Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DA013759
NIDA NIH HHS - United States
R01 AI49252
NIAID NIH HHS - United States
R03 AI069107
NIAID NIH HHS - United States
R01 DE12488
NIDCR NIH HHS - United States
R01 DE13759
NIDCR NIH HHS - United States
R01 EY013759
NEI NIH HHS - United States
R03 AI69107
NIAID NIH HHS - United States
R01 AI049252
NIAID NIH HHS - United States
PubMed
21209953
PubMed Central
PMC3012094
DOI
10.1371/journal.pone.0015713
Knihovny.cz E-zdroje
- MeSH
- bakteriální chromozomy MeSH
- bakteriální geny MeSH
- frambézie mikrobiologie MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- genom MeSH
- lidé MeSH
- modely genetické MeSH
- molekulární sekvence - údaje MeSH
- sekvenční analýza DNA MeSH
- software MeSH
- syfilis mikrobiologie MeSH
- Treponema pallidum genetika MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The genomes of eight treponemes including T. p. pallidum strains (Nichols, SS14, DAL-1 and Mexico A), T. p. pertenue strains (Samoa D, CDC-2 and Gauthier), and the Fribourg-Blanc isolate, were amplified in 133 overlapping amplicons, and the restriction patterns of these fragments were compared. The approximate sizes of the genomes investigated based on this whole genome fingerprinting (WGF) analysis ranged from 1139.3-1140.4 kb, with the estimated genome sequence identity of 99.57-99.98% in the homologous genome regions. Restriction target site analysis, detecting the presence of 1773 individual restriction sites found in the reference Nichols genome, revealed a high genome structure similarity of all strains. The unclassified simian Fribourg-Blanc isolate was more closely related to T. p. pertenue than to T. p. pallidum strains. Most of the genetic differences between T. p. pallidum and T. p. pertenue strains were accumulated in six genomic regions. These genome differences likely contribute to the observed differences in pathogenicity between T. p. pallidum and T. p. pertenue strains. These regions of sequence divergence could be used for the molecular detection and discrimination of syphilis and yaws strains.
Zobrazit více v PubMed
Fribourg-Blanc A, Niel G, Mollaret HH. Note of Some Imunological Aspects of the African Cynocephalus. 1. Antigenic Relationship of Its Gamma Globulin with Human Gamma Globulin. 2. Guinean Endemic Focus of Treponematosis. Bull Soc Pathol Exot Filiales. 1963;56:474–485. PubMed
Fribourg-Blanc A, Mollaret HH, Niel G. Confirmation serologique et microscopique de la treponemose du cynocephale de Guinee. Bull Soc Pathol Exot Filiales. 1966;59:54–59. PubMed
Fribourg-Blanc A, Mollaret HH. Natural treponematotis of the African primate. Primates Med. 1969;3:113–121. PubMed
Medina R. WHO Technical Report WHO/VDT/RES 63.64. 1963
Smith JL. Neuro-ophthalmological study of late yaws. I. An introduction to yaws. Brit J Vener Dis. 1971;47:223–225. PubMed PMC
Smith JL, David NJ, Indgin S, Israel CW, Levine BM, et al. Neuro-ophthalmological study of late yaws and pinta. II. The Caracas project. Br J Vener Dis. 1971;47:226–251. PubMed PMC
Levréro F, Gattis S, Gautier-Hion A, Ménard N. Yaws disease in a wild gorilla population and its impact on the reproductive status of males. Am J Phys Anthropol. 2007;132:568–575. PubMed
Norris SJ, Cox DL, Weinstock GM. Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol. 2001;3:37–62. PubMed
Hollander DH. Treponematosis from pinta to veneral syphilis revisited: hypothesis from temperature determination of disease patterns. Sex Trans Dis. 1981;8:34–37. PubMed
Hollander DH, Turner TB. The role of temperature in experimental treponemal infections. Am J Syph. 1954;38:489. PubMed
Hudson EH. Treponematosis in perspective. Bull World Health Org. 1965;2:735–748. PubMed PMC
Baker BJ, Armelagos GJ. The origin and antiquity of syphilis. Curr Anthropol. 1988;29:703–737. PubMed
Hackett C. On the origin of the human treponematoses. Bull WHO. 1963;23:7–41. PubMed PMC
Antal GM, Lukehart SA, Meheus AZ. The endemic treponematoses. Microbes Infect. 2002;4:83–94. PubMed
Noordhoek GT, Wieles B, van der Sluis JJ, van Embden JD. Polymerase chain reaction and synthetic DNA probes: a means of distinguishing the causative agents of syphilis and yaws? Infect Immun. 1990;58:2011–2013. PubMed PMC
Walker EM, Howell JK, You Y, Hoffmaster AR, Heath JD, et al. Physical map of the genome of Treponema pallidum subsp. pallidum (Nichols). J Bacteriol. 1995;177:1797–1804. PubMed PMC
Centurion-Lara A, Castro C, Castillo R, Shaffer JM, Van Voorhis WC, et al. The flanking region sequences of the 15-kDa lipoprotein gene differentiate pathogenic treponemes. J Infect Dis. 1998;177:1036–1040. PubMed
Centurion-Lara A, Molini BJ, Godornes C, Sun E, Hevner K, et al. Molecular differentiation of Treponema pallidum subspecies. J Clin Microbiol. 2006;44(9):3377–3380. PubMed PMC
Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, et al. Molecular evolution of the tprC, D, J, K, G and J genes in the pathogenic genus Treponema. Mol Biol Evol. 2006;23:2220–2233. PubMed
Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, et al. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2008;2:e148. PubMed PMC
Strouhal M, Šmajs D, Matějková P, Sodergren E, Amin AG, et al. Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun. 2007;75:5859–5866. PubMed PMC
Šmajs D, McKevitt M, Wang L, Howell JK, Norris SJ, et al. BAC library of T. pallidum DNA in E. coli. Genome Res. 2002;12:515–522. PubMed PMC
Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004;52(6):1579–1596. PubMed
Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, et al. Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis. 1998;25(8):408–14. PubMed
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science. 1998;281:375–388. PubMed
Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, et al. The sequence of the acidic repeat protein (arp) gene differenciates veneral from nonveneral Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol Med Microbiol. 2008;53:322–332. PubMed
Matějková P, Strouhal M, Šmajs D, Norris SJ, Palzkill T, et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008;8:76. PubMed PMC
Brinkman MB, McGill MA, Pettersson J, Rogers A, Matějková P, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 2008;76:1848–1857. PubMed PMC
Livingstone FB. On the origin of syphilis: an alternative hypothesis. Curr Anthropol. 1991;32:587–590.
Marra CM, Colina AP, Godornes C, Tantalo LC, Puray M, et al. Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum. J Infect Dis. 2006;194:1771–1773. PubMed
Citti C, Kim MF, Wise KS. Elongated versions of Vlp surface lipoproteins protect Mycoplasma hyorhinis escape variants from growth-inhibiting host antibodies. Infect Immun. 1997;65(5):1773–1785. PubMed PMC
Coil DA, Vandersmissen L, Ginevra C, Jarraud S, Lammertyn E, et al. Intragenic tandem repeat variation between Legionella pneumophila strains. BMC Microbiol. 2008;8:218. PubMed PMC
Liu H, Rodes B, George R, Steiner B. Molecular characterization and analysis of a gene encoding the acidic repeat protein (Arp) of Treponema pallidum. J Med Microbiol. 2007;56:715–721. PubMed
Centurion-Lara A, Sun ES, Barrett L, Castro C, Lukehart SA, et al. Multiple alleles of Treponema pallidum repeat gene D in Treponema pallidum isolates. J Bacteriol. 2000;182:2332–2335. PubMed PMC
Fenno JC, Muller KH, McBride BC. Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola. J Bacteriol. 1996;178:2489–2497. PubMed PMC
Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, et al. Treponema pallidum major sheath protein homologue TprK is a target of opsonic antibody and the protective immune response. J Exp Med. 1999;189:647–656. PubMed PMC
Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA. The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun. 2000;68:824–831. PubMed PMC
Morgan CA, Lukehart SA, Van Voorhis WC. Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect Immun. 2002;70:6811–6816. PubMed PMC
Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol. 2002;169:952–957. PubMed
Morgan CA, Lukehart SA, Van Voorhis WC. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect Immun. 2003;71:5605–5612. PubMed PMC
Wendel GD, Jr, Sanchez PJ, Peters MT, Harstad TW, Potter LL, et al. Identification of Treponema pallidum in amniotic fluid and fetal blood from pregnancies complicated by congenital syphilis. Obstet Gynecol. 1991;78:890–895. PubMed
Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, et al. Infect Immun. In press; 2010. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. doi: 10.1128/IAI.00834-10. PubMed DOI PMC
Julvez J, Michault A, Kerdelhue V. Serologic studies of non-venereal treponematoses in infants in Niamey, Niger. Med Trop (Mars) 1998;58:38–40. PubMed
Wilson J, Mauger DG. Syphilis in pregnancy supervening on yaws: case report. N Z Med J. 1973;77:384–388. PubMed
Turner TB, Hollander DH. Geneva: World Health Organization; 1957. Biology of the treponematoses. PubMed
Baseman JB, Nichols JC, Rumpp O, Hayes NS. Purification of Treponema pallidum from infected rabbit tissue: resolution into two treponemal populations. Infect Immun. 1974;10:1062–1067. PubMed PMC
Weinstock GM, Norris SJ, Sodergren E, Šmajs D. Identification of virulence genes in silico: infectious disease genomics. In: Brogden KA, Roth JA, Stanton TB, Bolin CA, Minion FC, Wannemuehler MJ, editors. Virulence mechanisms of bacterial pathogens. 3rd ed. Washington, DC: ASM Press; 2000. pp. 251–261.
Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, editors. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press; 2000. pp. 365–386. PubMed
Wilgenbusch JC, Swofford D. Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics Chapter 6: Unit 6.4 2003 PubMed
Calendini F, Martin JF. PaupUp v1.0.3.1 A free graphical frontend for Paup* Dos software. 2005.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed
Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. PubMed
Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996;12:357–358. PubMed
Nichols HJ, Hough WH. Demonstration of Spirochaeta pallida in the cerebrospinal fluid. JAMA-J Am Med Assoc. 1913;60:108–110.
Stamm LV, Kerner TC, Jr, Bankaitis VA, Bassford PJ., Jr Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli. Infect Immun. 1983;41:709–721. PubMed PMC
Liska SL, Perine PL, Hunter EF, Crawford JA, Feelez JC. Isolation and transportation of Treponema pertenue in golden hamsters. Curr Microbiol. 1982;7:41–43.
Gastinel P, Vaisman A, Hamelin A, Dunoyer F. Study of a recently isolated strain of Treponema pertenue. Ann Dermatol Syphiligr Paris. 1963;90:155–161. PubMed
The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis
GENBANK
HM151364, HM151365, HM151366, HM151367, HM151368, HM151369, HM151370, HM151371, HM151372, HM151373, HM165228, HM165229, HM165230, HM165231, HM165232, HM243495, HM243496, HM245777, HM585227, HM585228, HM585229, HM585230, HM585231, HM585232, HM585233, HM585234, HM585235, HM585236, HM585237, HM585238, HM585239, HM585240, HM585241, HM585242, HM585243, HM585244, HM585245, HM585246, HM585247, HM585248, HM585249, HM585250, HM585251, HM585252, HM585253, HM585254, HM585255, HM585256, HM585257, HM585258, HM585259, HM623430