquiring amino acids, and for different immunity mechanisms controlling the symbionts than in closely related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Integrative Biology University of Liverpool United Kingdom
Zobrazit více v PubMed
Aksoy S. 1995. Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin. Insect Mol Biol. 4(1):23–29. PubMed
Anselme C, Vallier A, Balmand S, Fauvarque MO, Heddi A.. 2006. Host PGRP gene expression and bacterial release in endosymbiosis of the weevil Sitophilus zeamais. Appl Environ Microbiol. 72(10):6766–6772. PubMed PMC
Anselme C, et al. 2008. Identification of the Weevil immune genes and their expression in the bacteriome tissue. BMC Biol. 6(1):43. PubMed PMC
Arrese EL, Soulages JL.. 2010. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 55:207–225. PubMed PMC
Baumann P, Baumann L, Clark MA.. 1996. Levels of Buchnera aphidicola chaperonin GroEL during growth of the aphid Schizaphis graminum. Curr Microbiol. 32(5):279–285.
Belda E, Silva FJ, Pereto J, Moya A.. 2012. Metabolic networks of Sodalis glossinidius: a systems biology approach to reductive evolution. PLoS One 7(1):e30652. PubMed PMC
Bing X, et al. 2017. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proc R Soc B. 284(1857):20170360. PubMed PMC
Boyd BM, et al. 2016. Two bacterial genera, Sodalis and Rickettsia, associated with the seal louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl Environ Microbiol. 82(11):3185–3197. PubMed PMC
Bradford PA. 2001. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 14(4):933–951. PubMed PMC
Brucker RM, Funkhouser LJ, Setia S, Pauly R, Bordenstein SR.. 2012. Insect Innate Immunity Database (IIID): an annotation tool for identifying immune genes in insect genomes. PLoS One 7(9):e45125. PubMed PMC
Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA.. 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469. PubMed PMC
Charles H, et al. 2011. A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: reduced transporter sets and variable membrane organisations. PLoS One 6(12):e29096. PubMed PMC
Chrudimský T, Husník F, Novákova E, Hypša V.. 2012. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius. PLoS One 7(7):e40354. PubMed PMC
Coleman JE. 1992. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem. 61(1):897–946. PubMed
Coleman JE. 1998. Zinc enzymes. Curr Opin Chem Biol. 2(2):222–234. PubMed
Crawford JM, Kontnik R, Clardy J.. 2010. Regulating alternative lifestyles in entomopathogenic bacteria. Curr Biol. 20(1):69–74. PubMed PMC
Douglas AE. 2016. How multi-partner endosymbioses function. Nat Rev Microbiol. 14(12):731–743. PubMed
Drawz SM, Bonomo RA.. 2010. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 23(1):160–201. PubMed PMC
Duncan RP, et al. 2014. Dynamic recruitment of amino acid transporters to the insect/symbiont interface. Mol Ecol. 23(6):1608–1623. PubMed
Eichler S, Schaub GA.. 2002. Development of symbionts in triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol. 100(1):17–27. PubMed
Fan Y, Thompson JW, Dubois LG, Moseley MA, Wernegreen JJ.. 2013. Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high abundance of chaperonins and biosynthetic enzymes. J Proteome Res. 12(2):704–718. PubMed PMC
Fischer JD, Holliday GL, Thornton JM.. 2010. The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics 26(19):2496–2497. PubMed PMC
Fukatsu T, Ishikawa H.. 1993. Occurrence of chaperonin 60 and chaperonin 10 in primary and secondary bacterial symbionts of aphids: implications for the evolution of an endosymbiotic system in aphids. J Mol Evol. 36(6):568–577. PubMed
Gerardo NM, Wilson AC.. 2011. The power of paired genomes. Mol Ecol. 20(10):2038–2040. PubMed
Gerardo NM, et al. 2010. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol. 11(2):R21. PubMed PMC
Gonzalez-Domenech CM, et al. 2012. Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches. BMC Microbiol. 12:S5. PubMed PMC
Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29(7):644–652. PubMed PMC
Gruber-Vodicka HR, Seah BK, Pruesse E.. 2019. phyloFlash—rapid SSU rRNA profiling and targeted assembly from metagenomes. bioRxiv 521922. PubMed PMC
Hansen AK, Moran NA.. 2011. Aphid genome expression reveals host–symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA. 108(7):2849–2854. PubMed PMC
Hansen AK, Moran NA.. 2014. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 23(6):1473–1496. PubMed
Husnik F. 2018. Host–symbiont–pathogen interactions in blood-feeding parasites: nutrition, immune cross-talk and gene exchange. Parasitology 145(10):1294–1303. PubMed
Husnik F, McCutcheon JP.. 2016. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci USA. 113(37):E5416–E5424. PubMed PMC
Husnik F, et al. 2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153(7):1567–1578. PubMed
International Aphid Genomics Consortium. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8:e1000313. PubMed PMC
Karp PD, et al. 2010. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform. 11(1):40–79. PubMed PMC
Kirkness EF, et al. 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA. 107(27):12168–12173. PubMed PMC
Laetsch DR, Blaxter ML.. 2017. BlobTools: interrogation of genome assemblies. F1000Research 6:1287.
Langmead B, Salzberg SL.. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9(4):357–359. PubMed PMC
Lehane MJ. 1997. Peritrophic matrix structure and function. Annu Rev Entomol. 42(1):525–550. PubMed
Li B, Dewey CN.. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323. PubMed PMC
Login FH, et al. 2011. Antimicrobial peptides keep insect endosymbionts under control. Science (80-) 334(6054):362–365. PubMed
Lu Hl, Chang Cc, Wilson ACC.. 2016. Amino acid transporters implicated in endocytosis of Buchnera during symbiont transmission in the pea aphid. Evodevo 7:24. PubMed PMC
Luan J-B, et al. 2015. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol. 7(9):2635–2647. PubMed PMC
Macdonald SJ, Lin GG, Russell CW, Thomas GH, Douglas AE.. 2012. The central role of the host cell in symbiotic nitrogen metabolism. Proc R Soc B. 279(1740):2965–2973. PubMed PMC
MacDonald SJ, Thomas GH, Douglas AE.. 2011. Genetic and metabolic determinants of nutritional phenotype in an insect-bacterial symbiosis. Mol Ecol. 20(10):2073–2084. PubMed
Mantilla BS, et al. 2017. Proline metabolism is essential for Trypanosoma brucei brucei survival in the tsetse vector. PLoS Pathog. 13(1):e1006158–29. PubMed PMC
Manzano-Marín A, Simon J-C, Latorre A.. 2016. Reinventing the wheel and making it round again: evolutionary convergence in Buchnera—Serratia symbiotic consortia between the distantly related Lachninae Aphids Tuberolachnus salignus and Cinara cedri. Genome Biol Evol. 8(5):1440–1458. PubMed PMC
Mao M, Yang X, Bennett GM.. 2018. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc Natl Acad Sci USA. 115(50):E11691–E11700. PubMed PMC
McCall KA, Huang C, Fierke CA.. 2000. Function and mechanism of zinc metalloenzymes. J Nutr. 130(5):1437S–1446S. PubMed
McClure R, et al. 2013. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41(14):e140. PubMed PMC
McCutcheon J, McDonald B, Moran N.. 2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 106(36):15394–15399. PubMed PMC
McCutcheon JP, Moran NA.. 2012. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 10(1):13–26. PubMed
Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S.. 2014. Obligate symbiont-generated vitamin B6 is critical to maintain proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol. 80(18):5844–5853. PubMed PMC
Moran NA, Bennett GM.. 2014. The tiniest tiny genomes. Annu Rev Microbiol. 68(1):195–215. PubMed
Moran NA, McCutcheon JP, Nakabachi A.. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 42(1):165–190. PubMed
Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima S.. 2014. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr Biol. 24(14):R640–641. PubMed
