Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions

. 2010 Dec 29 ; 5 (12) : e15713. [epub] 20101229

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21209953

Grantová podpora
R01 DA013759 NIDA NIH HHS - United States
R01 AI49252 NIAID NIH HHS - United States
R03 AI069107 NIAID NIH HHS - United States
R01 DE12488 NIDCR NIH HHS - United States
R01 DE13759 NIDCR NIH HHS - United States
R01 EY013759 NEI NIH HHS - United States
R03 AI69107 NIAID NIH HHS - United States
R01 AI049252 NIAID NIH HHS - United States

The genomes of eight treponemes including T. p. pallidum strains (Nichols, SS14, DAL-1 and Mexico A), T. p. pertenue strains (Samoa D, CDC-2 and Gauthier), and the Fribourg-Blanc isolate, were amplified in 133 overlapping amplicons, and the restriction patterns of these fragments were compared. The approximate sizes of the genomes investigated based on this whole genome fingerprinting (WGF) analysis ranged from 1139.3-1140.4 kb, with the estimated genome sequence identity of 99.57-99.98% in the homologous genome regions. Restriction target site analysis, detecting the presence of 1773 individual restriction sites found in the reference Nichols genome, revealed a high genome structure similarity of all strains. The unclassified simian Fribourg-Blanc isolate was more closely related to T. p. pertenue than to T. p. pallidum strains. Most of the genetic differences between T. p. pallidum and T. p. pertenue strains were accumulated in six genomic regions. These genome differences likely contribute to the observed differences in pathogenicity between T. p. pallidum and T. p. pertenue strains. These regions of sequence divergence could be used for the molecular detection and discrimination of syphilis and yaws strains.

Zobrazit více v PubMed

Fribourg-Blanc A, Niel G, Mollaret HH. Note of Some Imunological Aspects of the African Cynocephalus. 1. Antigenic Relationship of Its Gamma Globulin with Human Gamma Globulin. 2. Guinean Endemic Focus of Treponematosis. Bull Soc Pathol Exot Filiales. 1963;56:474–485. PubMed

Fribourg-Blanc A, Mollaret HH, Niel G. Confirmation serologique et microscopique de la treponemose du cynocephale de Guinee. Bull Soc Pathol Exot Filiales. 1966;59:54–59. PubMed

Fribourg-Blanc A, Mollaret HH. Natural treponematotis of the African primate. Primates Med. 1969;3:113–121. PubMed

Medina R. WHO Technical Report WHO/VDT/RES 63.64. 1963

Smith JL. Neuro-ophthalmological study of late yaws. I. An introduction to yaws. Brit J Vener Dis. 1971;47:223–225. PubMed PMC

Smith JL, David NJ, Indgin S, Israel CW, Levine BM, et al. Neuro-ophthalmological study of late yaws and pinta. II. The Caracas project. Br J Vener Dis. 1971;47:226–251. PubMed PMC

Levréro F, Gattis S, Gautier-Hion A, Ménard N. Yaws disease in a wild gorilla population and its impact on the reproductive status of males. Am J Phys Anthropol. 2007;132:568–575. PubMed

Norris SJ, Cox DL, Weinstock GM. Biology of Treponema pallidum: correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol. 2001;3:37–62. PubMed

Hollander DH. Treponematosis from pinta to veneral syphilis revisited: hypothesis from temperature determination of disease patterns. Sex Trans Dis. 1981;8:34–37. PubMed

Hollander DH, Turner TB. The role of temperature in experimental treponemal infections. Am J Syph. 1954;38:489. PubMed

Hudson EH. Treponematosis in perspective. Bull World Health Org. 1965;2:735–748. PubMed PMC

Baker BJ, Armelagos GJ. The origin and antiquity of syphilis. Curr Anthropol. 1988;29:703–737. PubMed

Hackett C. On the origin of the human treponematoses. Bull WHO. 1963;23:7–41. PubMed PMC

Antal GM, Lukehart SA, Meheus AZ. The endemic treponematoses. Microbes Infect. 2002;4:83–94. PubMed

Noordhoek GT, Wieles B, van der Sluis JJ, van Embden JD. Polymerase chain reaction and synthetic DNA probes: a means of distinguishing the causative agents of syphilis and yaws? Infect Immun. 1990;58:2011–2013. PubMed PMC

Walker EM, Howell JK, You Y, Hoffmaster AR, Heath JD, et al. Physical map of the genome of Treponema pallidum subsp. pallidum (Nichols). J Bacteriol. 1995;177:1797–1804. PubMed PMC

Centurion-Lara A, Castro C, Castillo R, Shaffer JM, Van Voorhis WC, et al. The flanking region sequences of the 15-kDa lipoprotein gene differentiate pathogenic treponemes. J Infect Dis. 1998;177:1036–1040. PubMed

Centurion-Lara A, Molini BJ, Godornes C, Sun E, Hevner K, et al. Molecular differentiation of Treponema pallidum subspecies. J Clin Microbiol. 2006;44(9):3377–3380. PubMed PMC

Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, et al. Molecular evolution of the tprC, D, J, K, G and J genes in the pathogenic genus Treponema. Mol Biol Evol. 2006;23:2220–2233. PubMed

Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, et al. On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis. 2008;2:e148. PubMed PMC

Strouhal M, Šmajs D, Matějková P, Sodergren E, Amin AG, et al. Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun. 2007;75:5859–5866. PubMed PMC

Šmajs D, McKevitt M, Wang L, Howell JK, Norris SJ, et al. BAC library of T. pallidum DNA in E. coli. Genome Res. 2002;12:515–522. PubMed PMC

Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004;52(6):1579–1596. PubMed

Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, et al. Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis. 1998;25(8):408–14. PubMed

Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science. 1998;281:375–388. PubMed

Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, et al. The sequence of the acidic repeat protein (arp) gene differenciates veneral from nonveneral Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol Med Microbiol. 2008;53:322–332. PubMed

Matějková P, Strouhal M, Šmajs D, Norris SJ, Palzkill T, et al. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008;8:76. PubMed PMC

Brinkman MB, McGill MA, Pettersson J, Rogers A, Matějková P, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 2008;76:1848–1857. PubMed PMC

Livingstone FB. On the origin of syphilis: an alternative hypothesis. Curr Anthropol. 1991;32:587–590.

Marra CM, Colina AP, Godornes C, Tantalo LC, Puray M, et al. Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum. J Infect Dis. 2006;194:1771–1773. PubMed

Citti C, Kim MF, Wise KS. Elongated versions of Vlp surface lipoproteins protect Mycoplasma hyorhinis escape variants from growth-inhibiting host antibodies. Infect Immun. 1997;65(5):1773–1785. PubMed PMC

Coil DA, Vandersmissen L, Ginevra C, Jarraud S, Lammertyn E, et al. Intragenic tandem repeat variation between Legionella pneumophila strains. BMC Microbiol. 2008;8:218. PubMed PMC

Liu H, Rodes B, George R, Steiner B. Molecular characterization and analysis of a gene encoding the acidic repeat protein (Arp) of Treponema pallidum. J Med Microbiol. 2007;56:715–721. PubMed

Centurion-Lara A, Sun ES, Barrett L, Castro C, Lukehart SA, et al. Multiple alleles of Treponema pallidum repeat gene D in Treponema pallidum isolates. J Bacteriol. 2000;182:2332–2335. PubMed PMC

Fenno JC, Muller KH, McBride BC. Sequence analysis, expression, and binding activity of recombinant major outer sheath protein (Msp) of Treponema denticola. J Bacteriol. 1996;178:2489–2497. PubMed PMC

Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, et al. Treponema pallidum major sheath protein homologue TprK is a target of opsonic antibody and the protective immune response. J Exp Med. 1999;189:647–656. PubMed PMC

Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA. The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun. 2000;68:824–831. PubMed PMC

Morgan CA, Lukehart SA, Van Voorhis WC. Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect Immun. 2002;70:6811–6816. PubMed PMC

Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol. 2002;169:952–957. PubMed

Morgan CA, Lukehart SA, Van Voorhis WC. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect Immun. 2003;71:5605–5612. PubMed PMC

Wendel GD, Jr, Sanchez PJ, Peters MT, Harstad TW, Potter LL, et al. Identification of Treponema pallidum in amniotic fluid and fetal blood from pregnancies complicated by congenital syphilis. Obstet Gynecol. 1991;78:890–895. PubMed

Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, et al. Infect Immun. In press; 2010. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. doi: 10.1128/IAI.00834-10. PubMed DOI PMC

Julvez J, Michault A, Kerdelhue V. Serologic studies of non-venereal treponematoses in infants in Niamey, Niger. Med Trop (Mars) 1998;58:38–40. PubMed

Wilson J, Mauger DG. Syphilis in pregnancy supervening on yaws: case report. N Z Med J. 1973;77:384–388. PubMed

Turner TB, Hollander DH. Geneva: World Health Organization; 1957. Biology of the treponematoses. PubMed

Baseman JB, Nichols JC, Rumpp O, Hayes NS. Purification of Treponema pallidum from infected rabbit tissue: resolution into two treponemal populations. Infect Immun. 1974;10:1062–1067. PubMed PMC

Weinstock GM, Norris SJ, Sodergren E, Šmajs D. Identification of virulence genes in silico: infectious disease genomics. In: Brogden KA, Roth JA, Stanton TB, Bolin CA, Minion FC, Wannemuehler MJ, editors. Virulence mechanisms of bacterial pathogens. 3rd ed. Washington, DC: ASM Press; 2000. pp. 251–261.

Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, editors. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press; 2000. pp. 365–386. PubMed

Wilgenbusch JC, Swofford D. Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics Chapter 6: Unit 6.4 2003 PubMed

Calendini F, Martin JF. PaupUp v1.0.3.1 A free graphical frontend for Paup* Dos software. 2005.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed

Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. PubMed

Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996;12:357–358. PubMed

Nichols HJ, Hough WH. Demonstration of Spirochaeta pallida in the cerebrospinal fluid. JAMA-J Am Med Assoc. 1913;60:108–110.

Stamm LV, Kerner TC, Jr, Bankaitis VA, Bassford PJ., Jr Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli. Infect Immun. 1983;41:709–721. PubMed PMC

Liska SL, Perine PL, Hunter EF, Crawford JA, Feelez JC. Isolation and transportation of Treponema pertenue in golden hamsters. Curr Microbiol. 1982;7:41–43.

Gastinel P, Vaisman A, Hamelin A, Dunoyer F. Study of a recently isolated strain of Treponema pertenue. Ann Dermatol Syphiligr Paris. 1963;90:155–161. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis

. 2024 ; 19 (8) : e0307196. [epub] 20240812

Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: A subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains

. 2020 ; 15 (4) : e0230926. [epub] 20200401

Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: Modular structure of several treponemal genes

. 2018 Oct ; 12 (10) : e0006867. [epub] 20181010

Multi-locus sequence typing of Treponema pallidum subsp. pallidum present in clinical samples from France: Infecting treponemes are genetically diverse and belong to 18 allelic profiles

. 2018 ; 13 (7) : e0201068. [epub] 20180719

Sequence Variation of Rare Outer Membrane Protein β-Barrel Domains in Clinical Strains Provides Insights into the Evolution of Treponema pallidum subsp. pallidum, the Syphilis Spirochete

. 2018 Jun 12 ; 9 (3) : . [epub] 20180612

Reanalysis of Chinese Treponema pallidum samples: all Chinese samples cluster with SS14-like group of syphilis-causing treponemes

. 2018 Jan 11 ; 11 (1) : 16. [epub] 20180111

Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry

. 2016 Sep ; 10 (9) : e0004988. [epub] 20160908

A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions

. 2015 ; 9 (10) : e0004110. [epub] 20151005

Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes

. 2014 ; 8 (11) : e3261. [epub] 20141106

Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters

. 2013 ; 8 (9) : e74319. [epub] 20130910

Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies

. 2013 ; 7 (4) : e2172. [epub] 20130418

Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains

. 2012 ; 6 (9) : e1832. [epub] 20120920

Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws

. 2012 Mar ; 12 (2) : 191-202. [epub] 20111215

Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence

. 2012 Jan ; 6 (1) : e1471. [epub] 20120124

Zobrazit více v PubMed

GENBANK
HM151364, HM151365, HM151366, HM151367, HM151368, HM151369, HM151370, HM151371, HM151372, HM151373, HM165228, HM165229, HM165230, HM165231, HM165232, HM243495, HM243496, HM245777, HM585227, HM585228, HM585229, HM585230, HM585231, HM585232, HM585233, HM585234, HM585235, HM585236, HM585237, HM585238, HM585239, HM585240, HM585241, HM585242, HM585243, HM585244, HM585245, HM585246, HM585247, HM585248, HM585249, HM585250, HM585251, HM585252, HM585253, HM585254, HM585255, HM585256, HM585257, HM585258, HM585259, HM623430

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...