A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26436423
PubMed Central
PMC4593590
DOI
10.1371/journal.pntd.0004110
PII: PNTD-D-15-00637
Knihovny.cz E-zdroje
- MeSH
- genom bakteriální MeSH
- lidé MeSH
- proteiny vnější bakteriální membrány genetika MeSH
- retrospektivní studie MeSH
- Treponema klasifikace genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny vnější bakteriální membrány MeSH
- Tpr protein, Treponema MeSH Prohlížeč
BACKGROUND: Pathogenic uncultivable treponemes comprise human and animal pathogens including agents of syphilis, yaws, bejel, pinta, and venereal spirochetosis in rabbits and hares. A set of 10 treponemal genome sequences including those of 4 Treponema pallidum ssp. pallidum (TPA) strains (Nichols, DAL-1, Mexico A, SS14), 4 T. p. ssp. pertenue (TPE) strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), 1 T. p. ssp. endemicum (TEN) strain (Bosnia A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPLC) were examined with respect to the presence of nucleotide intrastrain heterogeneous sites. METHODOLOGY/PRINCIPAL FINDINGS: The number of identified intrastrain heterogeneous sites in individual genomes ranged between 0 and 7. Altogether, 23 intrastrain heterogeneous sites (in 17 genes) were found in 5 out of 10 investigated treponemal genomes including TPA strains Nichols (n = 5), DAL-1 (n = 4), and SS14 (n = 7), TPE strain Samoa D (n = 1), and TEN strain Bosnia A (n = 5). Although only one heterogeneous site was identified among 4 tested TPE strains, 16 such sites were identified among 4 TPA strains. Heterogeneous sites were mostly strain-specific and were identified in four tpr genes (tprC, GI, I, K), in genes involved in bacterial motility and chemotaxis (fliI, cheC-fliY), in genes involved in cell structure (murC), translation (prfA), general and DNA metabolism (putative SAM dependent methyltransferase, topA), and in seven hypothetical genes. CONCLUSIONS/SIGNIFICANCE: Heterogeneous sites likely represent both the selection of adaptive changes during infection of the host as well as an ongoing diversifying evolutionary process.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
The Genome Institute Washington University in St Louis St Louis Missouri United States of America
Zobrazit více v PubMed
Fribourg-Blanc A, Mollaret HH, Niel G. Serologic and microscopic confirmation of treponemosis in Guinea baboons. Bull Soc Pathol Exot Filiales. 1966;59: 54–59. PubMed
Fribourg-Blanc A, Mollaret HH. Natural treponematosis of the African primate. Primates Med. 1969;3: 113–121. PubMed
Zobaníková M, Strouhal M, Mikalová L, Čejková D, Ambrožová L, Pospíšilová P, et al. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis. 2013; 7:e2172 10.1371/journal.pntd.0002172 PubMed DOI PMC
Jacobsthal E. Untersuchungen uber eine syphilisahnliche Spontanerkrankungen des Kaninchens (Paralues cuniculi). Derm Wschr. 1920;71: 569–571.
Smith JL, Pesetsky BR. The current status of Treponema cuniculi. Review of the literature. Br J Vener Dis. 1967;43: 117–127. PubMed PMC
Lumeij JT, Mikalová L, Smajs D. Is there a difference between hare syphilis and rabbit syphilis? Cross infection experiments between rabbits and hares. Vet Microbiol. 2013;164: 190–194. 10.1016/j.vetmic.2013.02.001 PubMed DOI
Horvath I, Kemenes F, Molnar L, Szeky A, Racz I. Experimental syphilis and serological examination for treponematosis in hares. Infect Immun. 1980;27: 231–234. PubMed PMC
Horvath I, Kemenes F, Molnar L. Isolation of pathogenic treponemes from hare. Experientia. 1979;35: 320–321. PubMed
Lumeij JT, de Koning J, Bosma RB, van der Sluis JJ, Schellekens JF. Treponemal infections in hares in the Netherlands. J Clin Microbiol. 1994;32: 543–546. PubMed PMC
Lumeij JT. Widespread treponemal infections of hare populations (Lepus europaeus) in the Netherlands. Eur J Wildl Res. 2011;57: 183–186.
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science. 1998;281: 375–388. PubMed
Cejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, et al. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis. 2012;6: e1471 10.1371/journal.pntd.0001471 PubMed DOI PMC
Giacani L, Jeffrey BM, Molini BJ, Le HT, Lukehart SA, Centurion-Lara A, et al. Complete genome sequence and annotation of the Treponema pallidum subsp. pallidum Chicago strain. J Bacteriol. 2010;192: 2645–2646. 10.1128/JB.00159-10 PubMed DOI PMC
Matejková P, Strouhal M, Smajs D, Norris SJ, Palzkill T, Petrosino JF, et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008;8: 76 10.1186/1471-2180-8-76 PubMed DOI PMC
Pětrošová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P, Strouhal M, et al. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis. 2012;6: e1832 10.1371/journal.pntd.0001832 PubMed DOI PMC
Pětrošová H, Pospíšilová P, Strouhal M, Čejková D, Zobaníková M, Mikalová L, et al. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013;8: e74319 10.1371/journal.pone.0074319 PubMed DOI PMC
Šmajs D, Zobaníková M, Strouhal M, Čejková D, Dugan-Rocha S, Pospíšilová P, et al. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS One. 2011;6: e20415 10.1371/journal.pone.0020415 PubMed DOI PMC
Zobaníková M, Mikolka P, Cejková D, Pospíšilová P, Chen L, Strouhal M, et al. Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci. 2012;7: 12–21. 10.4056/sigs.2615838 PubMed DOI PMC
Giacani L, Iverson-Cabral SL, King JC, Molini BJ, Lukehart SA, Centurion-Lara A. Complete genome sequence of the Treponema pallidum subsp. pallidum Sea81-4 strain. Genome Announc. 2014;2: e00333–14. 10.1128/genomeA.00333-14 PubMed DOI PMC
Staudová B, Strouhal M, Zobaníková M, Cejková D, Fulton LL, Chen L, et al. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop Dis. 2014;8: e3261 10.1371/journal.pntd.0003261 PubMed DOI PMC
Smajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol. 2012;12: 191–202. 10.1016/j.meegid.2011.12.001 PubMed DOI PMC
Giacani L, Sun ES, Hevner K, Molini BJ, Van Voorhis WC, Lukehart SA, et al. Tpr homologs in Treponema paraluiscuniculi Cuniculi A strain. Infect Immun. 2004;72: 6561–6576. PubMed PMC
Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis. 2013;7: e2222 10.1371/journal.pntd.0002222 PubMed DOI PMC
Strouhal M, Smajs D, Matejková P, Sodergren E, Amin AG, Howell JK, et al. Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun. 2007;75: 5859–5866. PubMed PMC
Mikalová L, Strouhal M, Čejková D, Zobaníková M, Pospíšilová P, Norris SJ, et al. Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLoS One. 2010;5: e15713 10.1371/journal.pone.0015713 PubMed DOI PMC
Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, Levert K, et al. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol Med Microbiol. 2008;53: 322–332. 10.1111/j.1574-695X.2008.00427.x PubMed DOI
Liu H, Rodes B, George R, Steiner B. Molecular characterization and analysis of a gene encoding the acidic repeat protein (Arp) of Treponema pallidum . J Med Microbiol. 2007;56: 715–721. PubMed
Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejková P, Smajs D, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 2008;76: 1848–1857. 10.1128/IAI.01424-07 PubMed DOI PMC
Flasarová M, Smajs D, Matejková P, Woznicová V, Heroldová-Dvoráková M, Votava M. Molecular detection and subtyping of Treponema pallidum subsp. pallidum in clinical specimens. Epidemiol Mikrobiol Imunol. 2006;55: 105–111. PubMed
Marra C, Sahi S, Tantalo L, Godornes C, Reid T, Behets F, et al. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis. 2010; 202: 1380–1388. 10.1086/656533 PubMed DOI PMC
Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, Van Voorhis WC. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis. 2000;181: 1401–1413. PubMed
Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, Bolotin S, et al. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2008;2: e148 10.1371/journal.pntd.0000148 PubMed DOI PMC
Nechvátal L, Pětrošová H, Grillová L, Pospíšilová P, Mikalová L, Strnadel R, et al. Syphilis-causing strains belong to separate SS14-like or Nichols-like groups as defined by multilocus analysis of 19 Treponema pallidum strains. Int J Med Microbiol. 2014;304: 645–653. 10.1016/j.ijmm.2014.04.007 PubMed DOI
Baseman JB, Nichols JC, Rumpp JW, Hayes NS. Purification of Treponema pallidum from infected rabbit tissue: resolution into two treponemal populations. Infect Immun. 1974;10: 1062–1067. PubMed PMC
Lukehart SA, Shaffer JM, Baker-Zander SA. A subpopulation of Treponema pallidum is resistant to phagocytosis: possible mechanism of persistence. J Infect Dis. 1992;166: 1449–1453. PubMed
Stamm LV, Bergen HL. The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and Street strain 14 encodes heterogeneous TprK proteins. Infect Immun. 2000;68: 6482–6486. PubMed PMC
Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA. The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun. 2000;68: 824–831. PubMed PMC
LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, Van Voorhis WC, Lukehart SA. Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol. 2003;185: 6262–6268. PubMed PMC
Smajs D, McKevitt M, Wang L, Howell JK, Norris SJ, Palzkill T, et al. BAC library of T. pallidum DNA in E. coli . Genome Res. 2002;12: 515–522. PubMed PMC
Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, et al. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol. 2012;194: 4208–4225. 10.1128/JB.00863-12 PubMed DOI PMC
van der Woude MW, Bäumler AJ. Phase and antigenic variation in bacteria. Clin Microbiol Rev. 2004;17: 581–611. PubMed PMC
Palmer GH, Bankhead T, Lukehart SA. “Nothing is permanent but change”- antigenic variation in persistent bacterial pathogens. Cell Microbiol. 2009;11: 1697–1705. 10.1111/j.1462-5822.2009.01366.x PubMed DOI PMC
Golubchik T, Batty EM, Miller RR, Farr H, Young BC, Larner-Svensson H, et al. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS One. 2013;8: e61319 10.1371/journal.pone.0061319 PubMed DOI PMC
Stoesser N, Sheppard AE, Moore CE, Golubchik T, Parry CM, Nget P, et al. Extensive within-host diversity in fecally carried extended-spectrum-beta-lactamase-producing Escherichia coli isolates: implications for transmission analyses. J Clin Microbiol. 2015;53: 2122–2131. 10.1128/JCM.00378-15 PubMed DOI PMC
Braden CR, Morlock GP, Woodley CL, Johnson KR, Colombel AC, Cave MD, et al. Simultaneous infection with multiple strains of Mycobacterium tuberculosis . Clin Infect Dis. 2001;33: e42–47. PubMed
Cave MD, Eisenach KD, Templeton G, Salfinger M, Mazurek G, Bates JH, et al. Stability of DNA fingerprint pattern produced with IS6110 in strains of Mycobacterium tuberculosis . J Clin Microbiol. 1994;32: 262–266. PubMed PMC
Niemann S, Richter E, Rüsch-Gerdes S. Stability of Mycobacterium tuberculosis IS6110 restriction fragment length polymorphism patterns and spoligotypes determined by analyzing serial isolates from patients with drug-resistant tuberculosis. J Clin Microbiol. 1999;37: 409–412. PubMed PMC
Niemann S, Richter E, Rüsch-Gerdes S, Schlaak M, Greinert U. Double infection with a resistant and a multidrug-resistant strain of Mycobacterium tuberculosis . Emerging Infect Dis. 2000;6: 548–551. PubMed PMC
Iverson-Cabral SL, Astete SG, Cohen CR, Rocha EP, Totten PA. Intrastrain heterogeneity of the mgpB gene in Mycoplasma genitalium is extensive in vitro and in vivo and suggests that variation is generated via recombination with repetitive chromosomal sequences. Infect Immun. 2006;74: 3715–3726. PubMed PMC
Snyder LA, Loman NJ, Linton JD, Langdon RR, Weinstock GM, Wren BW, et al. Simple sequence repeats in Helicobacter canadensis and their role in phase variable expression and C-terminal sequence switching. BMC Genomics. 2010;11: 67 10.1186/1471-2164-11-67 PubMed DOI PMC
Arias CA, Torres HA, Singh KV, Panesso D, Moore J, Wanger A, et al. Failure of daptomycin monotherapy for endocarditis caused by an Enterococcus faecium strain with vancomycin-resistant and vancomycin-susceptible subpopulations and evidence of in vivo loss of the vanA gene cluster. Clin Infect Dis. 2007;45: 1343–1346. PubMed
Sokurenko EV, Gomulkiewicz R, Dykhuizen DE. Source-sink dynamics of virulence evolution. Nat Rev Microbiol. 2006;4: 548–555. PubMed
Worby CJ, Lipsitch M, Hanage WP. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput Biol. 2014;10: e1003549 10.1371/journal.pcbi.1003549 PubMed DOI PMC
Paterson GK, Harrison EM, Murray GGR, Welch JJ, Warland JH, Holden MTG, et al. Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nat Commun. 2015;6: 6560 10.1038/ncomms7560 PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–1760. 10.1093/bioinformatics/btp324 PubMed DOI PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26: 589–595. 10.1093/bioinformatics/btp698 PubMed DOI PMC
Kao D. Code: get base counts from SAMtools' mpileup output. 2012. In: Next genetics blog [Internet]. Available: http://blog.nextgenetics.net/?e=56#body-anchor.