Nakabachi A, Ishikawa H.. 1999. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol. 45(1):1–6. PubMed
Nakabachi A, et al. 2005. Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc Natl Acad Sci USA. 102(15):5477–5482. PubMed PMC
Nikoh N, et al. 2014. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 111(28):10257–10262. PubMed PMC
Nováková E, Husník F, Šochová E, Hypša V.. 2015. Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol. 81(18):6189–6199. PubMed PMC
Nováková E, Hypša V, Nguyen P, Husník F, Darby AC.. 2016. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Stand Genomic Sci. 11: 72. PubMed PMC
Oakeson KF, et al. 2014. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol. 6(1):76–93. PubMed PMC
Pais R, Lohs C, Wu Y, Wang J, Aksoy S.. 2008. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl Environ Microbiol. 74(19):5965–5974. PubMed PMC
Poliakov A, et al. 2011. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis. Mol Cell Proteomics. 10(6):M110.007039. PubMed PMC
Price DRG, et al. 2014. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proc Natl Acad Sci USA. 111(1):320–325. PubMed PMC
Ratzka C, Gross R, Feldhaar H.. 2013. Gene expression analysis of the endosymbiont-bearing midgut tissue during ontogeny of the carpenter ant Camponotus floridanus. J Insect Physiol. 59(6):611–623. PubMed
Říhová J, Novaková E, Husník F, Hypša V.. 2017. Legionella becoming a mutualist: adaptive processes shaping the genome of symbiont in the louse Polyplax serrata. Genome Biol Evol. 9(11):2946–2957. PubMed PMC
Rio RV, et al. 2012. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: Glossinidae) obligate symbiont Wigglesworthia. MBio 3(1):1–13. PubMed PMC
Robinson MD, McCarthy DJ, Smyth GK.. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. PubMed PMC
Roje S. 2007. Vitamin B biosynthesis in plants. Phytochemistry 68(14):1904–1921. PubMed
Shigenobu S, Stern DL.. 2013. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont. Proc R Soc B. 280(1750):20121952. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM.. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212. PubMed
Sloan DB, et al. 2014. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol. 31(4):857–871. PubMed PMC
Small RW. 2005. A review of Melophagus ovinus (L.), the sheep ked. Vet Parasitol. 130(1–2):141–155. PubMed
Strickler-Dinglasan PM, Guz N, Attardo G, Aksoy S.. 2006. Molecular characterization of iron binding proteins from Glossina morsitans morsitans (Diptera: Glossinidae). Insect Biochem Mol Biol. 36(12):921–933. PubMed PMC
Thomas GH, et al. 2009. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol. 3:24. PubMed PMC
Van Leuven JT, Meister RC, Simon C, McCutcheon JP.. 2014. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158:1270–1280. PubMed
Vigneron A, et al. 2014. Insects recycle endosymbionts when the benefit is over. Curr Biol. 24(19):2267–2273. PubMed
Wang JW, Aksoy S.. 2012. PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse’s offspring. Proc Natl Acad Sci USA. 109(26):10552–10557. PubMed PMC
Wang JW, Wu YN, Yang GX, Aksoy S.. 2009. Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proc Natl Acad Sci USA. 106(29):12133–12138. PubMed PMC
Waterhouse DF. 1953. The occurrence and significance of the peritrophic membrane, with special reference to adult lepidoptera and diptera. Aust J Zool. 1(3):299–318.
Weiss BL, Wang J, Aksoy S.. 2011. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol. 9(5):e1000619. PubMed PMC
Yan J, Cheng Q, Li CB, Aksoy S.. 2002. Molecular characterization of three gut genes from Glossina morsitans morsitans: cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. Insect Mol Biol. 11(1):57–65. PubMed
Yoshiga T, et al. 2001. Drosophila melanogaster transferrin—Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection. Eur J Biochem. 260(2):414–420. PubMed
figshare
10.6084/m9.figshare.6146777