Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
28886021
PubMed Central
PMC5607219
DOI
10.1371/journal.pntd.0005894
PII: PNTD-D-17-00762
Knihovny.cz E-resources
- MeSH
- Time Factors MeSH
- Escherichia coli genetics MeSH
- Yaws epidemiology microbiology MeSH
- Genome, Bacterial * MeSH
- Humans MeSH
- Chromosome Mapping MeSH
- Mutation MeSH
- Papio microbiology MeSH
- Sequence Analysis, DNA MeSH
- Treponema pallidum classification genetics isolation & purification MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Asia epidemiology MeSH
- Ghana epidemiology MeSH
- South America epidemiology MeSH
BACKGROUND: Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multi-stage disease, endemic in tropical regions of Africa, Asia, Oceania, and South America. To date, four TPE strains have been completely sequenced including three TPE strains of human origin (Samoa D, CDC-2, and Gauthier) and one TPE strain (Fribourg-Blanc) isolated from a baboon. All TPE strains are highly similar to T. pallidum subsp. pallidum (TPA) strains. The mutation rate in syphilis and related treponemes has not been experimentally determined yet. METHODOLOGY/PRINCIPAL FINDINGS: Complete genomes of two TPE strains, CDC 2575 and Ghana-051, that infected patients in Ghana and were isolated in 1980 and 1988, respectively, were sequenced and analyzed. Both strains had identical consensus genome nucleotide sequences raising the question whether TPE CDC 2575 and Ghana-051 represent two different strains. Several lines of evidence support the fact that both strains represent independent samples including regions showing intrastrain heterogeneity (13 and 5 intrastrain heterogeneous sites in TPE Ghana-051 and TPE CDC 2575, respectively). Four of these heterogeneous sites were found in both genomes but the frequency of alternative alleles differed. The identical consensus genome sequences were used to estimate the upper limit of the yaws treponeme evolution rate, which was 4.1 x 10-10 nucleotide changes per site per generation. CONCLUSIONS/SIGNIFICANCE: The estimated upper limit for the mutation rate of TPE was slightly lower than the mutation rate of E. coli, which was determined during a long-term experiment. Given the known diversity between TPA and TPE genomes and the assumption that both TPA and TPE have a similar mutation rate, the most recent common ancestor of syphilis and yaws treponemes appears to be more than ten thousand years old and likely even older.
Department of Biology Faculty of Medicine Masaryk University Kamenice 5 Brno Czech Republic
Department of Immunology Veterinary Research Institute Hudcova 296 70 Brno Czech Republic
Regional Laboratory for Public Health Nieuwe Achtergracht 100 Amsterdam The Netherlands
See more in PubMed
Giacani L, Lukehart SA. The endemic treponematoses. Clin Microbiol Rev. 2014;27(1): 89–115. doi: 10.1128/CMR.00070-13 PubMed DOI PMC
Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, et al. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis. 2012;6(1): e1471 doi: 10.1371/journal.pntd.0001471 PubMed DOI PMC
Zobaníková M, Strouhal M, Mikalová L, Čejková D, Ambrožová L, Pospíšilová P, et al. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis. 2013;7(4): e2172 doi: 10.1371/journal.pntd.0002172 PubMed DOI PMC
Štaudová B, Strouhal M, Zobaníková M, Čejková D, Fulton LL, Chen L, et al. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop Dis. 2014;8(11): e3261 doi: 10.1371/journal.pntd.0003261 PubMed DOI PMC
Šmajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol. 2012;12(2): 191–202. doi: 10.1016/j.meegid.2011.12.001 PubMed DOI PMC
de Melo FL, de Mello JC, Fraga AM, Nunes K, Eggers S. Syphilis at the crossroad of phylogenetics and paleopathology. PLoS Negl Trop Dis. 2010;4(1): e575 doi: 10.1371/journal.pntd.0000575 PubMed DOI PMC
Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016;2: 16245 doi: 10.1038/nmicrobiol.2016.245 PubMed DOI
Liska SL, Perine PL, Hunter EF, Crawford JA, Feeley JC. Isolation and transportation of Treponema pertenue in golden hamsters. Curr Microbiol. 1982;7(1): 41–43.
