Comparison of CDC and sequence-based molecular typing of syphilis treponemes: tpr and arp loci are variable in multiple samples from the same patient

. 2013 Jul 30 ; 13 () : 178. [epub] 20130730

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23898829

BACKGROUND: Molecular typing of syphilis-causing strains provides important epidemiologic data. We tested whether identified molecular subtypes were identical in PCR-positive parallel samples taken from the same patient at a same time. We also tested whether subtype prevalence differs in skin and blood samples. RESULTS: Eighteen syphilis positive patients (showing both positive serology and PCR), with two PCR-typeable parallel samples taken at the same time, were tested with both CDC (Centers for Disease Control and Prevention) and sequence-based typing. Samples taken from 9 of 18 patients were completely typed for TP0136, TP0548, 23S rDNA, arp, and tpr loci. The CDC typing revealed 11 distinct genotypes while the sequence-based typing identified 6 genotypes. When results from molecular typing of TP0136, TP0548, and 23S rDNA were analyzed in samples taken from the same patient, no discrepancies in the identified genotypes were found; however, there were discrepancies in 11 of 18 patients (61.1%) samples relative to the arp and tpr loci. In addition to the above described typing, 127 PCR-positive swabs and whole blood samples were tested for individual genotype frequencies. The repetition number for the arp gene was lower in whole blood (WB) samples compared to swab samples. Similarly, the most common tpr RFLP type "d" was found to have lower occurrence rates in WB samples while type "e" had an increased occurrence in these samples. CONCLUSIONS: Differences in the CDC subtypes identified in parallel samples indicated genetic instability of the arp and tpr loci and suggested limited applicability of the CDC typing system in epidemiological studies. Differences in treponemal genotypes detected in whole blood and swab samples suggested important differences between both compartments and/or differences in adherence of treponeme variants to human cells.

Zobrazit více v PubMed

Hay PE, Clarke JR, Strugnell RA, Taylor-Robinson D, Goldmeier D. Use of the polymerase chain reaction to detect DNA sequences specific to pathogenic treponemes in cerebrospinal fluid. FEMS Microbiol Lett. 1990;56:233–238. PubMed

Burstain JM, Grimprel E, Lukehart SA, Norgard MV, Radolf JD. Sensitive detection of Treponema pallidum by using the polymerase chain reaction. J Clin Microbiol. 1991;29:62–69. PubMed PMC

Noordhoek GT, Wolters EC, De Jonge ME, Van Embden JD. Detection by polymerase chain reaction of Treponema pallidum DNA in cerebrospinal fluid from neurosyphilis patients before and after antibiotic treatment. J Clin Microbiol. 1991;29:1976–1984. PubMed PMC

Centurion-Lara A, Castro C, Shaffer JM, Van Voorhis WC, Marra CM, Lukehart SA. Detection of Treponema pallidum by a sensitive reverse transcriptase PCR. J Clin Microbiol. 1997;35:1348–1352. PubMed PMC

Liu H, Rodes B, Chen CY, Steiner B. New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. 2001;39:1941–1946. doi: 10.1128/JCM.39.5.1941-1946.2001. PubMed DOI PMC

Koek AG, Bruisten SM, Dierdorp M, Van Dam AP, Templeton K. Specific and sensitive diagnosis of syphilis using a real-time PCR for Treponema pallidum. Clin Microbiol Infect. 2006;12(12):1233–1236. doi: 10.1111/j.1469-0691.2006.01566.x. PubMed DOI

Rajan MS, Pantelidis P, Tong CY, French GL, Graham EM, Stanford MR. Diagnosis of Treponema pallidum in vitreous samples using real time polymerase chain reaction. Br J Ophthalmol. 2006;90:647–648. doi: 10.1136/bjo.2005.083196. PubMed DOI PMC

Šmajs D, Matějková P, Woznicová V, Vališová Z. Diagnosis of syphilis by polymerase chain reaction and molecular typing of Treponema pallidum. Rev Med Microbiol. 2006;17:93–99. doi: 10.1097/MRM.0b013e3280ad4150. DOI

Heymans R, van der Helm JJ, De Vries HJ, Fennema HS, Coutinho RA, Bruisten SM. Clinical value of Treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol. 2010;48(2):497–502. doi: 10.1128/JCM.00720-09. PubMed DOI PMC

Orle KA, Gates CA, Martin DH, Body BA, Weiss JB. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. J Clin Microbiol. 1996;34:49–54. PubMed PMC

Scott LJ, Gunson RN, Carman WF, Winter AJ. A new multiplex real-time PCR test for HSV1/2 and syphilis: an evaluation of its impact in the laboratory and clinical setting. Sex Transm Infect. 2010;86(7):537–539. doi: 10.1136/sti.2009.040451. PubMed DOI