Yu G. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing. BMC Bioinformatics. 2010;11: 508 10.1186/1471-2105-11-508 PubMed DOI PMC
Jerome JP, Bell JA, Plovanich-Jones AE, Barrick JE, Brown CT, Mansfield LS. Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PLoS One. 2011;6: e16399 10.1371/journal.pone.0016399 PubMed DOI PMC
Liu Q, Guo Y, Li J, Long J, Zhang B, Shyr Y. Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data. BMC Genomics. 2012;13 Suppl 8: S8 10.1186/1471-2164-13-S8-S8 PubMed DOI PMC
Leshchiner I, Alexa K, Kelsey P, Adzhubei I, Austin-Tse CA, Cooney JD, et al. Mutation mapping and identification by whole-genome sequencing. Genome Res. 2012;22: 1541–1548. 10.1101/gr.135541.111 PubMed DOI PMC
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43: 491–498. 10.1038/ng.806 PubMed DOI PMC
Altmann A, Weber P, Bader D, Preuss M, Binder EB, Müller-Myhsok B. A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum Genet. 2012;131: 1541–1554. 10.1007/s00439-012-1213-z PubMed DOI
Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25: 2283–2285. 10.1093/bioinformatics/btp373 PubMed DOI PMC
Shen Y, Wan Z, Coarfa C, Drabek R, Chen L, Ostrowski EA, et al. A SNP discovery method to assess variant allele probability from next-generation resequencing data. Genome Res. 2010;20: 273–280. 10.1101/gr.096388.109 PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29: 24–26. 10.1038/nbt.1754 PubMed DOI PMC
Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2009;37: 3124. PubMed PMC
Zdobnov EM, Apweiler R. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17: 847–848. PubMed
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26: 1608–1615. 10.1093/bioinformatics/btq249 PubMed DOI PMC
Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008;36: e105 10.1093/nar/gkn425 PubMed DOI PMC
Minoche AE, Dohm JC, Himmelbauer H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 2011;12: R112 10.1186/gb-2011-12-11-r112 PubMed DOI PMC
Giacani L, Brandt SL, Ke W, Reid TB, Molini BJ, Iverson-Cabral S, et al. Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat. Infect Immun. 2015;83: 2275–2289. 10.1128/IAI.00360-15 PubMed DOI PMC
Giacani L, Lukehart S, Centurion-Lara A. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum . FEMS Immunol Med Microbiol. 2007;51: 289–301. PubMed PMC
Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli . Nature. 2009;461: 1243–1247. 10.1038/nature08480 PubMed DOI
Fryxell KJ, Zuckerkandl E. Cytosine deamination plays a primary role in the evolution of mammalian isochores. Mol Biol Evol. 2000;17: 1371–1383. PubMed
Gros L, Saparbaev MK, Laval J. Enzymology of the repair of free radicals-induced DNA damage. Oncogene. 2002;21: 8905–8925. PubMed
Costello M, Pugh TJ, Fennell TJ, Stewart C, Lichtenstein L, Meldrim JC, et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 2013;41: e67 10.1093/nar/gks1443 PubMed DOI PMC
Flasarová M, Pospíšilová P, Mikalová L, Vališová Z, Dastychová E, Strnadel R, et al. Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm Venereol. 2012;92: 669–674. 10.2340/00015555-1335 PubMed DOI
Grillová L, Pĕtrošová H, Mikalová L, Strnadel R, Dastychová E, Kuklová I, et al. Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance. J Clin Microbiol. 2014;52: 3693–3700. 10.1128/JCM.01292-14 PubMed DOI PMC
Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, Steiner B, et al. Molecular subtyping of Treponema pallidum subspecies pallidum . Sex Transm Dis. 1998;25: 408–414. PubMed
Marra C, Sahi S, Tantalo L, Godomes C, Reid T, Behets F, et al. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis. 2010;202: 1380–1388. 10.1086/656533 PubMed DOI PMC
Smajs D, McKevitt M, Howell JK, Norris SJ, Cai WW, Palzkill T, et al. Transcriptome of Treponema pallidum: gene expression profile during experimental rabbit infection. J Bacteriol. 2005;187: 1866–1874. PubMed PMC
Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, et al. Treponema pallidum major sheath protein homologue TprK is a target of opsonic antibody and the protective immune response. J Exp Med. 1999;189: 647–656. PubMed PMC
Leader BT, Hevner K, Molini BJ, Barrett LK, Van Voorhis WC, Lukehart SA. Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum . Infect Immun. 2003;71: 6054–6057. PubMed PMC
Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum . Infect Immun. 2010;78: 5178–5194. 10.1128/IAI.00834-10 PubMed DOI PMC
Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, Van Voorhis WC, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004;52: 1579–1596. PubMed
Reid TB, Molini BJ, Fernandez MC, Lukehart SA. Antigenic variation of TprK facilitates development of secondary syphilis. Infect Immun. 2014;82: 4959–4967. 10.1128/IAI.02236-14 PubMed DOI PMC
Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, et al. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol. 2010;184: 3822–3829. 10.4049/jimmunol.0902788 PubMed DOI PMC
LaFond RE, Centurion-Lara A, Godornes C, Van Voorhis WC, Lukehart SA. TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect Immun. 2006;74: 1896–1906. PubMed PMC
LaFond RE, Molini BJ, Van Voorhis WC, Lukehart SA. Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun. 2006;74: 6244–6251. PubMed PMC
Crozat E, Philippe N, Lenski RE, Geiselmann J, Schneider D. Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics. 2005;169: 523–532. PubMed PMC
Tong SYC, Holden MTG, Nickerson EK, Cooper BS, Köser CU, Cori A, et al. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res. 2015;25: 111–118. 10.1101/gr.174730.114 PubMed DOI PMC
Nichols HJ, Hough WH. Demonstration of Spirochaeta pallida in the cerebrospinal fluid: from a patient with nervous relapse following the use of salvarsan. JAMA. 1913; 60: 108.
Wendel GD Jr, Sanchez PJ, Peters MT, Harstad TW, Potter LL, Norgard MV. Identification of Treponema pallidum in amniotic fluid and fetal blood from pregnancies complicated by congenital syphilis. Obstet Gynecol. 1991;78: 890–895. PubMed
Stamm LV, Kerner TC Jr, Bankaitis VA, Bassford PJ Jr. Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli . Infect Immun. 1983;41: 709–721. PubMed PMC
Turner TB, Hollander DH. Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ. 1957;35: 3–266. PubMed
Liska SL, Perine PL, Hunter EF, Crawford JA, Feeley JC. Isolation and transportation of Treponema pertenue in golden hamsters. Curr Microbiol. 1982;7: 41–43.
Gastinel P, Vaisman A, Hamelin A, Dunoyer F. Study of a recently isolated strain of Treponema pertenue . Prophyl Sanit Morale. 1963;35: 182–188. PubMed
Turner TB, Hollander DH. Studies on treponemes from cases of endemic syphilis. Bull World Health Organ. 1952;7: 75–81. PubMed PMC
Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, LeDoyt M, et al. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol. 2012;194: 2321–2333. 10.1128/JB.00101-12 PubMed DOI PMC