Noordhoek GT, Hermans PW, Paul AN, Schouls LM, van der Sluis JJ, van Embden JD. Treponema pallidum subspecies pallidum (Nichols) and Treponema pallidum subspecies pertenue (CDC 2575) differ in at least one nucleotide: comparison of two homologous antigens. Microb Pathog. 1989;6(1): 29–42. PubMed
Engelkens HJ, Oranje AP, Stolz E. Early yaws, imported in The Netherlands. Genitourin Med. 1989;65(5): 316–318. PubMed PMC
Weinstock GM, Šmajs D, Hardham J, Norris SJ. From microbial genome sequence to applications. Res Microbiol. 2000;151(2): 151–158. PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15): 2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12): 1647–1649. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC
Heymans R, Kolader ME, van der Helm JJ, Coutinho RA, Bruisten SM. TprK gene regions are not suitable for epidemiological syphilis typing. Eur J Clin Microbiol Infect Dis. 2009;28(7): 875–878. doi: 10.1007/s10096-009-0717-5 PubMed DOI
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33: 1870–1874. doi: 10.1093/molbev/msw054 PubMed DOI PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv e-Prints 2013;1303:3997.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16): 2078–2079. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC
Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25(17): 2283–2285. doi: 10.1093/bioinformatics/btp373 PubMed DOI PMC
Čejková D., Zobaníková M., Pospíšilová P., Strouhal M., Mikalová L., Weinstock G.M., et al. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and T. paraluiscuniculi strains. J Med Microbiol. 2013;62(2): 196–207. PubMed PMC
Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis. 2013; 7(5):e2222 doi: 10.1371/journal.pntd.0002222 PubMed DOI PMC
Čejková D, Strouhal M, Norris SJ, Weinstock GM, Šmajs D. A Retrospective study on genetic heterogeneity within Treponema strains: subpopulations are genetically distinct in a limited number of positions. PLoS Negl Trop Dis. 2015;9(10): e0004110 doi: 10.1371/journal.pntd.0004110 PubMed DOI PMC
Noordhoek GT, Engelkens HJ, Judanarso J, van der Stek J, Aelbers GN, van der Sluis JJ, et al. Yaws in West Sumatra, Indonesia: clinical manifestations, serological findings and characterization of new Treponema isolates by DNA probes. Eur J Clin Microbiol Infect Dis. 1991;10(1): 12–19. PubMed
Cumberland MC, Turner TB. Rate of multiplication of Treponema pallidum in normal and immune rabbits. Am J Syphilis. 1949;33(3): 201–212. PubMed
Magnuson HJ, Eagle H, Fleischmann R. The minimal infectious inoculum of Spirochaeta pallida (Nichols strain), and a consideration of its rate of multiplication in vivo. Am J Syph Gonorrhea Vener Dis. 1948;32(1): 1–18. PubMed
Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, Levert K, et al. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol Med Microbiol. 2008;53(3): 322–332. doi: 10.1111/j.1574-695X.2008.00427.x PubMed DOI
Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, Bolotin S, et al. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2008;2(1): e148 doi: 10.1371/journal.pntd.0000148 PubMed DOI PMC
Pillay A, Chen CY, Reynolds MG, Mombouli JV, Castro AC, Louvouezo D, et al. Laboratory-confirmed case of yaws in a 10-year-old boy from the Republic of the Congo. J Clin Microbiol. 2011;49(11): 4013–4015. doi: 10.1128/JCM.01121-11 PubMed DOI PMC
Stamm LV, Bergen HL. The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and Street strain 14 encodes heterogeneous TprK proteins. Infect Immun. 2000;68(11): 6482–6486. PubMed PMC
Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA. The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun. 2000;68(2): 824–831. PubMed PMC
Šmajs D, McKevitt M, Wang L, Howell JK, Norris SJ, Palzkill T, et al. BAC library of T. pallidum DNA in E. coli. Genome Res. 2002;12(3): 515–522. doi: 10.1101/gr.207302 PubMed DOI PMC
LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, Van Voorhis WC, Lukehart SA. Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol. 2003;185(21): 6262–6268. doi: 10.1128/JB.185.21.6262-6268.2003 PubMed DOI PMC
Matějková P, Strouhal M, Šmajs D, Norris SJ, Palzkill T, Petrosino JF, et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008;8: 76 doi: 10.1186/1471-2180-8-76 PubMed DOI PMC
Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, et al. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol. 2012;194(16): 4208–4225. doi: 10.1128/JB.00863-12 PubMed DOI PMC
Pětrošová H, Pospíšilová P, Strouhal M, Čejková D, Zobaníková M, Mikalová L, et al. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013;8(9): e74319 doi: 10.1371/journal.pone.0074319 PubMed DOI PMC
Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, et al. Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol. 2016;2: 16190 doi: 10.1038/nmicrobiol.2016.190 PubMed DOI
Blount ZD, Barrick JE, Davidson CJ, Lenski RE. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature. 2012;489(7417): 513–518. doi: 10.1038/nature11514 PubMed DOI PMC