Heymans R, Kolader ME, van der Helm JJ, Coutinho RA, Bruisten SM. TprK gene regions are not suitable for epidemiological syphilis typing. Eur J Clin Microbiol Infect Dis. 2009;28(7):875–878. doi: 10.1007/s10096-009-0717-5. PubMed DOI

Flasarová M, Šmajs D, Matějková P, Woznicová V, Heroldová-Dvořáková M, Votava M. Molecular detection and subtyping of Treponema pallidum subsp. pallidum in clinical speciments. Epidemiol Mikrobiol Imunol. 2006;55(3):105–111. PubMed

Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, Behets F, Rompalo A, Klausner JD, Yin YP, Mulcahy F, Golden MR, Centurion-Lara A, Lukehart SA. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis. 2010;202(9):1380–1388. doi: 10.1086/656533. PubMed DOI PMC

Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, Steiner B, Morse SA. Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis. 1998;25(8):408–414. doi: 10.1097/00007435-199809000-00004. PubMed DOI

Katz KA, Pillay A, Ahrens K, Kohn RP, Hermanstyne K, Bernstein KT, Ballard RC, Klausner JD. Molecular epidemiology of syphilis-San Francisco, 2004–2007. Sex Transm Dis. 2010;37:660–663. PubMed

Flasarová M, Pospíšilová P, Mikalová L, Vališová Z, Dastychová E, Strnadel R, Kuklová I, Woznicová V, Zákoucká H, Šmajs D. Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm Venereol. 2012;92:669–674. doi: 10.2340/00015555-1335. PubMed DOI

Sutton MY, Liu H, Steiner B, Pillay A, Mickey T, Finelli L, Morse S, Markowitz LE, St Louis ME. Molecular subtyping of Treponema pallidum in an Arizona County with increasing syphilis morbidity: use of specimens from ulcers and blood. J Infect Dis. 2001;183(11):1601–1606. doi: 10.1086/320698. PubMed DOI

Pillay A, Liu H, Ebrahim S, Chen CY, Lai W, Fehler G, Ballard RC, Steiner B, Sturm AW, Morse SA. Molecular typing of Treponema pallidum in South Africa: cross-sectional study. J Clin Microbiol. 2002;40(1):256–258. doi: 10.1128/JCM.40.1.256-258.2002. PubMed DOI PMC

Pope V, Fox K, Liu H, Marfin AA, Leone P, Seña AC, Chapin J, Fears MB, Markowitz L. Molecular subtyping of Treponema pallidum from North and South Carolina. J Clin Microbiol. 2005;43(8):3743–3746. doi: 10.1128/JCM.43.8.3743-3746.2005. PubMed DOI PMC

Molepo J, Pillay A, Weber B, Morse SA, Hoosen AA. Molecular typing of Treponema pallidum strains from patients with neurosyphilis in Pretoria, South Africa. Sex Transm Infect. 2007;83(3):189–192. PubMed PMC

Florindo C, Reigado V, Gomes JP, Azevedo J, Santo I, Borrego MJ. Molecular typing of Treponema pallidum clinical strains from Lisbon, Portugal. J Clin Microbiol. 2008;46(11):3802–3803. doi: 10.1128/JCM.00128-08. PubMed DOI PMC

Castro R, Prieto E, Aguas MJ, Manata MJ, Botas J, Pereira FM. Molecular subtyping of Treponema pallidum subsp. pallidum in Lisbon, Portugal. J Clin Microbiol. 2009;47:2510–2512. doi: 10.1128/JCM.00287-08. PubMed DOI PMC

Cole MJ, Chisholm SA, Palmer HM, Wallace LA, Ison CA. Molecular epidemiology of syphilis in Scotland. Sex Transm Infect. 2009;85:447–451. doi: 10.1136/sti.2009.036301. PubMed DOI

Martin IE, Gu W, Yang Y, Tsang RSW. Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China. Clin Infect Dis. 2009;49(4):515–521. doi: 10.1086/600878. PubMed DOI

Cruz AR, Pillay A, Zuluaga AV, Ramirez LG, Duque JE, Aristizabal GE, Fiel-Gan MD, Jaramillo R, Trujillo R, Valencia C, Jagodzinski L, Cox DL, Radolf JD, Salazar JC. Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis. 2010;4(5):e690. doi: 10.1371/journal.pntd.0000690. PubMed DOI PMC

Martin IE, Tsang RSW, Sutherland K, Anderson B, Rear R, Roy C, Yanow S, Fonseca K, White W, Kandola K, Kouadjo E, Singh AE. Molecular typing of Treponema pallidum strains in Western Canada: predominance of 14d subtypes. Sex Transm Dis. 2010;37:544–548. doi: 10.1097/OLQ.0b013e3181d73ce1. PubMed DOI

Peng RR, Wang AL, Li J, Tucker JD, Yin YP, Chen XS. Molecular typing of Treponema pallidum: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2011;5(11):e1273. doi: 10.1371/journal.pntd.0001273. PubMed DOI PMC

Tipple C, McMlure MO, Taylor GP. High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex Transm Infect. 2011;87(6):486–488. doi: 10.1136/sextrans-2011-050082. PubMed DOI

Azzato F, Ryan N, Fyfe J, Leslie DE. Molecular subtyping of Treponema pallidum during a local syphilis epidemic in men who have sex with men in Melbourne, Australia. J Clin Microbiol. 2012;50:1895–1899. doi: 10.1128/JCM.00083-12. PubMed DOI PMC

Dai T, Li K, Lu H, Gu X, Wang Q, Zhou P. Molecular typing of Treponema pallidum: five-year surveillance in Shanghai, China. J Clin Microbiol. 2012;50(11):3674–3677. doi: 10.1128/JCM.01195-12. PubMed DOI PMC

Müller EE, Paz-Bailey G, Lewis DA. Macrolide resistance testing and molecular subtyping of Treponema pallidum strains from southern Africa. Sex Transm Infect. 2012;88(6):470–474. doi: 10.1136/sextrans-2011-050322. PubMed DOI

Peng RR, Yin YP, Wei WH, Wang HC, Zhu BY, Liu QZ, Zheng HP, Zhang JP, Huang SJ, Chen XS. Molecular typing of Treponema pallidum causing early syphilis in China: a cross-sectional study. Sex Transm Dis. 2012;39(1):42–45. doi: 10.1097/OLQ.0b013e318232697d. PubMed DOI

Wu H, Chang SY, Lee NY, Huang WC, Wu BR, Yang CJ, Liang SH, Lee CH, Ko WC, Lin HH, Chen YH, Liu WC, Su YC, Hsieh CY, Wu PY, Hung CC. Evaluation of macrolide resistance and enhanced molecular typing of Treponema pallidum in patients with syphilis in Taiwan: a prospective multicenter study. J Clin Microbiol. 2012;50(7):2299–2304. doi: 10.1128/JCM.00341-12. PubMed DOI PMC

Liu H, Rodes B, George R, Steiner B. Molecular characterization and analysis of a gene encoding the acidic repeat protein (Arp) of Treponema pallidum. J Med Microbiol. 2007;56(Pt6):715–721. PubMed

Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, Levert K, Wang D, Sutton M, Armelagos GJ. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under positive selection in the subspecies that cause syphilis. FEMS Immunol Med Microbiol. 2008;53(3):322–332. doi: 10.1111/j.1574-695X.2008.00427.x. PubMed DOI

Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and protective immune response. J Exp Med. 1999;189:647–656. doi: 10.1084/jem.189.4.647. PubMed DOI PMC

Stamm LV, Greene SR, Bergen HL, Hardham JM, Barnes NY. Identification and sequence analysis of Treponema pallidum tprJ, a member of a polymorphic multigene family. FEMS Microbiol Lett. 1998;169(1):155–163. doi: 10.1111/j.1574-6968.1998.tb13312.x. PubMed DOI

Giacani L, Molini B, Godornes C, Barrett L, Van Voorhis W, Centurion-Lara A, Lukehart SA. Quantitative analysis of tpr gene expression in Treponema pallidum isolates: Differences among isolates and correlation with T-cell responsiveness in experimental syphilis. Infect Immun. 2007;75(1):104–112. doi: 10.1128/IAI.01124-06. PubMed DOI PMC

Giacani L, Centurion-Lara A, Lukehart SA. Length of guanosine homopolymeric repeats modulates promotor activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol. 2007;51(2):289–301. doi: 10.1111/j.1574-695X.2007.00303.x. PubMed DOI PMC

Cox DL, Luthra A, Dunha-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, Radolf JD. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun. 2010;78:5178–5194. doi: 10.1128/IAI.00834-10. PubMed DOI PMC

Giacani L, Godornes C, Puray-Chavez M, Guerra-Giraldez C, Tompa M, Lukehart SA, Centurion-Lara A. TP0262 is a modulator of promotor activity of the tpr Subfamily II genes of Treponema pallidum ssp. pallidum. Mol Microbiol. 2009;72(5):1087–1099. doi: 10.1111/j.1365-2958.2009.06712.x. PubMed DOI PMC

Leader BT, Godornes C, Van Voorhis WC, Lukehart SA. CD4+ lymphocytes and gamma interferon predominate in local immune responses in early experimental syphilis. Infect Immun. 2007;75(6):3021–3026. doi: 10.1128/IAI.01973-06. PubMed DOI PMC

Van Voorhis WC, Barrett LK, Koelle DM, Nasio JM, Plummer FA. Primary and secondary syphilis lesions contain mRNA for Th1 cytokines. J Infect Dis. 1996;173(2):491–495. doi: 10.1093/infdis/173.2.491. PubMed DOI

Cruz AR, Ramirez LG, Zuluaga AV, Pillay A, Abreu C, Valencia CA, La Vake C, Cervantes JL, Dunham-Ems S, Cartun R, Mavilio D, Radolf JD, Salazar JC. Immune evasion and recognition of the syphilis spirochete in blood and skin of secondary syphilis patients: two immunologically distinct compartments. PLoS Negl Trop Dis. 2012;6(7):e1717. doi: 10.1371/journal.pntd.0001717. PubMed DOI PMC

Lukehart SA. Activation of macrophages by products of lymphocytes from normal and syphilitic rabbits. Infect Immun. 1982;37(1):64–69. PubMed PMC

Gayet-Ageron A, Ninet B, Toutous-Trellu L, Lautenschlager S, Furrer H, Piguet V, Schrenzel J, Hirschel B. Assessment of a real-time PCR test to diagnose syphilis from diverse biological samples. Sex Transm Infect. 2009;85:264–269. doi: 10.1136/sti.2008.034314. PubMed DOI

Grange PA, Gressier L, Dion PL, Farhi D, Benhaddou N, Gerhardt P, Morini JP, Deleuze J, Pantoja C, Bianchi A, Lassau F, Avril MF, Janier M, Dupin N. Evaluation of a PCR test for detection of Treponema pallidum in swabs and blood. J Clin Microbiol. 2012;50(3):546–552. doi: 10.1128/JCM.00702-11. PubMed DOI PMC

Martin IE, Tsang RSW, Sutherland K, Tillay P, Read R, Anderson B, Roy C, Singh AE. Molecular characterization of syphilis in pacients in Canada: Azitromycin resistance and detection of Treponema pallidum DNA in whole-blood samples versus ulcerative swabs. J Clin Microbiol. 2009;47(6):1668–1673. doi: 10.1128/JCM.02392-08. PubMed DOI PMC

Woznicová V, Šmajs D, Wechsler D, Matějková P, Flasarová M. Detection of Treponema pallidum subsp. pallidum from skin lesions, serum, and cerebrospinal fluid in an infant with congenital syphilis after clindamycin treatment of the mother during pregnancy. J Clin Microbiol. 2007;45:659–661. doi: 10.1128/JCM.02209-06. PubMed DOI PMC

Stamm LV, Bergen HL. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother. 2000;44:806–807. doi: 10.1128/AAC.44.3.806-807.2000. PubMed DOI PMC

Lukehart SA, Godornes C, Molini BJ, Sonnett P, Hopkins S, Mulcahy F, Engelman J, Mitchell SJ, Rompalo AM, Marra CM, Klausner JD. Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med. 2004;351:154–158. doi: 10.1056/NEJMoa040216. PubMed DOI

Matějková P, Flasarová M, Zákoucká H, Bořek M, Křemenová S, Arenberger P, Woznicová V, Weinstock GM, Šmajs D. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol. 2009;58:832–836. doi: 10.1099/jmm.0.007542-0. PubMed DOI

Preacher KJ. Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence [Computer software] 2001. http://quantpsy.org.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis

. 2024 ; 19 (8) : e0307196. [epub] 20240812

Low genetic diversity of Treponema pallidum ssp. pertenue (TPE) isolated from patients' ulcers in Namatanai District of Papua New Guinea: Local human population is infected by three TPE genotypes

. 2024 Jan ; 18 (1) : e0011831. [epub] 20240102

The genomes of the yaws bacterium, Treponema pallidum subsp. pertenue, of nonhuman primate and human origin are not genomically distinct

. 2023 Sep ; 17 (9) : e0011602. [epub] 20230913

Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: A subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains

. 2020 ; 15 (4) : e0230926. [epub] 20200401

A public database for the new MLST scheme for Treponema pallidum subsp. pallidum: surveillance and epidemiology of the causative agent of syphilis

. 2019 ; 6 () : e6182. [epub] 20190109

Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme

. 2018 ; 13 (7) : e0200773. [epub] 20180730

Multi-locus sequence typing of Treponema pallidum subsp. pallidum present in clinical samples from France: Infecting treponemes are genetically diverse and belong to 18 allelic profiles

. 2018 ; 13 (7) : e0201068. [epub] 20180719

Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart

. 2017 Sep ; 11 (9) : e0005894. [epub] 20170908

Molecular typing of Treponema pallidum isolates from Buenos Aires, Argentina: Frequent Nichols-like isolates and low levels of macrolide resistance

. 2017 ; 12 (2) : e0172905. [epub] 20170224

Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance

. 2014 Oct ; 52 (10) : 3693-700. [epub] 20140806

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...