Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius

. 2012 ; 7 (7) : e40354. [epub] 20120717

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid22815743

Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best known member of this group, a secondary symbiont of tsetse flies Sodalis glossinidius, has become one of the most important models in investigating establishment and evolution of insect-bacteria symbiosis. It represents a bacterium in the early/intermediate state of the transition towards symbiosis, which allows for exploring such interesting topics as: usage of secretory systems for entering the host cell, tempo of the genome modification, and metabolic interaction with a coexisting primary symbiont. In this study, we describe a new Sodalis species which could provide a useful comparative model to the tsetse symbiont. It lives in association with Melophagus ovinus, an insect related to tsetse flies, and resembles S. glossinidius in several important traits. Similar to S. glossinidius, it cohabits the host with another symbiotic bacterium, the bacteriome-harbored primary symbiont of the genus Arsenophonus. As a typical secondary symbiont, Candidatus Sodalis melophagi infects various host tissues, including bacteriome. We provide basic morphological and molecular characteristics of the symbiont and show that these traits also correspond to the early/intermediate state of the evolution towards symbiosis. Particularly, we demonstrate the ability of the bacterium to live in insect cell culture as well as in cell-free medium. We also provide basic characteristics of type three secretion system and using three reference sequences (16 S rDNA, groEL and spaPQR region) we show that the bacterium branched within the genus Sodalis, but originated independently of the two previously described symbionts of hippoboscoids. We propose the name Candidatus Sodalis melophagi for this new bacterium.

Zobrazit více v PubMed

Snyder AK, McMillen CM, Wallenhorst P, Rio RV. The phylogeny of Sodalis-like symbionts as reconstructed using surface-encoding loci. FEMS Microbiol Lett. 2011;317:143–151. PubMed PMC

Heddi A, Charles H, Khatchadourian C, Bonnot G, Nardon P. Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G + C content of an endocytobiotic DNA. J Mol Evol. 1998;47:52–61. PubMed

Dale C, Maudlin I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 49 Pt. 1999;1:267–275. PubMed

Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY, et al. “Candidatus Curculioniphilus buchneri,” a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio. Appl Environ Microbiol. 2010;76:275–282. PubMed PMC

Toju H, Fukatsu T. Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol. 2011;20:853–868. PubMed

Conord C, Despres L, Vallier A, Balmand S, Miquel C, et al. Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: additional evidence of symbiont replacement in the dryophthoridae family. Mol Biol Evol. 2008;25:859–868. PubMed

Campbell BC, Bragg TS, Turner CE. Phylogeny of symbiotic bacteria of four weevilspecies (coleoptera: curculionidae) based on analysis of 16 S ribosomal DNA. Insect Biochem Mol Biol. 1992;22:415–421.

Fukatsu T, Koga R, Smith WA, Tanaka K, Nikoh N, et al. Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Appl Environ Microbiol. 2007;73:6660–6668. PubMed PMC

Nováková E, Hypša V. A new Sodalis lineage from bloodsucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont Sodalis glossinidius. FEMS Microbiol Lett. 2007;269:131–135. PubMed

Sameshima S, Hasegawa E, Kitade O, Minaka N, Matsumoto T. Phylogenetic comparison of endosymbionts with their host ants based on molecular evidence. Zoolog Sci. 1999;16:993–1000.

Gruwell ME, Hardy NB, Gullan PJ, Dittmar K. Evolutionary relationships among primary endosymbionts of the mealybug subfamily phenacoccinae (hemiptera: Coccoidea: Pseudococcidae). Appl Environ Microbiol. 2010;76:7521–7525. PubMed PMC

Burke GR, Normark BB, Favret C, Moran NA. Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol. 2009;75:5328–5335. PubMed PMC

Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, et al. Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug Cantao ocellatus. Appl Environ Microbiol. 2010;76:3486–3494. PubMed PMC

Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, et al. Bacterial symbionts of the giant jewel stinkbug Eucorysses grandis (Hemiptera: Scutelleridae). Zoolog Sci. 2011;28:169–174. PubMed

Grünwald S, Pilhofer M, Höll W. Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles (Coleoptera: Cerambycidae). Syst Appl Microbiol. 2010;33:25–34. PubMed

Thao ML, Clark MA, Baumann L, Brennan EB, Moran NA, et al. Secondary endosymbionts of psyllids have been acquired multiple times. Curr Microbiol. 2000;41:300–304. PubMed

Thao ML, Gullan PJ, Baumann P. Secondary (γ-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol. 2002;68:3190–3197. PubMed PMC

Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143. PubMed PMC

Dale C, Welburn SC. The endosymbionts of tsetse flies: manipulating host-parasite interactions. Int J Parasitol. 2001;31:628–631. PubMed

Pontes MH, Dale C. Lambda red-mediated genetic modification of the insect endosymbiont Sodalis glossinidius. Appl Environ Microbiol. 2011;77:1918–1920. PubMed PMC

Dale C, Young SA, Haydon DT, Welburn SC. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc Natl Acad Sci U S A. 2001;98:1883–1888. PubMed PMC

Cheng Q, Aksoy S. Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol. 1999;8:125–132. PubMed

Runyen-Janecky LJ, Brown AN, Ott B, Tujuba HG, Rio RV. Regulation of high-affinity iron acquisition homologues in the tsetse fly symbiont Sodalis glossinidius. J Bacteriol. 2010;192:3780–3787. PubMed PMC

Pontes MH, Babst M, Lochhead R, Oakeson K, Smith K, et al. Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. PLoS One. 2008;3:e3541. PubMed PMC

Matthew CZ, Darby AC, Young SA, Hume LH, Welburn SC. The rapid isolation and growth dynamics of the tsetse symbiont Sodalis glossinidius. FEMS Microbiol Lett. 2005;248:69–74. PubMed

Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 2006;16:149–156. PubMed PMC

Belda E, Moya A, Bentley S, Silva FJ. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics. 2010;11:449. PubMed PMC

Aksoy S. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. Int J Syst Bacteriol. 1995;45:848–851. PubMed

Cheng Q, Ruel TD, Zhou W, Moloo SK, Majiwa P, et al. Tissue distribution and prevalence of Wolbachia infections in tsetse flies, Glossina spp. Med Vet Entomol. 2000;14:44–55. PubMed

O’Neill SL, Gooding RH, Aksoy S. Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med Vet Entomol. 1993;7:377–383. PubMed

Lindh JM, Lehane MJ. The tsetse fly Glossina fuscipes fuscipes (Diptera: Glossina) harbours a surprising diversity of bacteria other than symbionts. Antonie Van Leeuwenhoek. 2011;99:711–720. PubMed

Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 2006;4:e188. PubMed PMC

McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A. 2007;104:19392–19397. PubMed PMC

Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet. 2002;32:402–407. PubMed

Snyder AK, Deberry JW, Runyen-Janecky L, Rio RV. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc Biol Sci. 2010;277:2389–2397. PubMed PMC

Rio RV, Symula RE, Wang J, Lohs C, Wu YN, et al. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: glossinidae) obligate symbiont Wigglesworthia. MBio 3. 2012. PubMed PMC

Buchner P. Endosymbiosis of animals with plant microorganisms. New York: Interscience Publishers. 1965.

Krieg NR, Hoffman PS. Microaerophily and oxygen toxicity. Annu Rev Microbiol. 1986;40:107–130. PubMed

Coombes BK. Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria. Trends Microbiol. 2009;17:89–94. PubMed

Dale C, Jones T, Pontes M. Degenerative evolution and functional diversification of type-III secretion systems in the insect endosymbiont Sodalis glossinidius. Mol Biol Evol. 2005;22:758–766. PubMed

Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998;62:379–433. PubMed PMC

Dale C, Plague GR, Wang B, Ochman H, Moran NA. Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc Natl Acad Sci U S A. 2002;99:12397–12402. PubMed PMC

Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci U S A. 2005;102:16919–16926. PubMed PMC

Cirillo DM, Valdivia RH, Monack DM, Falkow S. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol. 1998;30:175–188. PubMed

Verbarg S, Fruhling A, Cousin S, Brambilla E, Gronow S, et al. Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae. Curr Microbiol. 2008;56:603–608. PubMed

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed

Pontes MH, Smith KL, De Vooght L, Van Den Abbeele J, Dale C. Attenuation of the sensing capabilities of PhoQ in transition to obligate insect-bacterial association. PLoS Genet. 2011;7:e1002349. PubMed PMC

Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999. pp. 95–98. PubMed

Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. PubMed PMC

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–552. PubMed

Guindon S, Delsuc F, Dufayard JF, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol. 2009;537:113–137. PubMed

Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. PubMed

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. PubMed

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. PubMed

Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics. 2008;24:581–583. PubMed

Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21:2104–2105. PubMed

Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–1256. PubMed

Mitsuhashi JM, Maramorosch K. Leafhopper tissue culture: embryonic, nymphal and imaginal tissue from aseptic insects. Contribution from Boyce Thompson Institute. 1964. pp. 435–460.

Dale C, Beeton M, Harbison C, Jones T, Pontes M. Isolation, pure culture, and characterization of “Candidatus Arsenophonus arthropodicus,” an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Appl Environ Microbiol. 2006;72:2997–3004. PubMed PMC

Igarashi A. Isolation of a Singh’s Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol. 1978;40:531–544. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...