Maughan H. Rates of molecular evolution in bacteria are relatively constant despite spore dormancy. Evolution. 2007;61(2): 280–288. doi: 10.1111/j.1558-5646.2007.00026.x PubMed DOI
Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics. 1998;148(4): 1667–1686. PubMed PMC
Ochman H, Elwyn S, Moran NA. Calibrating bacterial evolution. Proc Natl Acad Sci U S A. 1999;96(22): 12638–12643. PubMed PMC
Lumeij JT, Mikalová L, Šmajs D. Is there a difference between hare syphilis and rabbit syphilis? Cross infection experiments between rabbits and hares. Vet Microbiol. 2013;164(1–2): 190–194. doi: 10.1016/j.vetmic.2013.02.001 PubMed DOI
Stadler T, Kühnert D, Bonhoeffer S, Drummond AJ. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc Natl Acad Sci U S A. 2013;110(1): 228–233. doi: 10.1073/pnas.1207965110 PubMed DOI PMC
Levréro F, Gatti S, Gautier-Hion A, Ménard N. Yaws disease in a wild gorilla population and its impact on the reproductive status of males. Am J Phys Anthropol. 2007;132(4):568–575. doi: 10.1002/ajpa.20560 PubMed DOI
Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IA, Nordhoff M, et al. Treponema infection associated with genital ulceration in wild baboons. Vet Pathol. 2012;49(2): 292–303. doi: 10.1177/0300985811402839 PubMed DOI
Knauf S, Liu H, Harper KN. Treponemal infection in nonhuman primates as possible reservoir for human yaws. Emerg Infect Dis. 2013;19(12): 2058–2060. doi: 10.3201/eid1912.130863 PubMed DOI PMC
Knauf S, Barnett U, Maciej P, Klapproth M, Ndao I, Frischmann S, et al. High prevalence of antibodies against the bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio). PLoS One. 2015;10(11): e0143100 doi: 10.1371/journal.pone.0143100 PubMed DOI PMC
Klegarth AR, Ezeonwu CA, Rompis A, Lee BPY, Aggimarangsee N, Chalise M, et al. Survey of treponemal infections in free-ranging and captive macaques, 1999–2012. Emerg Infect Dis. 2017;23(5): 816–819. doi: 10.3201/eid2305.161838 PubMed DOI PMC
Maurice J. WHO plans new yaws eradication campaign. Lancet. 2012;379(9824): 1377–1378. PubMed
Mitjà O, Hays R, Ipai A, Penias M, Paru R, Fagaho D, et al. Single-dose azithromycin versus benzathine benzylpenicillin for treatment of yaws in children in Papua New Guinea: an open-label, non-inferiority, randomised trial. Lancet. 2012;379(9813): 342–347. doi: 10.1016/S0140-6736(11)61624-3 PubMed DOI
Mitjà O, Houinei W, Moses P, Kapa A, Paru R, Hays R, et al. Mass treatment with single-dose azithromycin for yaws. N Engl J Med. 2015;372(8): 703–710. doi: 10.1056/NEJMoa1408586 PubMed DOI
Ghinai R, El-Duah P, Chi KH, Pillay A, Solomon AW, Bailey RL, et al. A cross-sectional study of 'yaws' in districts of Ghana which have previously undertaken azithromycin mass drug administration for trachoma control. PLoS Negl Trop Dis. 2015;9(1): e0003496 doi: 10.1371/journal.pntd.0003496 PubMed DOI PMC
Kwakye-Maclean C, Agana N, Gyapong J, Nortey P, Adu-Sarkodie Y, Aryee E, et al. A single dose oral azithromycin versus intramuscular benzathine penicillin for the treatment of yaws-a randomized non inferiority trial in Ghana. PLoS Negl Trop Dis. 2017;11(1): e0005154 doi: 10.1371/journal.pntd.0005154 PubMed DOI PMC
Stamm LV, Bergen HL. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother. 2000;44(3): 806–807. PubMed PMC
Matějková P, Flasarová M, Zákoucká H, Bořek M, Křemenová S, Arenberger P, et al. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol. 2009;58(Pt 6): 832–836. doi: 10.1099/jmm.0.007542-0 PubMed DOI
Šmajs D, Paštěková L, Grillová L. Macrolide resistance in the syphilis spirochete, Treponema pallidum ssp. pallidum: Can we also expect macrolide-resistant yaws strains? Am J Trop Med Hyg. 2015;93(4): 678–683. doi: 10.4269/ajtmh.15-0316 PubMed DOI PMC
Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, Steiner B, et al. Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis. 1998;25(8): 408–414. PubMed
Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, Behets F, et al. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis. 2010;202(9): 1380–1388. doi: 10.1086/656533 PubMed DOI PMC
Flasarová M, Šmajs D, Matějková P, Woznicová V, Heroldová-Dvořáková M, Votava M. Molecular detection and subtyping of Treponema pallidum subsp. pallidum in clinical specimens. Epidemiol Mikrobiol Imunol. 2006;55(3): 105–111. PubMed
Flasarová M, Pospíšilová P, Mikalová L, Vališová Z, Dastychová E, Strnadel R, et al. Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm Venereol. 2012;92(6): 669–674. doi: 10.2340/00015555-1335 PubMed DOI
Mikalová L, Pospíšilová P, Woznicová V, Kuklová I, Zákoucká H, Šmajs D. Comparison of CDC and sequence-based molecular typing of syphilis treponemes: tpr and arp loci are variable in multiple samples from the same patient. BMC Microbiol. 2013;13: 178 doi: 10.1186/1471-2180-13-178 PubMed DOI PMC
Grillová L, Pětrošová H, Mikalová L, Strnadel R, Dastychová E, Kuklová I, et al. Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance. J Clin Microbiol. 2014;52(10): 3693–3700. doi: 10.1128/JCM.01292-14 PubMed DOI PMC
The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis